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1. Introduction

In [9] and [10] Kuhnert et al. introduced a new model for the Belousov-Zhabotin-
skii reaction in order to take into account oxygen sensitivity and photosensitivity of
the BZR.. Various experiments established that especially BZ solutions in uncovered
Petri dishes are very sensitive to saturation by oxygen (cf. [4]). In the first appro-
ximation, the rate of production of bromide initiated by oxygen may be expressed
by a constant flow ;. Inhibiting effects were also observed by irradiation of BZ
solutions with ultraviolet or visible light. This is included as an additional term
2. This approach leads, after scaling, to the following nonlinear evolution system:

ou
Ela_tl = dy Agur + qua — uqug +u (1 — ug),
6'u,2
(1.1) €2 5 = daAzug — qug — urug + 2huz 4+ @1 + o,
ou.
6—t3 = d3Am’LL3 +u; —usz + 3(p2.
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Here, 0 < z < I and we take Neumann boundary conditions. The parameters €;, d;,
g, h, w; are assumed to be non-negative and one is interested in non-negative solu-
tions onlyv. This system without diffusion, i.e. d; = 0, is called the modified complete
Oregonator. It is analyzed in [8]. Krug et al. proved the existence of solutions of
system (1.1) which are periodic in time but constant in z. They established, among
other properties, the stability of these periodic solutions and found conditions for
supercritical and subcritical Hopf bifurcations. In the case of subcritical Hopf bi-
furcations only stable relaxation oscillations occur, whereas after supercritical Hopf
bifurcations, stable small amplitude oscillations branch off which may undergo a
transition to large amplitude relaxation oscillations. As a consequence of a theorem
of Kopell and Howard [7], there exist travelling waves with sufficiently high speed.
Numerical investigations showed that their amplitudes are so small that it is not
sensible to seek for them in real BZ solutions. But impulse-like solutions (excitable
by outer perturbation) are observed, both numerically and in the experiments. In
this paper, we shall ensure the existence of “standing waves”, which seems to be a
new spatial structure for system (1.1).

We are interested in the steady states of (1.1). These are solutions of the system

0 = di1Duy + qua — uruz +ur (1 —u),
(1.2) 0 = daAug — qug — urus + 2hus + @1 + @2,
0 = d3Aug + u1 —us + 32
for z € [0,1] and with boundary conditions

Oug , . Ouy .
(1.3) %(0) =0= O (l) for i = 1,2,3.

The diffusion coefficients d; > 0 and the length [ > 0 are assumed to be fixed so
that we are left with a four-dimensional parameter space

P= {(Q1h1¢11§02): 0<q< ]., h,(pl,(p2 20}

The restriction 0 < ¢ < 1 does not infer experimental limitations because ¢ depends
only weakly on the topical BZ recipe and varies between 10~ and 10~2, uncertain-
ties of reaction constants included. In fact, ¢ < 1 is a necessary condition for the
existence of both autocatalyse and inhibition.

In [6], the set of positive homogeneous steady states, i.e. Awu; = 0, has been
studied. This is a four-dimensional manifold M in P x R3. We are interested in

non-homogeneous steady states bifurcating from M. Set
6’Ll.,;

X = {u € H%([0,1],R%): 5y (0) =0= %(l), i= 1,2,3}

and Y := L%([0,1],R%). Next, we define operators A, Cp, : X — Y for any p =
(g, h, 1,92) by Au := DAu, where D is the 3 x 3 diagonal diffusion matrix with
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entries dy, dg, d3 and

qus — uus + ur (1l — uq)
Cp(u) := | —qua —urug + 2hus + @1 + @2
u1 — u3 + 32

A is a Fredholm operator of index 0 and C is completely continuous, i.e. it maps
bounded sets into relatively compact ones by the Rellich imbedding theorem. So-
lutions of (1.2), (1.3) correspond to zeros of

f:PxX =Y, f(pu)=fplu)=Au+ Cy(u).

Since the nonlinear part of (1.2) is C*, any solution v € X of f,(u) = 0 is also
cee.

The manifold M of homogeneous steady states can be considered as a subset
of f~1(0). We collect some properties of M, most ‘of which can be found in [6]
and in the next Section 2. In Section 3, we study the set of singular points on M.
This set consists of those points (p,u) € M where D fy(u) is not an isomorphism.
If (p,u) € M is not singular, then there exist no non-homogeneous steady states
near (p,u), hence (p,u) is not a bifurcation point. The set of singular points
can be written as a countable union of three-dimensional submanifolds S, of M,
n € N. S, consists of all (p, u) € M where e-cos(nmz/l) lies in ker D f,,(u) for some
e € R3 — {0}. This union is not disjoint. We found numerically integers n # m
and intersection points of S, and S,,. A detailed analysis of the singular set seems
to be complicated. In Section 4 we apply the bifurcation result of Crandall and
Rabinowitz [2]. Let (p,u) € M be a singular point and consider a path w(t) on
M intersecting S, only in w(0) = (p,u). If (p,u) lies in exactly one S, and if a
certain transversality condition holds, the result of [2] is applicable and yields an
analvtic family (ps,us), s € (—¢,€) of non-homogeneous steady states bifurcating
from (p,u). We shall show that p, = p_, for all s € (—¢,¢), which is due to
an interesting sequence of symmetries of problem-(1.2), (1.3). This implies, in
particular, that we have a pitchfork bifurcation. In addition, the steady states
us which we obtain satisfy a symmetry condition. Namely, if (p,u) € S, and n
is even, then us(z) = us(! — z) for all z € [0,!]. Moreover, setting n = 2¥n’
with v > 1, then u,(z) = u:(x + 1/2”~1). The result of Crandall and Rabinowitz
can be applied for all singular points (p,») in S, except for a lower dimensional
subset of S,,. As a consequence, every singular point is in fact a bifurcation point.
After these local results, we prove a global bifurcation theorem in Section 5. Of
course, we could apply the global one-parameter bifurcation results of Rabinowitz
[12] or a generalization due to Magnus [11]. But these do not tell us how the
various one-dimensional bifurcating branches we obtain in this way fit together.
Instead, we shall prove that a four-dimensional set Z, C f~!(0) — M bifurcates
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from S, and satisfies a generalization of Rabinowitz’ global alternative. This will
be a consequence of the global implicit function theorem of [1]. If at the point
(p,u) € S, the transversality assumption of Crandall and Rabinowitz is satisfied,
one may apply the usual (local) implicit function theorem to describe Z,, near
(p,u). But our dimension result also holds far away from S,, although we only
use the local assumptions of Crandall and Rabinowitz. This is important, since
these assumptions can be checked for many other systems different from (1.2),
(1.3). In addition, we show that all steady states contained in Z,, are positive.
So they are chemically meaningful. As a consequence of our global theorem, we
obtain the existence of non-homogeneous positive steady states of (1.1) for certain
parameter values. More precisely, we shall prove the following: The set 7(Z, N M)
which contains 7(S,) and is a subset of 7(|J,, Sm) separates P in (at least) two
components; here 7 : P x X — P is the projection. There exists (at least) one
such component K covered by Z,,. This means that for any parameter value p € K,
there exists a non-homogeneous positive steady state of (1.1). We also have a result
which helps to localize K.

Let us finally make a remark concerning the stability of the solutions we obtain.
Using the diffusion coefficients of [6], the bifurcating solutions are unstable near the
set S of bifurcation points. As explained above, we shall show that one can continue
the bifurcating steady states in a global way. In order to find stable steady states
one has to analyse the sets Z,, further.

We thank Reiner Lauterbach and Bjorn Sandstede for discussions leading to
Theorem (4.1).

2. The manifold of homogeneous steady states

The set M of positive homogeneous steady states consists of all (p,u) € P x R®

with p = (g, h, p1, p2) and u; > 0 such that

0 = qua — uug +u1(l —uy),
(21) 0= —qus —urus + 2hus + w1+ @2,

0=1u; —usg+ 3p2.
Setting 1 = @1 + 2 + 6hys, an easy computation shows that (p,u) € M if and
only if

0=} + (2h+ g — 1)ui + (¥ — ¢ — 2hq)u — g,
(2.2) ug = (2huy +v¥)/(u1 — q),

uz = Uy + 3(p2
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Since g > 0, there exists at least one non-negative solution u of (2.1) for any p € P
and at most three. Fixing 0 < ¢ < 1 and 2 > 0, the set M looks qualitatively like
the cusp surface (cf. Figure 1). M is a four-dimensional manifold with boundary
OM = M N (8P x R3), where OP = {p € P : hpipa = 0}. In fact, M can be
considered as the graph of a map (g, h, w2, u1) — (1, Us, u3) with

(2.3) o1 =1 (ud + (g— Dux - q)/(g — w1) — 2huy — 3 — 6hpy

and ug,u3 as in (2.2).

U

/

¥

Ficure 1. The manifold M of homogeneous steady states with some submanifolds S, of
bifurcation points. Here g and @2 are fixed.

LEMMA 2.4. M is contained in the set
D={(p,u) EPxX :g<u1 <1, 0<uz < (2h+4)/q, q+3p2 < uz < 1+ 35}
ProOF. If 0 < u; < ¢ < 1, then the first equation in (2.1) implies uy < 0, a

contradiction. Thus u; > g. Then, again by (2.1), u1(1 — u1) > 0, hence u; < 1.
The bounds for u and ug follow from (2.2). 0

Observe that D is bounded away from P x {0}, since ¢ > 0. If ¢; = @3 = 0
and q,h are arbitrary, then u; = us = ug = 0 is a solution of (2.1). And if
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h = ¢ = s = 0, and q is arbitrary, then u; = 1, ug =0, ug = 1 solves (2.1). An
easy calculation shows that these are all non-negative solutions of (2.1) outside of
M.

The parameter space can be divided into three disjoint subsets P = PLUP,UP;
(cf. Figure 2). P, is the projection of the cusp “curve”. It is a three-dimensional
submanifold of P with 8P, = P,NOP. P» separates P into a bounded part P3 and
an unbounded part P;. For p € Py, réspectively p € Ps, there exist exactly one,
respectively three, solutions of (2.1). P,UP; is contained in the set {(g, h, p1,p2) €
P:0<g<g",0<h< %, 0<p; £ i—}; here ¢* ~ 0.07973. A precise description
of the manifold P;, as well as of the projection of all cusp poihts, can be found in
[6].

FIGURE 2. The projection P, of the cusp “curve” on the parameter space (2 is fixed,
k:=h—1/2). The curve on the surface P, which starts at the origin corresponds to the cusp points.

3. Singular points
As in Section 1, we consider f : P x X =Y, f(p,u) = fp(u) = Au+ Cp(u).

fIM = 0 and we want to find the set of bifurcation points of zeros of f, i.e. the
set of all (p,u) € M such that there exists a sequence (pp,un) € f71(0) — M with
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(Pnsun) — (p,u) as n — oco. By the implicit function theorem, for (p,u) to be a
bifurcation point, it is necessary (but not sufficient) that the linearization D f,(u)
is not an isomorphism. Now v € X lies in the kernel of D f,(u) if and only if it
satisfies the equation

2u14+us—1 uy—q O
(3.1) Dv" =Lv, wherelL = Ug u1+¢q —-2h
-1 0 1

and D is the diagonal diffusion matrix, as in the introduction. Due to the Neumann
boundary condition inherent to the definition of X, ker Df,(u) is at most three
dimensional. It is spanned by elements of the form z — ecos(nwz/l) for some
e € R* — {0} and n € N. For any n € N, let S, be the set of all (p,u) € M
such that ker Df,(u) contains an element of the form ecos(nwz/l) for some e €
R3 — {0}. The elements of S = {J,,cy Sn are called singular points. These are the
possible bifurcation points. In fact, we shall show later that every singular point is
a bifurcation point. We first study the sets S,.

PROPOSITION 3.2. (a) S, is a submanifold of M of codimension at least 1,
hence dim S,, < 3.

(b) If (p,u) € Sp, N...N Sy, then r < 3. There exists a neighborhood N of
(p,w) in M such that NNS C Sy, U...US, .

(¢) If n # m, then S, NSy, is an algebraic variety of dimension at most two.

PROOF. Fix an integer n > 1 and a point (p,u) € M. Then (p,u) € S, if and
only if there exists e € R® — {0} such that the function = — ecos(nmz/l) solves
v"” = D~'Lv. This is equivalent to the statement that —n?#2/I? is an eigenvalue
of D7!L. Using the formulas (2.2) and (2.3), we may replace uy; (which appears
on two positions in L) by ¢, h, @2 and u;. Now we observe that h appears on
three positions of L, and always linearly. This implies that h appears linearly in
the constant term of the characteristic polynomial det(D~'L — (A — n®n2/12)id).
So this constant term has the form a,h — 3, where a,, and 3, are real polynomials
depending only on ¢, ¢, and w;. Obviously, (p,u) € Sy, if and only if A = 0 is
a root of the above characteristic poynomial, i.e. if aph — 8, = 0. The explicit
calculation shows that o, > 0 as long as 0 < ¢ < w1 < 1 and 3 > 0. Using
the formulas (2.2) and (2.3) once more, we obtain that S, is the graph of a map
On = Pnfon : (¢, p2,u1) — (h,p1,u2,us). This implies (a). It is possible that
S, = 0 or that S, is contained in the boundary of M. (b) follows from the fact
that the 3 x 3-matrix D~'L has at most three different eigenvalues. And (c) is
a consequence of the observation that the rational functions 8,/a, and G,./cam
(which define the h-components of o, and o) are different for n # m. O
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Proposition (3.2) is generically true, that means for an open and dense subset of
the possible compact parts Cp. In the proof, we had to check that we are studying a
generic case. Of course, if u has more components and if the right hand side of {1.1)
is more complicated, this can be very difficult. Also, a detailed analytical study
of the sets S,, seems to be complicated. Choosing chemically relevant diffusion
coefficients as in [6], Tables 1 and 2, the second named author studied the singular
sets numerically. Singular points (p, u) € S,NSy, exist, for example, also for p € P;.
Remember that in this case there are three different steady states of (1.1). The
intersection of S,, and S, can occur on all branches of M. For example, if n = 175
and m = 176, S, and S,, intersect on the upper branch. If n = 10 and m = 460,
S, and S,, intersect on the middle branch of M.

4. Local bifurcation results

In this section, we shall prove that any singular point is in fact a bifurcation
point and that except for a lower dimensional subset of the singular set, we always
have a pitchfork bifurcation.

Let w = (p,u) : I = (—1,1) > M C P x X be a differentiable path in M such
that w(0) = (p(0),u(0)) = (po,uo) is singular. We also assume for simplicity that
p(A) € P— P, for all A € (—1,1). Remember that P, consists of the parameters
corresponding to the cusp curve. In [2], Crandall and Rabinowitz assumed the
following;:

(H1) dimker D fp,(ug) = codimran D fp, (uo) = 1;

(H2) & Dfon (u(A))e|A=O & ran D fp, (ug) where e € X spans ker D f,,, (uo).
(H1) implies that (po,uo) lies in exactly one S, and (H2) implies that w intersects
the singular set in (po,uo) transversally.

THEOREM. (Crandall and Rabinowitz). If (H1) and (H2) hold, then there exist
differentiable functions A : (—e,e) — I, 8 +— s, and v : (—¢e,e) = X, s — v, such
that:

(i) M =0,v =0,v(0)=e, v, — se € (e)*.
(i) F(p(As),u(As) +vs) =0 for all s € (—&,¢€).
(iii) There exists a neighborhood N of (po,uo) in p(I) x X such that any zero
of f (solution of (1.2) and (1.3)) contained in N either lies in M or is of
the form (p()‘s)v u(’\s) + T)s)'
If the path w is analytic, then A and v are analytic.

For a proof, we refer the reader to [2], Theorem 1, or to [3], Theorem 28.6 and
Corollary 28.1. We shall prove the following:
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THEOREM 4.1. Suppose w is analytic and (H1) and (H2) hold. Let ) and v be
the maps as in the above theorem. Then A_s = A, for all s € (—¢,€). In particular,
for any parameter p(\;), s € (—e,¢€), there exist two different nonhomogeneous
steady states u(X)+vs,u(A;)+v_s of system (1.1). These steady states converge to
the homogeneous steady state ug of system (1.1) for the parameter py as s converges
towards 0. ‘

Thus we have a pitchfork bifurcation at (po,uo) if (H1) and (H2) hold. (Since
M is analytic, we may always choose an analytic path w.) Moreover, in the course
of the proof, it is shown that for (py,up) € Sp

() vs(l — z) if n is odd,
v_g(z) =
‘ vs(z+1/2¥) if n=2"n' with v > 1 and n’ odd.

In addition, if n = 2¥n’ with v > 1, then the steady state itself has the symmetry
vs(z) = vs(l — x) = vs(z + l/zu_l)-

Now the question arises whether the assumptions of Theorem (4.1) hold in our
situation. Let T" C S denote the set of all singular points such that no path w exists
which satisfies (H1) and (H2). Singular points in § — T are bifurcation points by
our above result.

PROPOSITION 4.2. T is a subset of S of codimension 1.

Since the set of bifurcation points is a closed subset of M, and since S — T is
dense in M by Proposition (4.2) we obtain the

COROLLARY 4.3. FEvery singular point is a bifurcation point.

Before proving these results, let us remark that the coefficients of the Taylor
series of A and v can be computed explicitely by successively differentiating the
equation f(p(As),u(Xs) +vs) =0 at s =0.

REMARK 4.4. Set g : (-1,1) x X — Y, g(A,u) :== f(p(\),u()) + u). Then
g(X,0) = 0 for all A and g(),;,v;) = O for all s with A, vs, as in the Crandall-
Rabinowitz theorem. Theorem (4.1) implies that the odd derivatives X’(0), A"/(0)
etc. are 0. Using this, a straightforward calculation shows (v'(0) = e = (e;, €3, €3))

0= Z sonmm)| =2 50,006, ¢) + 290,000
T 9529\ V)| T 29 ST 9 00 (0).
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Since (8/8u)g(0,0) induces an isomorphism (e)- — {e*) and since v"(0) € (e},

we can compute

v"(0) = — (a%g(o, 0)) N (%9(0, 0)(e, e))

2e? + 2e;ep )

a -1
= (A + FC(po,Uo)) 2e1eo
“ 0

Differentiating once more and taking the L?-scalar product with e*, one obtains

)
0
= 3,\"(0)< Bf;u 4(0,0)e, e*> " 3<ai—22g(0, 0)(v"(0), ), e*>.

Here we also used that (8%/8u®)g(, u) = 0, due to the special form of the compact
part C of f. Observe that the coefficient of A”(0) on the right hand side is not 0
by assumption (H2). Therefore we get
_{£=9(0,0)(e,v"(0),e*)
52529(0; 0)e, e*)
3 (%C(pg,uo)(e, v"(0)),e*)
325C (po, o) (1 (0), €) + 2 C (o, uo) (e, w/(0)), e*)

Explicitly, setting p’(0) =B = (g, h, $1, P2) and w = (w1, w2, w3) € X, we have

52 2e1w1 + ejws + eswy
25 C(Po, wo)(e,w) = — e1ws + eawy

33
0= <@g()‘37vs)

A\ (0) —

ou 0

and

52 qe2
apauC(po, up)(D,e) = — (—qez ;)I— 2h83) .

Obviously, A”(0) # 0 if and only if ((82/6u2)C(po,uo)(e,v"(0)),e*) # 0. Simi-
lar to the proof of Proposition (3.2), one can show that A”(0) # 0 except for a
lower dimensional subset of the singular set S. (Observe that (82/8u?)C (po,uo)
is independent of (pg, up), whereas e, e* and v”(0) depend on (pg, ug). In fact, for
(po, uo) € Sn, e = €-cos(nmz/l) and the components of € are of the form ; = a;/f;
with o;, B; real polynomials and similarly for e* and v"(0).) If A\”(0) # 0, then
A"(0) determines the direction of bifurcation which is given by A”(0) - p’(0). Thus,
if A”(0) > 0, resp. A”(0) < 0, there exist non-homogeneous steady states of (1.1)
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for the parameter values p(A\) with A > 0, resp. A < 0. The second named au-
thor found numerically examples where A”(0) changes sign, which corresponds to
a passage from subcritical to supercritical bifurcation.

We now come to the proof of Theorem (4.1). To do this, we define a sequence
Xo=X D> X; DX, D... of subspaces of X C H2([0,!],R*) and bounded linear
maps T, : X, — X, such that 7, is an involution (i.e. T, 0T, = Idx,) and
Xy =FixT, = {ue X, : T,u=u}. First, we set

Ty : Xo — Xo, Tou(z) == u(l — x).

Obviously, Ty is a linear involution. If Tou = u, then u(0) = u(l). Therefore, we
may consider the elements u of X; := Fix T as l-periodic maps v : R — R? with
u(z) = u(—z). Now we define for v > 1

X1 ={u€ Xy :u(l/2" — z) = u(z) for all z € R}

and
T,: X, - X, T,u(z) == u(l/2" — x).

It is clear that X, = FixT, C X, for any v > 0. To see that 7,(X,) C X,,
first observe that T,u(z) = w(z + [/2”) and ¥'(I/2¥) = 0 for u € X,. Thus,
(T,u)' (0) = (T,u)' (I) = 0. Furthermore, T,,_; o T;, = T,,, which implies 7,,(X,) =
T,(FixT,—;) C FixT,—1 = X,. Next, let ¥, be the L?-closure of X, in ¥ =
Yy = L%([0,1],R3). Since the L?-norm of T, is 1, T, extends to a bounded linear
involution on Y, which we continue to denote T, : ¥, — Y,. It is also easy to
check that a Hilbert space base of X, and Y, is given by e; cos(k2"nz/l) with e;,
eq, e3 a base of R® and k£ > 0. The intersection >0 Yy =y>0 Xo = R? consists
of all constant functions [0,1] — R3. - -

Next, one checks that f : P x X — Y commutes with all involutions T, i. e.
fpoT, =T, o0 f, for all p € P. This implies that f(P x X,) CY, forall v > 0. Let
e, resp. e*, span ker D, (ug) C X, resp. (ran D fp,(uo))t CY. There exist n € N
and g, e € R® — {0} such that e = € cos(nwz/l) and e* = &* - cos(nmz/l). Let
v > 0 be such that n = 2n’ with n’ odd. Then,e€ X, — X, ande €Y, - Y, ;.
Now consider the map

g: (LY xX, =Y, o) =g\ w) = f(p(V), u()) +u).

By construction, g is analytic, g(A,0) = 0, ker Dgo(0) = (e}, (ran Dgo(0))* = (e*)
and g, commutes with T,, since T, u(A) = u(A) for all A.

Observe that (e) and (e*) are invariant under 7,. In fact, T,e = —e and
T,e* = —e*. Let P :Y, — (e*) and P1 : Y, — (e*)* denote the orthogonal
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projections. The equation g(, u) = 0 is equivalent to the pair of equations
Pg(M\ ae+v)=0

4.5
(45) Ptg(\,ae+v) =0

where o € Rand v € {e)* C X,,. We can apply the implicit function theorem to the
second equation in (4.5). This yields an analytic map h : (A, ae) — h(), ae) € (e)*
which is defined in a neighborhood of (0,0) in Rx () and has the following property:
In a neighborhood of the origin of I x (e) x {(e)* = I x X,,, the second equation in
(4.5) holds if and only if v = h(X, ae). This implies that h commutes with T,,. After
this Lvapunov-Schmidt reduction, it remains to solve the bifurcation equation

(4.6) b(A, ae) := Pg(X, ae + h(A, ae)) =0.

The map b satisfies the symmetry condition b(\, —ae) = —b(A, ae). We can apply
the Crandall-Rabinowitz theorem to equation (4.6) and obtain an analytic map
A : (—¢€,e) — I such that all solutions of (4.6) near the origin are either of the
form (X,0) or of the form (X, se). The map v : (—¢,6) — X appearing in the
Crandall-Rabinowitz theorem is given by v; = se + h(\4, se). The symmetry of b
now implies A_; = A;, as claimed. O

Finally, we have to prove Proposition (4.2). First of all, T' contains all points
on the cusp curve. This set has codimension 1 in S. Now consider a singular
point (pg,ug) € T not lying on the cusp curve. If (H1) is not satisfied, then either
there exist m # n with (pg,uo) € Sn N Sm or there exist two linearly independent
eigenfunctions e; = €, cos(nmz/l) and ey = & cos(nmwz/l) of D fy,(ug). We already
showed in Proposition (3.2c) that the set S,,NS,, is an algebraic variety of dimension
at most two, hence codimension (w.r.t. S) at least 1. If e; and eg solve v" = D1 L,
then the characteristic polynomial det(D~'L — (A — n?z2/1%2)id) has A = 0 as
a multiple root. Looking at the constant term of this polynomial implied that
(po,u0) € Sy, if and only if h = B, /a,, with a,, and B,, as in the proof of Proposition
(3.2). Now, if A = 0 is a multiple root, then also the coefficient of the linear term
must be zero. This gives a different rational map for h, h = 6, /v,. Therefore, the
intersection S, NS, which is defined by é, /%, = Bn/con has codimension at least
1in S,. Finally, (H2) is equivalent to

2
0# (‘5o o )@ (0) ) €* ) = (@en ) + (2Fes —Ten, )

where p/(O) = (a’ E’ @11¢2)a e = (EI, €3, e;) spans (ker Dfpo (uo))l and <_a _>
denotes the L?-scalar product. Remember, from Remark (4.4), that e and e* depend
on (po, ug). One can now argue, as in the proof of Proposition (3.2) or Remark (4.4),
to show that the equation (ges, e}) +(2hes —Jez, e3) = 0 is only satisfied for (p, uo)
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in a lower dimensional subset of S,. (We are even allowed to vary § and % so that
we obtain two equations, one for § = 0 and one for A = 0.) O

5. Global bifurcation results

The goal of this section is to study the bifurcating set of steady states of (1.1)
away from the set of bifurcation points. This also yields results about the existence
of non-homogeneous steady states for certain parameter values. We first prove that
the solutions we obtain this way are positive. Let Z be the connected component
of M in f71(0).

PROPOSITION 5.1. Z s contained in the set
D={(pu) ePxX :g<u <1, 0<up < (2h+9)/q, q+3p2 <uz <1430y}
with 1 = @1 + w2 + 6hpa.

As a consequence of this proposition, all solutions bifurcating from M are pos-
itive and they are bounded over any compact subset of the parameter space. Since
f is of the form f = A 4 C with A a linear Fredholm operator of index 0 and C
a compact map, f~1(0) N (Q x X) and Z N (Q x X) are compact for any compact
subset @ of P. In other words, the projection 7 : Z C P x X — P is a proper
map.

Let w = (p,u): I = (~1,1) — M be an analytic path as in Section 4 satisfying
(H1) and (H2). In particular, w intersects the singular set S in w(0) = (pg, ug) € S,
for some n. Let n = 2¥n’ with n’ odd and X, Y, be the subspaces of X, Y from
Section 4. We can describe the bifurcating set of zeros of f which lies over p(I)
near (po, tp) as the graph of a map (—¢,€) 3 s = (p(A;),u();) +v;) € P x X,
where A : (—¢,e) —» I and v : (—¢,¢) — X, are analytic. The questions we address
in this section are the following: How do these various graphs fit together when we
change (po,u0) and w? Do they form a four-dimensional subset of f~1(0) or even
of f71(0) N P x X,? What happens far away from the singular set S? The first
question could be solved locally with the help of the implicit function theorem if
we assume certain transversality conditions. The last question could be dealt with
the help of the one-parameter global bifurcation theory of Rabinowitz [12] or some
generalization (see e.g. [11]), at least as long as we avoid the critical parameter set
P, (the cusp curve). But in order to express a global result similar to the Rabi-
nowitz alternative and to have a result on the dimension, we use the global implicit
function theorem of [1]. This also has the advantage that we just need the local
knowledge on f near M as in Section 4. The only global result on f~!(0) important
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for the following discussion is the existence of the a-priori bounds for Z obtained
in Proposition (5.1).

We need some preparations for formulating our global result. First, we in-
troduce an appropriate version of local dimension, the small inductive dimension,
which works in the absence of a manifold structure. Let T be a topological space.
Then we say

dim7T = —1 if and only if T = @;

dim7 < n at a point z € T if only if « has arbitrarily small neighborhoods
Uin T with dmoU <n-—1;

dim 7T < n if and only if dimT < n at every point z € T

Of course, dimT = n means dimT < n and dim7 € n — 1. If T' is a manifold,
then dim T is the usual dimension. This and other facts about dim can be found
in the book by Hurewicz and Wallman [5].

Now assume that the analytic map A : (—¢,e) — I from above is not constant.
This is true generically since A”(0) # 0, if (po,uo) does not belong to a subset of
codimension 1 of S; cf. Remark (4.4). Fix some s € (0,¢) and write p; := p(X;),
uy = u(Xs) + vs. If & > 0 is small enough, then f(p;,u) # 0 for all u with
0 < |lu — u;|| € 6. In particular, the sphere

Y={(p,u) € Px X, :p=p1,|v—wl| =8}
is contained in P x X, — f~1(0).

THEOREM 5.2. There ezxists a connected subset Zy of (Z — M) N (P x X,)
containing (p1,u1) with dimZ; > dim P = 4 at every point and such that the
inclusion

i : (Z1 UM, (Z1UM)N (8P x X,,)) — (PxX,—%,0P x X,)
15 not nullhomotopic.

This means that the subset Z; UM cannot be deformed continuously into 8P x
X, inside P x X, —X if the points on the boundary of Z; UM remain inside 8P x X,,.
Observe that this statement is false if we replace Z; UM by M. Thus, Z; UM and
¥ are linked. One can also show that the dual inclusion ¥ — P x X, — (Z; U M)
is not compact nullhomotopic, which means that ¥ cannot be deformed to a point
in P x X, — (Z; U M) via maps of the form Id + compact. But this needs strong
tools from algebraic topology. We illustrate Theorem (5.2) in the case P C R and
X, = R? in Figure 3. Theorem (5.2) is also true if we replace X, by X both in the
definition of ¥ and in the statement of the theorem. In the one-parameter situation
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which Rabinowitz considers in {12], his global alternative is a consequence of the
statement that 4; is not nullhomotopic.

/ F

FIGURE 3. A schematic illustration of Theorem (5.2) in (PxX,)-space. 3 and Z;UM are
linked.

Next, we address the question whether one can continue the non-homogeneous
steady state (p1,u1) to another one (pq,u2) with given parameter value ps. Let
Zy be the connected component of (po,up) in (P x X)) N (Z — M) U {(po, uo)}-
Zy is the set of zeros of f in P x X, that bifurcate from (pg,up). It contains
the set Z; from Theorem (5.2). m(Zp N M) C P separates P into at least two
components; here 7 : P x X — P is the projection, as usual. Suppose that the
path p : (—1,1) — P intersects 7(Zo N M) only in po. Again, this is generically
true. Let K be the component of P — n(Z N M) containing p(+1/2) and K_ the
one containing p(—1/2).

THEOREM 5.3. m(Zy) contains Ky or K_.
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This means, if there exists a parameter p_ € K_ so that p_ & n(Z), then for
any p € K, there exists u € X with (p,u) € Zp. In particular, system (1.1) has a
non-homogeneous positive steady state for any parameter value p € K. The next
result helps to decide which component of P — m(Zo N M) is covered by Z.

PROPOSITION 5.4. If h = 1 = @3 =0 and 0 < ¢ < 1 is arbitrary, then system
(1.1) has no non-homogeneous steady state contained in {u € X : 0 <wuy <1, up >
0, Us Z 0}

This proposition, together with Theorem (5.3), implies the following global
alternative for the set Zy. Let n € N be such that (pg, ug) € S,.

COROLLARY 5.5. At least one of the following is true:
(i) 70 NM¢S,.
(i) There exists a component K of P — n(S,) such that K C w(Z,) and K
contains no elements of the form (¢,0,0,0), 0 < g < 1.

If (i) is false and P —7(S,) has two components, then one of them must contain
all the points (g,0.0,0), 0 < ¢ < 1, and the other one is covered by Z,. Part (i) is
equivalent to saying that Zy connects S, to S, for some m # n. If n = 2¥n’ and
m = 2*m/, this is only possible if u > v because Z; is contained in P x X, whereas
the zeros of f which bifurcate from S,, and which are close to S,, are contained
in P x (X, — Xu41). Moreover, assume 4 > v and let Z} be the set of zeros of f
which bifurcate from S, and which are contained in P x X,,. Then, in case (i) of
Corollary (5.5), Zo can be considered as a secondary branch bifurcating from Z}.
In order to find out whether (i) or (ii) hold for certain values of n and m, one needs
a much more detailed study of f. In particular, the local information about f near
M which we use in this paper does not suffice to yield this kind of result.

Before proving these results, let us say a few words about the calculations
needed. This also indicates the range of applicability of our methods to other
systems than (1.1). Theorem (5.2) is a consequence of the assumptions (H1) and
(H2). Thus, local knowledge about f near (pg,uo) gives a global result, at least if
fp is of the form Ly + Cp with L, a linear Fredholm operator of index 0 and C, a
compact map. (In our case, L, = A is independent of p € P.) The a-priori-bounds
in Proposition (5.1) and the non-existence result in Proposition (5.4) require some
knowledge of f away from the set M. Theorem (5.3) is a consequence of (H1) and
(H2) and the a-priori-bounds (5.1).

Now we come to the proofs of our results. We start with Proposition (5.4),
since it is needed in the proof of Proposition (5.1). Let u = (uq, u2, u3) be a steady
state of (1.1) with h = ¢; = 2 = 0 and 0 < ¢ < 1 arbitrary. Assume 0 < u; < 1,
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ug > 0 and ug 2> 0. If ug takes its maximum at a point z*, we obtain
0 = daug (z*) — qua(z*) — u1(z*)ua(z™) < —uz(z*) - (g + u(zY)).

Since ¢ > 0, we obtain us(z*) = 0, hence ug = 0. Then u; is a solution of the
system

(56) ’Ui = ul(ul - 1)/d1,
v (0) =" (l) = 0.

This system has two constant solutions, (0,0) and (1,0). Furthermore, if 0 < u; <
1, then v; < 0. Thus, any solution (u1,v:) of (5.6) starting at 0 < u;(0) < 1 must
leave the range 0 < u; < 1. So either u; =0 or u; = 1. Since u3 solves the equation
daug + uy — uz = 0 with u4(0) = uj(l) = 0, we get either u3 =0 or ug = 1. O

To prove Proposition (5.1), observe that M C D by Lemma (2.4). If Z is not
contained in D, then Z must intersect the boundary of D because Z is connected.
Let (p,u) be an element of Z N @D. This implies f(p,u) = 0 and q < u; < 1,
0 <uz <(2h+1)/g, ¢+ 3p2 < uz < 14 32 and there exists z* € [0,1] so that
at least one equality holds. Remember that f(p,u) = 0 forces u to be continuous
(even differentiable). We shall show that equality leads to a contradiction. Suppose
first that u1(z*) = ¢. Then uf(z*) > 0 and thus 0 = dyu(z*) +q(1 —¢) > 0, a
contradiction. Next, suppose up attains its minimum in 2*; hence u4(z*) > 0.
Then

0 = dauy (z*) + 2hus(z*) + ¢1 + @2
and, therefore, h = ¢; = @3 = 0 since uz(z*) > g > 0. But then, Proposition
(5.4) tells us that » must be constant. Since u; > 0, we get (p,u) € M C D by
Lemma (2.4) and the remark following it. Similarly, the reader may verify that
uz(z*) = g+ g implies uy(z*) = g, that u;(z*) = 1 implies ug(z*) = 0 and that
ug(z*) = 1+ 3y, implies u; (z*) = 1. Thus, all these cases lead to a contradiction.
Finally, if ua(2*) = (1 + w2 + 8hya + 2h)/q, then uf(z*) < 0 and

0 = dauy (z*) — 6hpa — 2k — uy (z7) - ua(z*) + 2huz(z*)
< (@) - us(a”).

Here we used that uz(z*) < 1+ 3gs. This implies us(z*) = 0, a contradiction. O

Next we prove Theorem (5.2) by reducing it to the global implicit function
theorem (2.1) of [1]. For the convenience of the reader, we state it here, adapted
to our situation. Set @ := {p € P : h,1,2 >0}, E := Q x X, and g := f|E.
Q is a connected differentiable manifold without boundary. Now we add a point
at infinity, E* = E'U {oo}. A neighborhood basis of co consists of complements
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of sets of the form K x B with K C @ compact and B C X, bounded. If F C E
is a closed and locally compact subset of E, then F* = F U {0} C E¥ is the
one-point compactification of F'. Consider the point (p1,u1) € E. u; is an isolated
zero of g, = fp, and 8 > 0 is so small that f,, (u) # 0if 0 < |lu —u;|| < §. Choose
an isomorphism A~ : Y, — X, such that A~ o A is of the form Idx, + compact.
Then the Leray-Schauder degree deg(A™ o gp,,u1 + 6 - BX,,,0) is defined; BX,
is the closed unit ball in X,. This degree is called the local degree of f,, at vy,
deg(gp,,u1). The proof of the following theorem can be found in [1], (2.1).

GLOBAL IMPLICIT FUNCTION THEOREM. If |deg(gp,,u1)| =1, then there exists
a closed connected subset Zy of g~1(0) with dim Zy > 4 = dimQ at every point.
Furthermore, the inclusion ig : Z{," — Bt — ¥ induces a non-zero map

ig : HY(ET - %) —» HY(ZY).

Here, & = {(p1,u) : ||u — u1] = 6}. H* is the Alexander-Spanier (or Cech)
cohomology; cf. [13], Section 6.4. Actually, in [1], it is required that Dgp, (u1) is an
isomorphism but only |deg(gp,,u1)| = 1 is used. In our situation, it suffices even
to assume |deg(gp,,u1)| # 0; see the remarks following Theorem (2.1) in [1].

Let us check whether the assumption |deg(gp,,u1)| = 1 is satisfied. The hy-
potheses (H1) and (H2) imply that d(A) := deg(fp(n), u(A)) changes sign as A
passes 0. Since D fp(x)(%(})) is an isomorphism for A # 0, we have |d())| = 1. Due
to the homotopy invariance of the Leray-Schauder degree and the symmetry of f,
the local degrees satisfy the equation (s € (0,¢€))

d(—Xs) =d(As) + deg(fp(ks), w(Ae) + vs) + deg(fp(a_,), u(A=s) +v_s)
= d(Xs) + 2 - deg(fp,, u1)-

This implies |deg(gp, ,u1)| = |deg(fp,,u1)| = 1 and we can apply the global implicit
function theorem to get a four-dimensional subset Zg of f~1(0)NP x X,,. Set Z; :=
Zo— M C Z — M. We know that the homomorphism i§ : H4(E+t — X) — HY(Z])
is not zero. Now, Et can be considered as the quotient space

E* = (P x X, U{00})/(0P x X, U {oo})
and similarly
Z§ =(Z, UM U {c0})/((Z1 UM U {o0}) N (0P x X, U {oc})).
By the continuity and the excision property of H* (cf. [13], Theorem 6.6.5) we have

H*(E* -%) = H*(P x X, U{oo} — Z,8P x X, U {c0})
~ F*(P x X, — £,0P x X,,)
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and

H*(ZF) = H*(Z, UM U {oo},(Zy U M U {co}) N (P x X, U {oo}))
~ H*(Z1UM,(Z,UM)N (0P x X,)).

Thus the inclusion
i : (Z1UM,(Z3UM)N(OP x X)) — (Px X, —%,0P x X,))
induces a non-zero map
it HYPxX,-X%,0Px X,) - H{Z, UM, (Z, UM) N (0P x X,)).
i3 # 0 implies that ¢; is not nullhomotopic. O

It remains to prove Theorem (5.3). This is essentially a one-parameter result.
Suppose there exists p_ € K_ with p_ & 7(Zp). Let p; € K be arbitrary. Choose
a path w = (p,u) : [-1,1] - M with p(—1) = p_, p(+1) = p; and such that the
image of p intersects m(Zo N M) only in p(0) = po € P— P>. We do not assume that
the image of p is contained in P — P, since neither K, nor K_ need be contained
in P — P,. Also, we allow w to intersect the singular set S outside of Zo N M. But
we may assume that (H1) and (H2) are satisfied near w(0). Then, we consider the
map

g:[-L,1]x X, - Y, g(A,v) = fF(p(A), u(X) + v).
Obviously, g(A,0) = 0 and Ag = 0 is a global bifurcation point (bifurcation from
a simple eigenvalue). Let Z} be the connected component of (0,0) in (g~*(0) —
[-1,1] x {0}) U{(0,0)}. The map (A,v) — (p(A), w(X) +v) maps Z} to Zp because
the image of p intersects m(Zo N M) only in p(0) = po. Therefore, Z} is bounded
and Z} N [-1,1] x {0} = {(0,0)}. Furthermore, Zy N {—1} x X,, = @ since p_ &
7(Zo). Then the global bifurcation result of Rabinowitz [12} or Magnus [11] implies
Zi N {+1} x X, # 0. This just says p; € 7(Zp)- O
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