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1. Introduction

In this paper we present an extension to an arbitrary Banach space X of some
results (Theorem 1.2 and Proposition 1.2) contained in [2] with X = R™, that is we
deal with the problem

{:ic=f(t,x) tela,b]=ICR, z€X,

(BY) €S

where X is a Banach space, f : I x X — X is a continuous map and 5 is a
subset of the Banach space C(I,X) of continuous functions from I to X with
the maximum norm. The extension is obtained in a quite natural way by using
condensing operators and the related fixed point theory. We look for solution of
(BV) in the form of fixed points of a finite valued upper semicontinuous multivalued
map X, that is the solution map of a suitable “linearized” problem associated to
(BV) (see e.g. [3], [4], [5], [6])- So, in this work, we give an existence result for
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(BV) as well as for the second order boundary value problem
z" = f(t,z,2',2") tcICR, z€X,
z€S S c CY(I,X),

generalizing Proposition 1.2 in [2]. An example will be given in order to see how
this latter result can be applied.

2. Definitions

DEFINITION 1.1. Let X and Y be metric spaces. A set valued map ¥ : XY,
with nonempty values, is said to be upper semicontinuous at x € X if for any
neighborhood V of X(z) there exists a neighborhood U of X such that 3(z) C V
for any z € U. If for every x € X, ¥ is upper semicontinuous at x, then ¥ is said
to be upper semicontinuous (u.s.c.) on X. It is well known that ¥ is u.s.c. if and
only if for any closed subset D CY the set _' (D) ={z € X : B(x)ND #0} is
closed in X.

DEFINITION 1.2. Let X and Y be topological Hausdor(f spaces. A finite valued
upper semicontinuous map X : X oY will be called a weighted map (shortly w-map)
if, to each z and y € X(z), a multiplicity of weight m(y,X(z)) € Z is assigned
in such a way that the following property holds:If U is an open set in Y with
U NX(x) =0, then

Z m(y’ E(.’E)) = Z m(y’ E(ml))
yeB(z)NU y €X(z)NU

whenever ' is close enough to = (see [6], [7]).

DEFINITION 1.3. The number i(2(z),U) = 3=, cx(nu™(y: 2(z)) will be called
the “index” of multiplicity of X(z) in U. If U is a connected set, the number
t(X(zx)) does not depend on z € X. In this case the number i(X) = i(X(z),U) will
be called the index of the weighted map ¥.

DEFINITION 1.4. Let X be a Banach space, (A, >) be a partially ordered set.
A function v : 2X — A is said to be a measure of non compactness (MNC) if

Tﬁ(m) = () for every Q € 2X

A measure of non compactness is called monotone if 0y, € 2X and Oy € N
imply ¥(Qo) < P().

A real valued MNC 1 : 2% — [0, +00) is called regular if 1(Q) = 0 is equivalent
to the relative compactness of 1.
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Well known examples of MNC monotone and regular are the following (see [1]):

(a) the Kuratowski MNC defined by a(2) = inf{d > 0 : Q2 admits a partition
into a finite number of sets whose diameters are less than d };

(b) the Hausdorff MNC defined by 3(£2) = inf{e > 0 : Q has finite ¢ net }. In
the following %) will be a real valued MNC.

DEFINITION 1.5. Let X be a Banach space and let v be a MNC. A continuous
map f : dom(f) C X — X is said to be 1" condensing if there exists 0 < h < 1
such that

P(f() < hp(Q2)
for any set QO C Dom (f). Let Q be a topological space and let Qg be a nonempty
subset of X. A continuous map K : Qo X Q — X is said to be v condensing with
respect to the first variable if

P(K(Q,C)) < hp()
for any compact C C Q and 2 C .

DEFINITION 1.6. Let f be a continuous operator acting from the closure U of
a bounded open subset U of a Banach space X into X, 9 condensing with respect
to a monotone MNC ¢ and without fized points on the boundary OU of U. Then
one can define an integer valued characteristic ind (f,U) called the index of f in
U, which enjoys all the usual properties of the index (see [1]).

3. Results

THEOREM 1.1. Let us consider the following boundary value problem

BY) {i=f(t,w) t€fa,b)=ICR, z€ X,
zes

X is a Banach space, f: (t,z) = f(t,z) € C(I x X, X) and S C C(I,X). Let us
assume that there exists a closed bounded convez set Q@ C C(I,X) and a closed set
S1 C 8N Q, such that the solutions of the integral equation

(I) z=K (.'17, Q)
are also solution of the following “linearized” boundary value problem

z=g(t,z,q) tel, z€X,
TE S
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for any q € Q; the operator K : Q@ x Q — C(I, X) satisfies the following condition:
(C) K is condensing in the first variable with respect to a monotone and regular

MNC 4,

and Q is an open bounded and convex subset of X such that
(L.1) ind (K (-, q), ) # 0

for some (and hence for all) g € Q, and the function g : I x X% — X is continuous
and such that

g(t,z,z) = f(t,z)
foranytel, z € X. Let ¥ : Q — Q be the operator which maps each q € @ into
the set of solutions of (I). Then if we assume that the following condition

(i) for each q € @ the set X(q) is a set of isolated points
holds, problem (BV) has a solution.

PROOF. We show at first that ¥ is an u.s.c. multivalued map from @ into Q.
Let D be a closed subset of @, {gn}nen C L-Y(D) such that g, — go. Choose
Z, € E(gn) N D, that is

(1.2) Zp = K(Zn,qn) for any n € N.

It follows that
U anK( U Tn, U qn),
nEN neN neN

and as K is 1) condensing in the first variable

w( U .'z:n) < h¢( U x,.),

neN neN

that is, |J =z, is relatively compact. Without loss of generality, we can assume that
neN
Z, — o and then passing to the limit for n — +o0 in (1.2), we have 2y € £(go)ND,

ie., go € £7%(d), so that X is u.s.c.. We want to show that ¥ is a w-map in the
Darbo sense. Fix g € @ and choose ¥ € X(qg); as by hypothesis y is an isolated
solution, there will exist an open set 2, C  such that £(g) NQ; = {y}. We define
the integer
n(y, L(y)) = ind (Kq, ),

where K, : Q@ — C(I, X) is defined by K¢(z) = K(x, q).

By the excision property of the index of condensing operators, n(y, £(y)) does
not depend on the choice of ; C Q. Let now W C Q be an open set such that
¥(q)NOW = 0. As ¥ isu.s.c., it there exists B(g, r) such that for any ¢’ € B(g,7)NQ
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we have X(¢') N OW = 0. Then we can define the following admissible homotopy
between K, w and Ky w, where ¢ is fixed in B(q,7) N Q:

H(y,t)=K(y,tg+(1-t)g) yeW, telo,1].
For the additivity property of the index we have
> n(y%(g) =ind(Ke, W) =ind (Ko, W)= Y n(y,5(q)).
yEX(g)NW YyEZ (¢ )NW

Thus ¥ is a w-map where #(X) = ind (K, {2), and it is possible (see [7]) to say that
% has the fixed point property, and by (1.1) the theorem is proved.

With a proof similar to that used in Theorem 1.1 it is possible to obtain the
following result:

ProposSITION 1.2. Consider the following boundary value problem
"’ = f(t,z, ', z"), tel=]lab], ze€X,
zeS
where (t,z,7',2") — f(t,z,2",2") € C(I x X3,X) and S C CYI,X). Assume
that there exist a bounded closed and convexr subset Q@ C C%*(I, X) and a closed
subset S1 C SN Q such that the solutions of the following problem

" = f(t,z,q¢,q"), tel=[a,b|CR, g€ X,
(BVZ) { ft,z,d,q") [a, B] q
T €8

include the solutions of some integral equation
(12) z=K(2,¢,q")
for allq € Q, where K : OxQ — C(I, X) satisfies condition (C) and ind (K (-, q)) #
0 for some (and hence for all) ¢ € Q, and for some open and conver set Q C
Cc(I,X).

Let ¥ : Q — Q be the operator which maps each q € Q into the set of solutions
of (12). If ¥ satisfies assumption (i), then (BV2) has a solution.

The example that we will present in this paper will be an application of the
following result, whose proof can be obtained immediately from the one of Theo-
rem 1.1.

PROPOSITION 1.3. Theorem 1.1 and Proposition 1.2 still hold if assumption
(C) is replaced by the following weaker hypotheses:
(C1) K :QxQ — C(I,X) is condensing in the first variable on the equicon-
tinuous subsets of ) with respect to a monotone MNC 1, regular on
equicontinuous subsets;
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(Ca) Kq:9Q — C(I,X) is 12 condensing, where v is a monotone MNC;
and if we assume that ¥ satisfies (i), the further assumption

(e) X(Q) is an equicontinuous set.

4., An example

Let us consider the problem

xll — g(t, z’ ml, mll),
P
®) { 2(0) = z(1) =0,

where t € I = [0,1], z € X, a weakly compact generated Banach space (i.e.
a Banach space that coincides with the linear envelope of a weakly compact subset),
g: IxX? — X is an uniformly continuous map such that the following assumptions

are satisfied:
{(a1) there exist two positive constants m,n with 0 < n < 8 such that

| g(t, 1, 22, 23) [| < m | z1 ||+ n

for any z1,x2,23 € X, t € I;
(a2) there exists a continuous derivative gy, (t, 1, Z2, z3) of g with respect to z;
(ag) there exist ¢,v,n € L'(I,R*) such that

/l¢(t)dt<2
4]

and
Blg(t, A, B,C)) < ¢(t) B(A) + ¥(2) B(B) + n(t) B(C)
for any t € I and A, B,C C X bounded.
Let us consider for fixed ¢ € C?(I, X) the problem

{ z" = g(t,x,¢,q"),

(Fa) 2(0) = (1),

and assume that (P,) satisfies the following:
(a4) (Pg) does not present resonance for any g € C2(I, X).
Then the solutions of (P,) are given by the integral equation (see [8])

(1) u(t) = / Gt 5) g(s,2(s), ¢(5), " (s)) ds
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where G(t,s) : I? — R is the Green function defined by
t—1)s 0<s<t<1
G(t,s) = ( )s, ’
(s = 1)t, 0<t<s<1.

We show at first that the possible solution of (I;) (i.e. (Pg4)) are equibounded in
C?(1, X) so that we can define the set Q.
By (a1) it follows immediately that if « is a solution of (I;) we have

n
2l < g— = Mo,

and from the differential equation of (Pg), still using (a1), we get
"] < mMo +n= M.

Now we fix € I and let L € X* such that || L|| =1 and L(z'(?)) = || z'(Z) ||. The
function t — L{z(t)) satisfies the problem

{ L"(z(t)) = L(g(t, =(), ¢'(¢), 4" (1),
L(z(0)) = L(z(1)) = 0.
Then there will exist £ € (0,1) such that L'(z(t))|+=¢ = L(z'(£)), and we have

t

L(a(8) = L' (2) = /e I (e(s)) ds = [E tL(a:”(s))ds=L( /E ' (s) ds)A

It follows that
'@ || = L(z'(®) < |=" || £ M.

By the arbitrarity of  in I we obtain | 2’| < M;. We let M = max{M, M}
and we define the set

Q={zeC*(,X) : max{||z |, [|='[I, | =" I} < M}.

Now we prove that ¥ : Q—o @ is such that X(Q) is equicontinuous in C(I, X), so
that condition (e) is satisfied. In fact we have

1
la(ts) — (t2)] = H [ 166,9)  Glea ) as.a(6). (51 5D s

1
< / IG(t1,8) — Glt2, )| 195, 2(5), ¢'(5), 4"(5)) | ds < e(mM + )
0
if |t; — t2| < & for a suitable 6 > 0.

We let
Q=B0O,M)={zeC{,X) : ||z < M},
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and let K : Q x Q@ — C(I, X) the operator defined by

1
K(z,9)(t) = /0 G(t,5) g(s,2(s), ¢'(5), " (5)) ds.

We will show that K satisfies the conditions (C;) and (Cz). In the following, if
QcC (1, X),
Q(s) = {z(s), z € Q}.

It is easy to see that K is a continuous operator. Let H C Q be an equicontinuous
set and let C' C @ be a compact set. Then for a “t” fixed the set of functions

{G(ti 5) g(s,.'z:(s), q,(s)u q"(s)) : T €H, qgcE C}

is an equicontinuous one, so that it is possible to interchange the 8 MNC with the
integral sign, obtaining

/3({ /0 Gty ) a(5,2(5),4'(5),4"(s)) ds @ € H, g € c})

S/O |G(t, )| B({g(s,2(s), 4'(s),q"(s)) ds z € H, g €C}),
and by (az) we have
B{K(z,q)(t), z€ H, g€ C}) <

< /0 |G(t, 5)| [$(s)B(H(s)) + %(s)B(C'(5)) + n(s)B(C"(s))] ds =

- /0 Gt 5)| 8(s) B(H(s)) ds,  Viel

as {C’(s)}, {C"(s)} are compact sets in X for any s € I.
If we let 5:(2) = sup,;B(022)), @ C C(I, X) be bounded, from the previous
inequality we obtain, if we let h = 1 fol o(s) ds:

BL(K(H,G)) < hfr(H),

that is, as (ag) holds, we have proved that (C,) is satisfied.
In order to prove that the operator K, : Q — C(I,X) defined by K, : z —
K(zx, q), satisfies (C3), we introduce the following monotone MNC:

B2(H) = sup{G:1(H) | F is a countable subset of H}

where H C C(I,X) is bounded. Let H C Q be bounded. Let Y be a countable
subset of K¢(H) and let Z C H be such that Z is countable and K,(Z) =Y.
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As X is a weakly compact generated Banach space it follows that (see [9])

’ ({ /01 Gt,5) (s, 2(s),¢'(8),4"(s)) ds, 2 € Z })

< /0 G2, )| B{ 9(5, 2(5), (), ¢"(s)), 2 € Z})ds

so that, again by (a3) we obtain, considering the supremum with respect to ¢ in the
inequality

B1(Y) < hpi(Z) < hB2(H).
As Y was an arbitrary countable subset in K (H) we get

Ba(Ky(H)) < hB2(H)

so that (Cg) holds. Then the index ind (K,,) is defined and, considering the
admissible homotopy

H\z)=MKy(z) Ae€0,1], z€,

we have

ind(K(-,q),Q) =1
At last we show that the integral equation has only isolated solutions. In fact the
Frethet derivative of K, calculated in a solution of (I;) o, is given by the following

1
[Kg(zo)l(R)(8) = /0 G(t, 5) gz, (3, %0(5), 4 (5), " (5))h(s) ds,

and tlie hypothesis of non resonance implies that I — K[ (xo) is invertible, that is
%o is isolated. Then, by Proposition 1.3, the problem (P,) has solution.
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