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1. Introduction

In this paper some general existence principles for the first order initial value
problem

(L1) { ¥ = fty), 0<t<T,
y(0)=a
and the second order boundary value problem
(py') = f(t,y,p¢), 0<t<]l,
(1.2) —ay(0) + 8 lim p(t)y'(t) = >0, 820,
ay(1)+thr{1_p(t)y’(t)=d a>20,b>0anda+a>0

are established. The literature on problems of the above form is extensive, see [1,
3-6, 8-9, 11-13] and their references. In all of these papers f is assumed to be
continuous or a Carathéodory function. However, in many applications this class
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of functions may be too restrictive. For example the initial value problem

v+iy=1, 0<t<T,
-y(0)=0

has a solution y(t) = £. In this case f(t,u) = 1 — } is not an L'-Carathéodory

function. Our goal is to establish existence principles (and theory) which would
include problems of this type. The results of this paper extend and complement
the existing theory in the literature. Even in the case of the boundary value problem
(1.2) with p =1 the results are new.

We use a fixed point approach to establish our existence principles. In particular
we use a nonlinear alternative of Leray—Schauder type [9] which is an immediate
consequence of the topological transversality theorem [2, 7, 8] of Granas. For
completeness we state the result. By a map being compact we mean it is continuous
with relatively compact range. A map is completely continuous if it is continuous
and the image of every bounded set in the domain is contained in a compact set of
the range.

THEOREM 1.1. Assume U is a relatively open subset of a conver set K in o
Banach space E. Let G : U — K be a compact map, p* € U and

Nx(u) = N(u,\) : U x [0,1] = K

a family of compact maps (i.e. N(U x [0,1]) s contained in a compact subset of K
and N : U x [0,1] — K is continuous) with Ny = G and No = p*, the constant map
to p*. Then either
(i) G has a fized point in U; or
(i) there is a point u € OU and X € (0,1) such that u = Nu.
O
Also the following definition from the literature will be used throughout this
paper. Let k be a positive integer and —o0 < a < b < co. A function g :
[a,b] x R — R is an L'-Carathéodory function provided that, if g = g(t, 2),
then
(a) the map z — g(t, 2) is continuous for almost all ¢ € [a, ],
(b) the map t — g(t, z) is measurable for all z € R¥,
(c) for a given r > O there exists h, € L'[a,b] such that [2| < r implies
lg(t, 2)| < hr(t) for almost all ¢ € [a, b].
We remark here as well that conditions (a) and (b) imply for ¢ € [a, b] that g(t, u(t))
is measurable for any measurable and almost everywhere finite function u(t). This
is a result of Carathéodory, see [10, 14]. Also, (c) implies that g(t, u(t)) is integrable.
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2. Initial Value Problems

We begin by obtaining two existence principles for the initial value problem

¥ +¢' )y = f(t,y), 0<t<T,
y(0)=a
and then these principles will be used to obtain two general existence theorems.

By a solution to (2.1) we mean a function y € C[0,T] with y differentiable
almost everywhere on [0,T], y(0) = a with y satisfying the differentiable equation

(2.1)

almost everywhere on [0, 7.

THEOREM 2.1. Suppose

2.) { ¢:(0,T] = RU {400} with ¢ differentiable almost everywhere
and e~ continuous on (0, T,
(e?f is an Lé—C’amthéodory function. By this we mean that, if
g(t,z) = e?® f(t,2) then g: [0,T] x R —» R U {—00,00} with
(a) the map z — g(t,z) continuous for almost all t € [0, T),
(2.3) (b) the map t — g(t, z) measurable for all z € R,
(¢) for a given r > O there exists h, € L*[0,T] such that
|z| <7 implies |g(t, z)| < hy(t) for almost all t € [0, T).
| Also, b, must satisfy lim,_,g+ e~ ¢® fot hr(s)ds=0

and

(2.4) If a # 0 assume ¢(0) = lim; o+ @(t) € R. If a = 0 assume
' there exist constants k and § > 0 with ¢(t) < k fort<§

are satisfied. In addition assume there is a constant M, independent of \, such that

lylo = sup [y(t)| < M
[0,7]
for any solution y to

{y+¢%M=Aﬂtw, 0<t<T,

25 y(0) = a

for each A € (0,1). Then (2.1) has at least one solution.
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PROOF. We begin by showing that solving (2.5), is equivalent to finding a
y € C[0, T] which satisfies

(2.6) y(t) = aexp(¢(0) — ¢(2)) + re~*®) /0 ¥ f(s,y(s)) ds

with the convention that aexp(é(0) — ¢(¢)) = 0 if a = 0. To see this, notice that, if
y is a solution of (2.5) then (e®y)’ = Ae® f almost everywhere on [0, T). Integration
from 2, (1 > 0) to t yields

e?@y(t) = P y(t1) + A /t 4O f(5,(s)) ds.
1
This, together with assumptions (2.3) and (2.4), yields
e?Dy(t) = ae?@ 4+ A /Ot e?() f(s,y(s)) ds
and so

y(t) = aexp($(0) — ¢(t)) + Ae~*® /0 e®®) f(s,y(s)) ds.

On the other hand, if y € C[0, 7] satisfies (2.6) then since f; e?(®) f(s,y(s)) ds €
AC[0,T] we have

t
Y () = —a¢'(t) exp($(0) — $(1)) + Af(t y(t)) — A/ (t)e™* /0 e? f(s,y(s)) ds
almost everywhere on [0, T]. Thus
v + ¢y =Af(t,y) almost everywhere on [0, T.

Also, y(0) = a from (2.3) and (2.6).
Define the operator

Ny : C,[0,T] — C,[0,T] = {u € C[0,T} : u(0) =a}
by

Nyu(t) = aexp(¢(0) — ¢(t)) + de ?® /0 e?) f(s,u(s)) ds.

Now (2.6) is equivalent to the fixed point problem y = N)y. We claim that N :
C,[0,T] — C,[0,T] is continuous. Let u, — u in C,[0,T], i.e. u, — u uniformly
on [0,T]. Now there exists r > 0 with |u,(s)] < r, |u(s)| < r for s € [0,T]. Let
g(s,z) = e¥®) f(s,2). By the above uniform convergence we have g(s,un(s)) —
9(s, u(s)) pointwise almost everywhere on [0,T]. Also, there exists an integrable
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function A, with |g(s,un(s))| < h.(s) for almost all s € [0,7]. The Lebesgue
dominated convergence theorem implies that

Nyun (t) = aexp(¢(0) — ¢(t)) +Ae"?® /0. e‘b(s)f(s, Un(8)) ds

s aexp((0) — $(2)) + Ae—4® /0 %) £ (5, u(s)) ds = Nyu(t)

pointwise for each ¢ € [0,T]. Next we show that the convergence is uniform. If this
is true then N, is continuous.
To show that the convergence above is uniform notice that for ¢,¢, € (0,7] we

have

31
[Nxun(t1) = Natn(t)] Sale?@|em¢() — =60 4 g=0(t) / e¥)f(s,un(5)) ds
t

e~ 9(t1) _ o—o(t)

+ /0 " 6960 £ (5, un(s)) ds

T
< (|a|e¢(0) +/ he(s) ds) ‘e"‘ml) - e_‘/’(t)‘
0
t1
/ hr(s)ds
t

| Naun(t1) — Nxun(t)] < |af lexp(¢(0) — ¢(t)) — 1] +

+ e—¢(t1)

Also if t; = 0 and ¢ > 0 then

t
e *®) / hr(s) ds
0

We have similar bounds for |Nyu(t;) — Nau(t)|- Let € > 0 be given. There exists
a 7 > 0 such that ¢,¢, € [0,T] and [t — ¢;| < 7 imply

@.7) |Natin (t1) — Naun(t)] < g for all n
and
(2.8) INxu(t:) — Nau(t)] < g

Then (2.7), (2.8) together with the fact that Naun(t) — Nxu(t) pointwise imply
that the convergence is uniform.

Consequently Ny : C,[0,T] — C,[0,T] is continuous. In addition the Arzela—
Ascoli theorem guarantees that N, is completely continuous. To see this let Q2 C
Ca[0,T] be bounded, i.e. there exists r > 0 with supjy 7 [v(t)| < r for each v € Q.
Then N, is uniformly bounded since

i
e_¢(t)/ hr(s)ds
0

INxu(t)] < |ale®® sup e*® + sup
f0.7] [0.71
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for each v € Q. The equicontinuity of Ny on [0, 7] follows from the inequalities
obtained above for |Nyu(t1) — Nau(t)|.
Thus Ny : C,[0,T] — C,[0,T] is continuous and completely continuous. Set

U={u€eC,0,T}: |ufo<M+1}, K=0C.[0,T] and E=C0,T].

O

REMARK. Let N(z,)) = N)(z) and notice that N(U x [0,1]) is contained

in a compact subset of C,[0,7]. To see this let N(un,\s) be any sequence in

N(U x [0,1]). Then the above arguement implies that N(un,Ay) is uniformly
bounded and equicontinuous, so the Arzela—Ascoli theorem yields the result.

Now Theorem 1.1 applies with p* = aexp(¢(0) — ¢(¢)), but with this choice of

U the possibility (ii) of theorem 1.1 is ruled out and we deduce that N; has a fixed

point, i.e. (2.1) has a solution y. o

In the last existence principle we assumed that ¢ : (0,7] — R U {+oo} and
lim sup;_,g+ #(t) < co. We now establish a result where limsup, o+ ¢(t) = +o0o is
allowed. Here we discuss the initial value problem

{y,+¢,(t)y:f(t7y)’ 0<t<T,

(2.9) 4(0) =

THEOREM 2.2. Assume (2.2) holds and that f has the decomposition f(t,u) =
f*(t,u) + w(t) with

e?f* is an Li—Camthéodory Junction with w : [0,T] — R,
(2.10) e [Te?()u(s) ds € C[0, T N C*(0,T] and
lim,_,q+ e~ ¢®) ftTe"’(s)w(s) ds = 0.

In addition assume there is a constant M, independent of A, such that
lylo = sup [y(t)| < M
[0,7]
for any solution y € C[0,T] to

¢ T
(2.11), y(t) = )\e_‘b(t)/ e?() * (s, y(s)) ds — Ae™*®) / e?)u(s) ds
0 ¢

for each A € (0,1).. Then (2.9) has at least one solution.

PROOF. We first show that if y € C[0, T satisfies (2.11) then y is a solution of

{y’+¢’(t)y=f\f(t,y), 0<t<T,

(2.12) YO =0,
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To see this, notice that, if y € C[0, T satisfies (2.11), then since

t
| #9*(e,u(s)) ds € acp, 71
0
we have
t T
V(O = A0 -3 0O [0 f (0, y(a) derrg e [ () ds
0 ¢
almost everywhere on [0, T]. Thus
¥+ ¢y =Af(t,y) almost everywhere on [0,7].

Also, y(0) = 0 from (2.10) and (2.11)5. Thus y is a solution of (2.12). O

REMARK. We note that if y is a solution of (2.12), then y need not satisfy
(2.11),. In fact, if lim; o+ ¢(t) = oo then any solution of (2.12), may be written
as

t T
y(t) = Ae‘“”/ e?(®) f* (s, y(s)) ds — Ae #®) / e?w(s) ds + Ae*®
0 t
where A is an arbitrary constant.

Define the operator Ny : Cy[0,T] — Cy[0,T] by
¢ T
Nyu(t) = /\e_"’(t)/ e?®) f*(s,u(s)) ds — Ae_¢(t>/ e?(@)u(s) ds.
0 ¢

Essentially the same analysis as in theorem 2.1 implies that N; has a fixed point,
i.e. (2.11); has a solution, i.e. (2.9) has a solution. O

REMARK. Under assumptions (2.2), (2.10) and ¢(0) = lim; o+ ¢(t) € R we
may deduce the existence of a solution to the boundary value problem (2.1) with
a#0. a

Theorems 2.1 and 2.2 may now be used to establish some existence results for
initial value problems.

THEOREM 2.3. Suppose (2.2), (2.3) and (2.4) are satisfied. In addition assume

(2.13) { le? £(t, )| < ¥(e®|y|) for almost all t € [0, T] where

¥ : [0,00) — (0,00) is a Borel function
and

(2.14) e ¥ 171(¢) is bounded for t € [0, T]
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hold. Here : g
u
I(z =/ —_—, z > |al.
() la] ¥(u) i
Then (2.1) has a solution on [0,T] for each T < T,. Here
> du
Too = —.
la] ¥(w)

PROOF. By theorem 2.1 we need only establish a priori bounds for solutions y
to (2.5) which are defined on [0, 7] for T' < Two. Notice that since [e?y|? = (e?y)?

we have ¢(¢)/
ey(ey Y
———— < |(e*y)]
le?yl )

almost everywhere on the set where e?y # 0. Fix ¢ € [0,T]. Suppose |y(t)| > |al.
Then there exists an p € [0,%) such that |y(s)] > |a| for s € (1] and |y(p)| = |al.
Since (e®y)’ = Ae? f(t,y) almost everywhere on [0, T] we have

le?yl’ < I(e?y)'] < 9(e’lul)

almost everywhere on (u,t]. Now the change of variables formula [4, 9] yields, since
(2.6) with A = 1 implies ey € AC[0,1],

le?yl’ =

[e* @yt gy, t g9 y(s)|'ds
I(|e*®y(t =/ :/ Y <t-p<t.
(5EOD=fo B~ wEpE) <P TS
Consequently
|e?Py(e)] < I7H(2)
since T' < T\o. This together with (2.14) yields
ly(t)] < sup |e=#D I ().

{o,7]

Consequently
lylo < max{sup [e~*P17(t)|, |al}

[0.7]

and the result follows from theorem 2.1. O

ExarpPLE. The initial value problem
(2.15) ¥+iy=y*+1, 0<t<T,
y(0) =0, 0<a<l,

has a solution for each T > 0.
To see this we apply theorem 2.3. In this case ¢(t) = Int, f(t,y) = y* + 1 and
¥(z) = z + 27 Clearly (2.2),(2.3) and (2.4) are satisfied. In addition (2.13) holds

since

le? £(t,y)| = [t(y™ + 1)] < tly|* +¢ < t(ly| +1) + ¢ < Jty| + 2T = (e’ |y])-
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Also, I(2) = [y wd(‘;) =In (#2), To = 00 and so I7*(2) = 2T(e* — 1). Thus
2T

O (0) = 2 (e - 1)
and so (2.14) holds. Consequently theorem 2.3 implies that (2.15) has a solution.

THEOREM 2.4. Suppose f has the decomposition f(t,u) = f*(t,u) + w(t) and
assume (2.2) and (2.10) hold. In addition suppose that

( there exists a constant v, 0 <y < 1 with

|7t w)] < @)l + g2(t)|ul + gs(t)
(2.16) ! for almost all t € [0,T). Here e®q; € L'[0,T],5=1,2,3
and there exists a constant Ko with

_ T
| suppo,7y (e=¢® |ft e?()y(s) ds| ) < Ky

(217) { there exist consttants Hj;, j=1,2,3 with

supjo 7(e~*® [je ¢()g;(s)ds) < Hj, §=1,2,3
and
(2.18) Hy<1

are satisfied. Then (2.9) has a solution on [0,T].

ProOF. By theorem 2.2 we need only establish a priori bounds for solutions
y € C[0,T] to (2.11),. Now for ¢ € [0,T] we have

¢ T
ly(2)| =|Ae~¢® / e £*(s,y(s)) ds — )\e“‘ﬁ(t)/ e *w(s) ds
0 t

£ t i
<) (Iylg / e**)gq1 ds + Jylo / e*)gz ds + / e*)gs ds)
0 0 0

T
/ e?®wds
t

where |ylo = supjp 7y |4(t)|. Consequently for each ¢ € [0, 7] we have

4 e—9(0)

ly(t)| < Halylg + Hzlylo + Hs + Ko.
Thus
(1 — Hy)|ylo £ Hilylg + Hs + Ko.

Now since 0 < v < 1 and H; < 1 then there exists a constant M with |ylo < M
and the result follows from theorem 2.2. O
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EXAMPLE. The initial value problem
f— Ly = AgtPy* + 1, 0<t<T,
(2.19) eV =AY
y(0) =0, 0<a<l, >0, Ag a constant,

has a solution for each 7" > 0.

To see this we apply theorem 2.4. In this case ¢(t) = —Int, f*(t,y) = Aot?y?,
w(t) =1, g1(t) = |Ao|t? and g2 = g3 = 050 (2.2) and (2.16) hold. Also, H, = H3 =
0 and H; = |Ao|supp 7y( fot s(A=1) ds) in (2.17). Finally, (2.10) is true since

T
e¢® / e?*)y(s) ds = t(InT — Int) € C[0, T] N C(0, T
¢

and lim,_,g+ e %) ftT e?(®)w(s) ds = 0 by "'Hospital’s rule.
Consequently theorem 2.4 implies that (2.19) has a solution.

3. Boundary Value Problems

We begin this section by establishing two existence principles for the singular
two point boundary value problem

(o) + vy’ = f(t, 4, p9"), 0<t<l,
(3.1) Jim p()y'(8) = ¢,
ay(1) +b lim p(t)y'(t) = d; a>0, b>0.

By a solution to (3.1) we mean a function y € C[0,1] N C*(0, 1) with py’ € C[0, 1]
. and ¥’ differentiable almost everywhere on [0, 1]. Also, y satisfies the stated bound-
ary data and the differential equation almost everywhere on [0, 1].

THEOREM 3.1. Suppose
(32) { ¢:(0,1] = RU {+o0} with ¢ differentiable almost everywhere,

and e=® continuous on (0, 1],

(3.3) p € C[0,1]NC*(0,1) with p >0 on (0,1),
(3.4) if ¢ # 0 assume $(0) = lim, o+ (t) € R and e~?/p € L*|0,1);
. if c = 0 there exist constants k and § with ¢(t) <k fort<é

and
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( e?f is an Lé-Camthéodory function. By this we mean that if

g(t 21, 20) = e? D f(t, 21, 25) then g : [0,]] xR > RU {—00, 00} with
(a) the map (z1,22) — g(t, 21, 22) continuous for almost all t € [0,1],

(3.5) 4 (b) the map t — g(t, 21, z2) measurable for all (21, 2;) € R2,

(c) for a given r > O there ezists h, € L'[0,1] such that
lz1] < 7, |22| <7, implies |g(t, 21, 22)| < by (t) for almost all
t € [0,1]. Also h, must satisfy lim,_o+ e=%® [ h_(s)ds =0
and (e=#®) /p(t)) [h.(s)ds € L'[0, 1]

are satisfied. In addition assume there is a constant M, independent of A, such that

\

lyl1 = max{sup |y(t)|, sup |p(t)y' ()|} < M
[0,1] (0,1)

for any solution y to

(o) +¢'py’ = Mty p9), 0<t<l,
li (1) =
(3.6) Jm p(t)y'(t) = ¢,
ay(1) + btlirln_ p(t)y'(t) =d; a>0,b>0

for each A € (0,1). Then (3.1) has at least one solution.

PROOF. Solving (2.5), is equivalent to finding a solution y € C[0, 1] with py’ €
Cl0,1] to

d b !
(3.7) v =2 (ce[¢(0)—¢(1)] 4 e—*(D) / 5 (s, . ) ds)
0

S -CUEOW
t p(s)

1 .—o(s) ps
_ ¢ ?(@) z), p(z)y' (z)) dx ds.
Al'p@)A f (@, y(@), p@)y (z)) dz d

To see this, notice that, if y is a solution of (3.6)x then (e?py’)’ = Ae?f almost
everywhere on [0, 1]. Integration from ¢; (¢; > 0) to ¢ yields

t
e’ Op(t)y () = e*™p(ts)y/ (t:) + A / e?C) f(s,y(s), p(s)y/(s)) ds.
t1
Let ¢t; — 0% to obtain

p(t)y' () = cexp(¢(0) — ¢(t)) + re~#® /0 ) f(s,y(s), p(s)y'(s)) ds
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with the convention that cexp(¢(0) — ¢(¢)) = 0 if ¢ = 0. Notice since e?f is an
L;-Carathéodory function then the right hand side of the previous equality is a
continuous function on [0,1].

Integration from ¢ to 1 now yields

1ox _
o(t) = _c/t e p(¢(;)()s) $(8)) 4

_ e ?) se‘f’(“) z z)y (z))dz ds
A / - fo £ (@, u(@), @)y (&) da ds + y(1).

In addition since ay(1l) + blim;_,;- p(t)y'(t) = d we have
1
d = ay(1) + b(ce[¢(0)-¢(n] + et / ) (5, 9,p7) ds)
0

and so .
d b . . ,
w0 =2 - E(“MO) o] 4 )b /0 e#) £(s, 4, py) ds)

! exp(¢(0) — (s))
B ”/t PO

1L o—d(s) s
_)\[ p(s) A ed’(m)f(a;,y(m),p(m)yl(x)) dz ds.

Notice that since e? f is an Lé—Ca,rathéodory function the right hand side of the
previous equality is a continuous function on [0, 1]. Thus y is a solution of (3.7).

On the other hand if y (y € C[0,1] with py’ € C[0,1]) is a solution of (3.7) then

since ftl %&? fs €*@ f(z,y,py’) dz ds € AC[0, 1] we have

t
3.8)  p()y'(t) = cexp(d(0) — B(t)) + e~ ?) /0 e?®) f(5,y(s), p(s)y'(5)) ds

almost everywhere on [0, 1]. The right hand side of (3.8) is a continuous function on
[0,1] since e is an L}-Carathéodory function and so the equation in (3.8) holds
at each t € [0,1]. Thus on [0, 1],

¢
e?Op(t)y (t) = ce®@ + )\/(; e?®) £ (s, y(s), p(5)y/(5)) ds.
Also since f; e?@ f(z,y,py') dz € ACI0, 1] we have

(e?py’)’ = Ae®f almost everywhere on [0, 1].

In addition, lim; .o+ p(t)¥'(t) = ¢ and ay(1) + blim,_,;- p(t)y’'(t) = d from (3.7)
and (3.8). Thus y is a solution of (3.6)a.
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Let K ={u € C[0,1], pu’ € C[0,1] with norm | - |;} and

K, ;= {u € K* with tli%l+ p(t)u'(t) = ¢ and au(1) + btliI{l— p(t)/(t) = d}.

Define the operator Ny : K] ; — K] ; by

d 1
Nyu(t) =~ g(ce["’(o)_d’(l)l + )\e_¢(1)/ ed’(“)f(s,u, pu') ds)

0
(3.9) . /t exp(¢(£()s)— 8(9) ,,
1 —&(s) ps
B - @ f(z, u(z), px) (z)) dz
)‘/t P(s) /(; f(z, u(z), pz)v/(x)) dz ds.
Notice

(3.10) p(t)(Nau)'(t) =cexp(4(0) — ¢(t))
+ de ¢ / e?) f(s, u(s), p(s)u'(s)) ds.

Now (3.7) is equivalent to the fixed point problem y = Nyy. We claim that N PN
K 01 e (}’d is continuous and completely continuous. Let u, — u in K r},d ie.
un — u and p(u,)" — pu’ uniformly on [0, 1]. The Lebesgue dominated convergence
theorem (essentially the same reasoning as in theorem 2.1) implies that Nyu, —
Nyu and p(Nau,) — p(Nyu)' pointwise for each ¢ € [0,1]. Next we show that the
convergence is uniform. Then N : K  ; — K ; will be continuous.

Let t,¢; € [0,1]. Then

ds

t1 [6(0)—¢(s)]
|Natn(t) — Naun(t1)] < |c] /

p(s)

131 e_¢(s) 5
+ / e?@ f(z, u,, u,,) dx ds
¢ p(s) Jo (%, p)

Also, if t,¢; € (0,1] with ¢ > ¢; then

iy ) (V) 6) = 1) (W) 1)

i
< [c]e?® |e—#0) _ g=d(t)| | g=d(tr) / "5 (s, up, pul.) ds

t

e—#(t1) _ g=9(2)

t
+ / e¢(8)f(s,un,pu;) ds
0
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whereas if t; = 0 and £ > 0 then

P(E)(Nyun) (8) = lim, p(s) (Nxun)'(5)

t
< |e|| exp(¢(0) — ¢(t)) — 1] + |e~#) fo e?®) f(5,un, pul,) ds| .

REMARK. All inequalities above are valid at ¢t = 1 since lim, ,,- ¢(¢) is either
a real number or +oo0.

Let € > 0 be given. Then there exists a § > 0 such that ¢,¢; € [0,1] and
|t — #1| < & implies

[Naun(t) = Nxun(t)l < 2, |limp(s)(Naun)'(5) = im p(s)(Naun)'(s)| < =
for all n and
3 . .
INau(t) = Nau(tr)l < 5, | lim p(s) (Nxw)'(s) = lim p(s)(Naw)'(s)] < 3.

These inequalities together with Nyu, — Nyu and p(Nau,)’ — p(Nu)' pointwise
imply that the convergence is uniform.

Consequently N : Kcl,d - K cl,d is continuous. Also N) is completely con-
tinuous. To see this let O C Kcl,d be bounded, i.e. there exists » > 0 with
suppo ) [v(t)| < 7, sup(gq) [p(t)v'(¢)| < r for each v € Q. Now (3.5), (3.9) and
(3.10) imply that NxQ is uniformly bounded and the equicontinuity of N»Q on
[0,1] follows as above. Then N) : K], — K, is completely continuous by the
Arzela—Ascoli theorem. Set

U={ueK,y: [uh<M+1}, K=K, ;andE=K"'
and apply theorem 1.1 with

x4 _ b po-sm) _, /1 exp(¢(0) — ¢(s)) ,
t

s )

Then N; has a fixed point, i.e. (3.1) has a solution. O

We next establish an existence principle for the boundary value problem

(y') + o'y = ft,y,py), 0<t<],
(3.11) Jm p(t)y'(8) =0,
ay(1) + btlir?_ pt)y(t)=d a>0,b>0

without assuming that limsup,_,q+ ¢(f) < oc.
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THEOREM 3.2. Suppose f has the decomposition f(t,u,v) = f*(t,u,v) + w(t)
and assume (3.2) and (3.3) hold. In addition suppose

(3.12) e?f* is an Lé—Camthe’odo'r"y function
and

1
w:[0,1] > R with e~%® / e?®w(s)ds € C[0,1] N C(0,1),
t

(3.13) 0

1
/ e?®u(s) ds € LYo, 1]
s) Je

1
lim e‘¢(t)/ e?Dw(s)ds =0 and
t

t—0t

are satisfied. Also essume there is a constant M, independent of X, such that

lyli = maX{?uE ly(t)], (?R Ip(t)y' (1)} < M

) ’

Jor any solution y € C[0,1] with py’ € C[0,1] to
(3.14)5

d M —(1) ! & r* ’ . —o(t) '
y(t) = ———[e™” e*f*(s,y,py’) ds + lim e e?w(s)ds
0 ' - t

a
L o—d(s) s L o—¢(s) pl1
e e
_,\/ / @ f*(z,y, py’ da:ds*+)\/ / e?@w(z)dzd
L B Jo T ) ATON A
for each A € (0,1). Then (3.11) has at least one solution.

ProoF. We first show that if y € C[0,1] with py’ € C[0,1] is a solution to
(3.14) then y is a solution of

(py') +&'py’ = Af(ty,0), 0<t<1,
im p(t)y'(t) =
(3.15), Jm p(t)y'(t) =0,
ay(1) + b lim p(t)y'(t) = d, a>0,b>0.

To see this, notice that, if y € C[0, 1] with py’ € C[0,1] is a solution of (3.14) then
since

1 e_¢(s) 5
/t 26) /0 e“”f*(m,y,py') dzds € AC|0,1]

we have
t 1
(3.16) p(t)y'(t) = e~ %) / e¢(s)f*(s, y,py’) ds — )\e“”(t)/ e‘/’(")w(s) ds
0 t

almost everywhere on [0, 1]. The right hand side of (3.16) is a continuous function
on [0,1] since e?f* is an L;S-Carathéodory function and so the equation in (3.16)
holds at each ¢ € [0,1]. Exactly the same reasoning as in theorem 3.1 now shows
that y is a solution of (3.15),.
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REMARK. We note that if y is a solution of (3.15) then y need not satisfy
(3.14),.

Define the operator N : K§ , — K; 4 bv

d A 1 1
Nyy(t) = - — Ab (e_¢(1)/ e?® f*(s,y,py') ds + lim e_¢(t)/ e¢(s)w(s) ds)
a [11 0 t—1-— +
1 o—d#(s) s
—/\/ - @) f*(z,y,py') de ds
¢ p(s) Jo
1g—d(s) [l
+)\/ ¢ / e?@w(z) dz ds.
t p(s) 8
Essentially the same reasoning as in theorem 3.1 implies that N; has a fixed point
i.e. (3.14); has a solution i.e. (3.11) has a solution. O

REMARK. Analogue versions of theorems 3.1 and 3.2 hold for the boundary
value problem

(Y'Y +¢'py’ = F(t, v, 09); 0<t<l,

—ay(0) + 5 im p(t)y'(t) =, a>0, 20,

Jim p(@)y'(t) = d.

THEOREM 3.3. Suppose f has the decomposition f(t,u,v) = f*(t,u,v) + w(t)

and assume (3.2), (3.3), (3.12) and (3.13) hold. In addition suppose that
( there exist constants 1 and vz, 0 < v1,72 <1 with
|F%(t, u,v)| < qu(®)|u|™ + g2(t)|v]*? + g3(t) for almost all t € [0,1].
(3.17)  { Here e®q; € L'[0,1] and (e7*)/p(s)) f; €*®)q;() dz € L(0, 1],
§=1,2,3, and there exists a constant Ko with
[ suppp,y (e~ e*(s) ds) < Ko

is satisfied. Then (3.11) has at least one solution.

PROOF. By theorem 3.2 we need only establish a priori bounds for solutions
y € C[0,1] with py’ € C[0,1] to (3.14). Now for ¢ € [0, 1] we infer from (3.16) that

t 1
Py (1) = A~ / e45) (s, y, py/) ds — Ae=9® / eH5)uo(s) ds
0 t
and so (3.17) implies
t t
(e ()] <(ylo)™e~® / e#@q, (2) dz + (jpy'Jo) e~ / 4@ g, () do
0

: 1
+e#() / e?®@ g3(z) dz + e *® / e? () dz
0 t
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where |ylo = supjp,q; [¥(¢)| and |py’lo = sup(o 1y [P(t)y'(t)|. Thus there exist con-
stants Ag, A; and A with

lpy'lo < Ao(lylo)™ + Ar(lpy’lo)* + As.
This together with 0 < v < 1 implies that there exist constants A3 and A4 with
(3.18) lpy'lo < Aa(lylo)™ + As.

On the other hand from (3.14), for ¢ € [0, 1] we have

1 1
y(t) _d_X (e‘¢(1) / e?C) f*(s,y,py) ds + liI}l e_¢(t)/ e?G)u(s) ds)
0 t—1~ ¢ :

a a

1 g—d(s) po L g=d(s) 1
e e
—)\/ e @ (2, y, oy’ dzds+/\/ / @)y (z) dz ds
t p(S) 0 ( ) 4 p(s) ] ( )

and so (3.17) implies that there are constants By, B; and B with

(3.19) lylo < Bo(lylo)™ + B1(|py|0)"? + Ba.
Put (3.18) into (3.19) and deduce that there are constants Cp and C; with
lylo < Bo(lylo)™ + Co(lylo)™™ + Ci.

Consequently since 71,72 < 1 there exists a constant M with |y|lg < M. This
together with (3.18) yields |py'|o < AsM™ + A4 = M, and the result follows from
theorem 3.2. O

REMARKS. (1) An analogue of theorem 3.3 may be obtained for the boundary
value problem (3.1) with ¢ and f satisfying the assumptions in theorem 3.1.

(ii) We remark here as well that the Bernstein theory [1, 3-5, 8-9] could be
developed for (3.1) with ¢ and f satisfying the assumptions of theorem 3.1. Since
the ideas are similar to those in [1, 3] we omit the details.

Finally in this paper we obtain an existence principle for the Sturm-Liouville
boundary value problem

(ry') +¢'py' = f(t,y,09), 0<t<1
(3.20) —ay(0) + Blim;_ o+ p(t)y (t) = ¢ a>0, 620
ay(l) + blim,_,,- p(t)y'(t) = d; a>0,b>0.

THEOREM 3.4. Suppose (3.3) holds and

(3.21) { ¢ :[0,1] > RU {oo} with ¢ differentiable almost everywhere

and e~ continuous on [0,1]. Also, e=%/p € L*[0,1]
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and
(3.22) e?f is an L;,-Camthéodory Jfunction

are satisfied. In addition assume there is a constant M, independent of A, such that
lyls < M for any solution y to

(oy') + &'y = Af(t,y,pv), 0<t<l,
(3.23) —ay(0) + Blim,_o+ p(t)y'(t) = ¢, a>0, 320,
ay(]') + blimt—»l- p(t)y’(t) = d7 a> 07 b > 0

for each A € (0,1). Then (3.20) has at least one solution.

PROOF. Solving (3.23), is equivalent to finding a solution y € C[0,1] with
py € C[0,1] to

(3.24) y(t) =B+ A/t ﬂ ds + /\/t e /S e?@ f(z,y,py’) dz ds
o P(s) o p(s) Jo
where
(3.25)
A ca + da — haa fol % Iy e® f(z,y,py") dx ds — Abae= ) fol e? f(x,y,py') dr

B afe=*0 + aa fol e;&()’) ds + bae—*(1)

and

(3.26) BB 0 _C
[8] «

To see this, notice that, if y is a solution of (3.23), then (e®py’)’ = Ae?f almost
everywhere on [0, 1]. Integration yields

p(t)y/ (t) = Ae=5® 4 29 /0 ¥ f(s,y(s), p(s)y/(s)) ds

where A is an arbitrary constant. Notice since e? f is an Lé-Ca.rathéodory function
and e~? is continuous, the right hand side of the above equality is a continuous
function on [0,1]. Another integration yields

e_¢(s)

(t)=B A/te_¢(3)d ,\/t / ¢ f( "Ydzd
t)=B+ ——ds+ e\ f(z, vy, zds
Y o p(s) o P(s) Jo nry

where B is an arbitrary constant. Now since —ay(0) + 8lim,;_ o+ p(t)y'(t) = ¢ and
ay(1l) + blim,_,;- p(t)y'(t) = d we have

(3.27) c= —aB+ fAe™*®



EXISTENCE PRINCIPLES 53

and
1 g—d(s) rl o—d(s) ps
(3.28) d=a<B+A/ —ds+)\/
o p(s) o P(s) Jo

1
+ b(Ae_¢(1) + )\e“b(l)/ ed’(s)f(s,y,py’) ds).
0

Solving (3.27) and (3.28) yields (3.25) and (3.26). Thus ¥ is a solution of (3.24).
On the other hand, if y € C[0, 1] with py’ € C[0,1] is a solution of (3.24), then

since
/ e / et / 9@ "Ydzds € AC
S, € T,Y,py)aras € 0,1

o 7 Jo 26 Jo (0.1

@ f(z,y,py') dz ds)

we have
i

(329)  p()y'(t) = Ae™?®) 4 hemo®) / e?@ f(s,4(5),p(s)y/ (5)) ds
0

almost everywhere on [0,1]. Since the right hand side of (3.29) is a continuous
function on [0, 1], the equation in (3.29) holds at each ¢ € [0,1]. Thus on [0,1],

e*Op(t)y'(t) = A+ /0 e?f(s,4(s), p(s)y/(s)) ds

and so
(e®py’) = e f almost everywhere on [0, 1].
In addition, —ay(0) + Blim,_,o+ p(t)y'(t) = c and ay(1) + blim,_,,- p(t)y'(t) = d.
Thus y is a solution of (3.23),.
Let K! be as in theorem 3.1 and

Ksp={u€K': —ou(0) + § lim p(t)u/(t) = c and au(1) + b lim p(t)u'(t) = d}.

Define the operator N : Ki; — K}, by

Ny =B+a [ D g [
=D+ ———ds+
M /0 0 0

/ e?® f(z,y, py') dz ds
0

0

where A and B are as in (3.25) and (3.26).
Essentially the same reasoning as in theorem 3.1 implies that N1 has a fixed
point, i.e. (3.20) has a solution. O
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