Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 1, 1993, 323-327
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Dedicated to the memory of Karol Borsuk

1. Introduction

Let AV be the class of nilpotent groups. Then, given any group N in A and any
family of primes P we may construct the P-localization N, of N (see [4]). Thus
N, is P-local, meaning that it admits unique ¢** roots for g outside P, and there is
a homomorphism e : N — N, which is universal for homomorphisms from N into
P-local nilpotent groups.

Now let N € N be finitely generated (fg). Mislin [5] defined the genus of N to be
the set G(IV) of isomorphism classes of fg nilpotent groups M such that M, = Ny,
for all primes p. He showed that the genus is, in general, non-trivial, but gave no
means of calculating it in this generality. He also demonstrated its relevance for
the discussion of genus in the collection of homotopy types of nilpotent polyhedra
of finite type (see [4]).

Let Ao be the class of finitely generated, but not finite, nilpotent groups with
finite commutator subgroup [N, N]. Then for any N in A the genus CalG(N) (see
(5, 3]) has the structure of a finite abelian group. This genus-group was calculated
in [1] in the case that N belongs to a certain subclass N of N).

©1993 Juliusz Schauder Center for Nonlinear Studies

323



324 P. HiLtoN — CH. SCHUCK

To explain N7, we consider the short exact sequence (valid for any nilpotent
group N)
(1.1) TN — N —-» FN

where T'N is the torsion subgroup of N, and F'N is the torsionfree quotient. Then
N € N, if and only if TN is finite and FN is free abelian of finite rank. We say
that N € N7 C N if, additionally,
(a) TN is commutative;
(b) (1.1) splits on the right, so that N is the semidirect product for an action
w:FN - AutTN;
(c) the action w satisfies w(FN) C Z(Aut TN ), where Z is the center.

Note that, in the presence of (a), (c) is equivalent to requiring that, for each
¢ € FN, there exists an integer u, depending on £, such that £.a = wa for all
a € TN (written additively).

Now let ¢ be a height of ker w in F'N; here the height of a (non-trivial) subgroup
R of a free abelian group F is the largest positive integer A such that R C hF. Then
it is proven in [1] that

(1.2) G(N) = (Z/t)*/{£1} if N eN;.
We will prove the following structure theorem for groups in N,

THEOREM 1.1. Let N € . Then (i) t =1 or 2, or (ii) F'N is cyclic.

We will also show that there are groups N in N7 such that £ = 1 and FN is not
cyclic; t = 2 and F'N is not cyclic; and F'N is cyclic but ¢ # 1,2. As a consequence
of Theorem 1.1 and (1.2), we have (with N* the kt! direct power of N)

COROLLARY 1.2. Let N € N with FN not cyclic. Then G(N*) =0, k > 1.

For G(N) = 0 by (1.2), since t = 1 or 2; and for any N € A there is, by
Theorem 4.1 of [1], a surjection G(N) — G(N*), k > 2, given by M — M x N*~1,
M € G(N). 1t is relevant to allow k& > 2 in Corollary 1.2, for, although N is closed
under direct products, one may show that N*, k > 2, is in A; only if N is itself
commutative.

If FN is cyclic, the situation is utterly different. It is clear from calculations
in [2] that ¢ can take any value. If N is such that G(IV) & (Z/t)*/{£1}, N € N,
then G(N*), k > 2, is independent of k and is obtained from G(N) by factoring out
a certain explicitly described elementary abelian 2-group.

The results of this paper have important implications in homotopy theory. In-
deed, it was the study of the genus of a nilpotent space of finite type which gave
rise to the purely group-theoretical studies reported in [1, 2, 3, 5]. In particular,
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given a group N in the class M, we can construct a torus-bundle X Over a space
M such that (i) M depends only on the genus of N, (i) N is the group of free
homotopy classes of maps of §? into Q.X; and (iii) corresponding to any group N
in the genus of N we may construct X (as a torus-bundle over M ) in the genus
of X. Then Theorem 1.1 implies that, in order to obtain an interesting genus set
G(X), we must have FN cyclic, so that X is a circle-bundle. It is then not difficult
to prove that each of X , X is a covering space of the other.

The content of this paper forms the Ph. D. dissertation of the second-named
author at the State University of New York at Binghamton, written under the
direction of the first-named author.

2. Some Preliminary Lemmas

Let N € V1 and let us write FN additively; then
(2.1) FN={1,6,...,&),  ketw = (ti€1,bat,... ,1.8,),
where t = t1|t5|...|¢,. Let
(2.2) €i.a =ua, a€TN,

and let expTN = n = p™'p** ... pT**, where m; > 1 and P1 <p2 <...<py are
the prime factors of n. Then u; is of order ¢; mod n. We prove

LEMMA 2.1. pipz...pal(ui — 1),i=1,2,... 7.

PROOF. In fact, we show that, with FN , TN commutative and (1.1) split, the
condition given is the necessary and sufficient condition for NV to be nilpotent. For it
is not difficult to see that I'? is the g*® term of the lower central seriessof N (I = N ),
theI" = (a*1~1,a € TN,1 < i < r), T2 = (@®~Dw=1 g c TN 1 <i,j <r), ete.
Thus I'? = {1} for g sufficiently large if, and only if, nl(ui, —1) (v, ~1)... (u, —1),
g sufficiently large, for 4, such that 1 < 4, < r. But this is plainly equivalent to the
given condition. O

Our second lemma is number-theoretical.

LEMMA 2.2. Let ug, u1, us be elements of finite order in a group G, such that
u1,Ug € (ug) and |uy|||uz|. Thenu, € {uz).

(Here [u| is the order of u and (u) is the subgroup generated by u.)
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PROOF. Let u; = ud', i = 1,2 and let |up| = s. Then ;| = (ssq,-)’ i =1,2, s0
that (—)-s,ql | —(s,qz), whence
(8,82) | (s, q1)lan-

This, however, is the condition that we can solve, in integers, the equation

(2.3) as + bgs = q1.

From (2.3) we infer that ug =ud', or u; = u}. O

3. Proof of Theorem 1.1

We assume r > 2 in (2.1), we assume (2.2) holds and we set

(3.1) n=p™ DY,

as in Section 2. We say that we are in Case 2 (the exceptional case) if p; = 2 and
my > 3. Otherwise, we say we are in Case 1 (the general case). We deal first with
Case 1.

Case 1: Set ug = 1+ pipa...pa. We regard u; as an element of (Z/n)”,
i=0,1,...,r. Then, according to [2] (see also (3.3) of [1]) the order of uo modn
is pm~ippe Tt .p» 1. Now the number of distinct residues wmodn satisfying
pipe .. .pxl(u — 1) is also pi*'™ tpma=l | pf\'“_l; and every power of ug is such a
residue. thus the powers of ug completely exhaust all the residues v modn satis-
fying p1pz ...pal(w — 1). It therefore follows from Lemma 2.1 that uy,uz € {ug).
Moreover, |u1| = t1, Jug| = t2, and t1]ts. Thus, by Lemma 2.2, u; € (uz). We can
therefore solve for d the congruence

(3.2) uud = 1mod n.

But (3.2) implies that (in additive notation) &1 + d§z € kerw. Comparison with
(2.1), recalling that t = t;, shows that ¢ = 1.

Case 2: We now have n = 2™1pJ*? .. . p¥**, my > 3. Weset up =1+4p2...pa
Then, again according to [2] or (3.3) of [1], the order of uo modn is gmi=2pme=l
Py ! and a similar counting argument shows that any residue wmod n satisfying
4psy .. .px|(w — 1) must belong to (ug). By Lemma 2.1 we know that, for any w; in

(2.2), 2p ... pal(u; — 1), so that 4p; ... pa|(u? —1). Thus
(33) o8 € (uo).

Now |u?| = (_t“z)_)? and it is plain that if 1|tz then s)l(tg 5+ for any s. Thus
|u?| | |u3|, so by (3.3) and Lemma 2.2, u? € (u3) C (ug). Now if t(= 1) is odd, then
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u1 € (u}) so that u; € (up). Thus if ¢ is odd, we infer as in Case 1 that t = 1. If,
on the other hand, ¢ is even, we infer that we can solve for d the congruence

(3.4) u2ug = 1mod n.

But (3.3) implies that 2¢; + df, € kerw so that, by (2.1), t = 2. This completes
the proof.

REMARK. We have already pointed out that, if we take FN cyclic, we can
achieve any value of ¢ by suitably choosing N in N;. It was also shown in [1] that
if N1,N2 € Ny with exp TNy, exp TN, mutually coprime, then Ny x N, € N
and ¢(N; x N3) = 1; of course F(Ny x N3) = FN; x FN, and so is non-cyclic.
To obtain an example of a group N in A; with FN not cyclic and £ = 2, we
set TN = Z/8 = (a), FN = Z& Z = (&, &) with £1.a = 3a, &2.0 = 5a. Then
kerw = (2¢1,2¢5) and t = 2.

In fact, the case t = 2 is truly exceptional. Its presence arises from the fact that
(Z/n)* is not cyclic if n = 2™, m > 3, being Z/2 @ Z/2™2 (additively). Indeed,
one easily shows

PROPOSITION 3.1. Let N € Ny with ¢t = 2. Then r = rank (FN) = 1 or 2.
Moreover, even if r = 2, N cannot be the direct product of two members of M.

Of course, if N € NV, with ¢t = 1, then r can take any value.
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