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1. Introduction

We consider the boundary value problem
(1.1) v’ +u+tg(x,u)=h(z) in (0,7), u(0) =u(r) =0,

where h € L*(0, ) is given and g : (0,7) xR — Risa Carathéodory function, that
is, g(z,u) is continuous in u € R for a.e. x € (0,7) and is measurable in z € (0,m)
for all u € R. We assume throughout this paper that

(H1) For each r > 0, there exists o, € L!(0,7) such that
lg(z, u)l < ar(z)
for a.e. z € (0,7) and |u| < r;
(H2) There exists I' € L1(0, 7) such that

(1.2) 0 < limsup @ <TI{(z)

he|—00
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uniformly for a.e. z € (0,7) and
(1.3) Tz < 1.

The solvability of the problem (1.1) has been extensively studied in literature if
T is assumed to be bounded. Existence theorems for a solution to (1.1) are obtained
if I'(X) < 3 for a.e. £ € (0,7), with the strict inequality holding on a subset of
(0,7) of positive measure (see [1, 6]). A further result along the line is proved in
[4] by assuming that for some p > 1 and a small ¢ > 0,

g(z, u)

lim sup <p-—1—g¢,

U—ro0

lim sup g_(g:_,i) < p(p% —1y?2—-1-=¢.
u—0o U
The purpose of this paper is to obtain solvability results for (1.1) when I is a
function in L'(0, ) satisfying (1.3). Thus our results can be applied to the problem
(1.1) when the non-linear term g is given, for example, by
u(l — e~ ¥l

9(z,u) = W
which cannot be covered by those in [1, 4, 6]. Our main result is Theorem 2 in
§2, which is an existence theorem for a solution to (1.1) by assuming (1.3) and a
Landesman-Lazer condition (see (2.7) below) originally obtained in [7]. In §3 we
give in Theorem 3 solvability conditions for (1.1) in the absence of a Landesman-
Lazer condition, which improves the main result in [5], where it is assumed that
IT||z: < 1/15.87. We note that the first inequality in (1.1) can be implied by
the other conditions in the theorems (see (2.6) and (3.1) below). To prove our
results using a Lyapunov type inequality shown in Leiama 1 and the well-known
Leray-Schauder continuation method (see [3], Chap. 2).

In what follows we shall make use of the real Banach spaces L?(0,7), C[0, 7],
C'[0,7] and the Sobolev spaces H3(0,m) and W2(0,r). The norms of L'(0,7)
and C[0, 7] are denoted by ||ul|z: and |lullc, respectively. We recall that W2'(0, )
is imbedded into C'[0,7] and HE (0, ) is compactly imbedded into C[0, ] (see [2],
Chap. 8). By a solution of (1.1), we mean a function u € Hj(0,7) solving the
differential equation in (1.1) in the sense of distribution. It follows from standard
regularity arguments that u € W21(0,7) and satisfies the differential equation in
(1.1) a.e. on (0,7).
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2. The Main Result

We recall from the theory of linear boundary value problems for second order
differential equations that the eigenvalue problem

(2.1) v +du=0 in (0,7), u(0)=u(r)=0

has simple eigenvalues at A = k2, with the corresponding eigenfunctions sin kx for
k=1,2,.... For he LY(0,w) the problem

(2.2) w +u=h(z) in (0,7), wu(0)=ulm)=0

has a solution if and only if [ h(z) sin z dz = 0. In this case, there exists a unique
solution u to (2.2) such that fo’r u(z) sin zdz = 0. More precisely, we have

u(z) = fo " G, E)h(E) de,

where
coszsinf if 0<E<g,

G(z,£) = (sin z)(£ cos §)/m - {

is the Green function for the problem (2.1) when A = 1. It is easy to see that

sinzcosf fr<&<nw

(2.3) ax |G(z,£)| =1.

m
0<z,{<m

Now let A € R which is not an eigenvalue of (2.1). Then for any h € L'(0, ) there
exists a unique solution « to the problem

(2.4) v +Au=h(z) in(0,7), w(0)=u(r)=0

denoted by u = K)h. Moreover, K : L(0,7) — H}(0,7) is a continuous linear
operator and hence, by the compact imbedding of Hj(0,) into C[0, 7], we infer
that K : L(0, ) — C[0, ] is a compact linear operator.

LEMMA 1. Let m € L'(0,7), m(z) > 0 for a.e. z € (0,7). If the problem
w' + (1+m(x))w=0 in(0,7), w0)=w(x)=0
has a non-trivial solution w, then either w = Bsin z for some 8 € R\ {0} or

lml|z: > 1.

PROOF. It follows from the discussion above that

T

(2.5) w(z) = (2/7) (/01r w(£) sin Edf) sin x +/0 G(z, &)m(&)w(€) de.
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Since f; m(z)w(z)sin zdz = 0, taking the inner product in L2(0,7) of (2.5) with
m(z)w, we have by (2.3)

rma: 2 = " " T m w mir)wlxr T
/0 (@)(w(z))? de fofoG( E)m(E)w(E)m(z)uz) de d

2
< (/0 m(z')l'w(z)|dz) .

fo " (@) w(z)| dz < ( /0 i m(z)|w(z)|2dm)%( /0 " n(z) dm)%
< (/07r m(z)|w(z)| d:c) (/0w m(z) da:) %.

If f(;r m(z)|w(z)|dz = 0, then w is a nontrivial solution to (2.1) when A = 1, and
so w = fBsin z for some § € R\ {0}; if [ m(z)|w(z)|dz # 0, then [ m(z)dz > 1.
This proves the lemma.

Hence

THEOREM 2. Let the problem (1.1) be given in which the nonlinearity g satisfies
the conditions (H1), (H2). If there exist r > 0 and a, b € L*(0, ) such that for a.e.
z € (0,n)

9(z,u) 2 b(z) foru>r,

(2.6)
g9(z,u) <a(z) foru< -,

for a.e. z € (0,2), then for any h € L*(0,7), the problem (1.1) is solvable provided
that

™

(2.7) / g—(z)sin z dz </ h(x)sin zdz </ g+(z)sin z dz,
0 0 0

where g+(z) = ulggo inf g(z,u), g—(z) = “Er_noo sup g(z,u) for =z € (0,n).

PROOF. Let € > 0 be chosen such that ||T'||z1 + 7e < 1 and let 0 < v < . We
consider the boundary value problems

v +u+(1—t)yu+tg(z,u) =th(z) in (0,n),

u(0) =u(w) =0
for 0 £ t < 1, which becomes the original problem (1.1) when ¢ = 1. Since
0 < 7 < 3, (2.8) has only a trivial solution when ¢ = 0. We suppose for the
moment that there exists R > 0 such that ||u||c < R for all possible solutions

u to the problem (2.8) for some 0 < ¢t < 1, and use this to finish proving the
theorem. Let Kq4, : L*(0,7) — C[0, 7] be the compact linear operator associated

(2.8)
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with the problem (2.4), where A = 1 + v is not an eigenvalue of (2.1). We define
G : C[0,7] — L(0,7) by

(Gu)(z) = h(z) + yu(z) — g(z, u(z))

and T = K14, 0G : C[0,7] — C[0,7]. Then G is continuous and maps bounded
sets into bounded sets, and so T is a compact map. Clearly the problems (2.8) for
0 <1 <1 are equivalent to the operator equations

(2.9) u=tTu

for 0 < ¢ < 1, which by assumption have no solutions on the boundary of the ball
Bgp(0) = {u € C[0,7] : |lullc < R}. Thus the Leray-Schauder degree deg (I —
tT, Br(0),0) is defined for 0 < ¢ < 1 and does not depend on ¢, where I denotes
the identity operator. Hence deg (I — T, Bg(0),0) = deg (I, Bg(0),0) = 1, which
implies that the operator equation u = Tu, or equivalently the original problem
(1.1), has a solution in Bg(0).

It remains to show that solutions to (2.8) for 0 < ¢ < 0 have an a priori bound
in C[0,n]. To this end, we first choose 7 > 0 such that

(2.10) g(z,u)/u <T(z)+e for |u|>r

and the two inequalities in (2.6) hold. Let 6 : R — R be a continuous function such
that 0 < 0(u) < 1 for u € R, 6(u) = 0 for [u| < r and H(u) = 1 for |u| > 2r. We
define

min{g(z,u) + |b(z)|, (T(z) +e)u}b(u) ifu>r

g1(z,u) = max{g(z,u) — |la(z)|, (C(z)+e)u}b(uv) fu<—r
0 if lu| <7

and ga(z,u) = g(x,u) — g1(z,u). Then g;,9, : (0,7) Xx R — R are Carathéodory
functions. Moreover, g; satisfies (H1),

(2.11) 0< gi(z,u)/u<T(z)+¢

for a.e. z € (0,7) and u € R, and g, is dominated by a function in L*(0,7), that
is, |g2(z, u)| < c¢(z) for some ¢ € L}(0, ) for a.e. € (0,7) and v € R, where we
define g (z,u)/u = 0 if » = 0. Now we argue by contradiction and suppose that
there exist a sequence {u,} in W21(0,7) N H}(0, ) and a corresponding sequence
{tn} in (0,1) such that u, is a solution to (2.8) when ¢ = ¢, and [lu,||c > n for all
n. Let vp, = un/||ltnllc. Then |jug|lc =1 and

vp + (1 4+ my(z))vy = ho(z) in (0, )

(2.12) vn(0) = v () =0,
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vhere
My (%) = (1 — o)y + tng1(z, un(z))/un(z),

ha(z) = (tnh(T) — tng2(2; un(2)))/llunllc-
From the choice of « and (2.11) we have

(2.13) 0<mu(z) <T(z)+e

for a.e. z € (0, 7). Clearly nli'nolo hn =0 in L*(0, 7). By (2.13) the sequence {m,}
is equi-integrable in L!(0,7) and so by the Dunford-Pettis theorem (see [2], p.76)
it has a subsequence which converges weakly to a function m in L1(0, ). It follows
from the Mazur theorem and the choice of € > 0 that 0 < m(z) < I'(z) + ¢ for
a.2. € (0,7) and so |m|z: < 1. By the compaciness of the linear operator K
associated with the problem (2.4) when A = 0, {v,} has a subsequence convergent
in C[0, 7). From (2.12) it follows that {v//} is dominated by a function in L(0, ).
Since each v/, vanishes somewhere in (0, ), the sequence {v}} is equicontinuous
and uniformly bounded on [0, 7] and so by the Ascoli theorem {v/,} has a subse-
quence convergent in C[0, 7). We may assume without loss of generality that {m,}
converges weakly to m in L'(0,n), t, — to and there exists w € C'[0,n] such
that {v,} converges to w in C'[0,n] and so also in Hj(0,7). By (2.12) and the
continuity of Ky on L1(0,x) into H}(0, ), we have

(2.14) w' +(1+mz)w=0 in(0,7), w(0)=w(r)=0.

Clearly ||w]lc = 1. Moreover tg # 0, otherwise 72(z) = v on (0,7) and so (2.14)
cannot have a non-trivial solution. Since ||m|z: < 1, it follows from Lemma, 1 that
w = Bsinz for some 3 € R\ {0}. We consider only the case 8 > 0; the alternative
B < 0 can be treated similarly. Since v, = un/||unllc — w in C0, 7], un(x) — oo
for x € (0, 7). Moreover, by the elementary inequality

|v(z)/sinz| < (7/2) oglggxw |v'(&)] for = €[0,n]

held for all v € C![0, 7] with v(0) = v(w) = 0, u, > 0 on (0,7) for n large enough.
Taking the inner product in L%(0,7) of (2.8) when v = u, and t = t,, with sinz,

we have
tn /Ong(z', Uy (z))sinzdz
(2.15) <(1—ty)y /07r () sinz dx + t, ‘/(;Wg(:v,un(:z;))sinmdz
=ty /0~1r h(z)sinz dz.

It follows from (H1) and the first inequality in (2.6) that g(x,u,(z)) is bounded
from below by a function in L'(0,7) independent of n for n large enough. Since
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to # 0, the Fatou lemma implies that

/ 9+(z)sinzdz < / h(z)sinz dz
0 0

which contradicts the second inequality in (2.7). This completes the proof of the
theorem.

3. A Variation

An interesting case in which the Landesman-Lazer condition (2.7) is not satisfied
is when the equality holds in place of one of the inequalities. By modifying slightly
the proof of Theorem 2 we obtain the following Theorem 3, which is an existence
theorem for a solution to (1.1) without assuming a Landesman-Lazer condition. It
can be applied to the problem (1.1) when the nonlinear term g is given, for example,
by

9(z,u) = u* log(w/x)/4
and h € L(0,7) satisfies fo" h(z)sinz dr = 0, where u* = max{u,0}. As men-

tioned in §1, Theorem 3 improves vastly the main result in [5] where it is assumed
that ||T||p < 1/15.87.

THEOREM 3. Let the problem (1.1) be given in which the nonlinearity g satisfies
the conditions (H1), (H2). If

(3.1) glz,u)u>0 foru € R,

then the problem (1.1) is solvable for any h € L*(0, ) such that Jy h(z)sinzdz
=0.

PROOF. In proving Theorem 2, the condition (2.7) is used only in the final part
of the proof to produce contradictions. Thus we can proceed in exactly the same
way as the proof of Theorem 2 up to the point where we choose the case 8 > 0
to consider and obtain (2.15). Then u, > 0 on (0,) for n large enough. Since
0 <t, <1, (2.15) implies

/ 9(z, up(z))sinzdz < 0
0

which contradicts (3.1). This completes the proof of the theorem.
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