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SPHERES AND SYMMETRY:
BORSUK'’S ANTIPODAL THEOREM

H. STEINLEIN

Dedicated to the memory of Karol Borsuk (1905-1982)

Last century, the mathematicians left the area of normal intuition when they
started to consider not only Euclidean spaces of dimensions 1, 2, and 3, but of
any finite dimension. By this, they won a huge amount of new objects, among
which the spheres §™ belong to the simplest and most important ones.

It was very encouraging that even these seemingly simple objects turned out
to have highly interesting topological properties. Some of the basic facts were
found during the first decades of this century:

a) From the Brouwer fixed point theorem ([18]; Poincaré [61] and Bohl [12]
already knew equivalent results) it followed that the spheres ™ are not
contractible (cf. Borsuk [13, p. 162}).

b) Hopf [37] gave a complete description of the homotopy classes of maps
f : 8™ — 5™ by relating these to the Brouwer degree.

¢) Moreover, Hopf [38] gave examples for the surprising fact that there are
essential maps f : 8 — S™ with n > m, i.e., maps which cannot
be continuously deformed to a constant map. This started the highly
complicated theory of homotopy groups of spheres.

Borsuk’s antipodal theorem introduced a new concept to these considera-
tions: symmetry. Spaces are now considered as topological spaces with some
symmetry, e.g. the antipodal symmetry on spheres; maps between such spaces
should respect the symmetry.

©1993 Juliusz Schauder Center for Nonlinear Studies

15



16 H. STEINLEIN

There are good reasons to take symmetry into account: Symmetries appear
naturally in many situations, not only the antipodal symmetry on spheres, and,
as the antipodal theorem shows, they add a lot of information to the purely
topological setting.

So it is not surprising that Borsuk’s original papers [14, 15] on the antipodal
theorem had an enormous influence on mathematical research. A deep theory
evolved from his results, including a large number of applications and a broad
variety of generalizations.

The tenth anniversary of Borsuk’s death on January 24, 1982 together with
the sixtieth anniversary of Borsuk’s announcement of his “Antipodensatz” in
March 1932 are good opportunities to honour this outstanding mathematician
with a survey article which describes his antipodal theorem and its relations to
different fields of mathematics as well as the major aspects of the theory that
evolved from this fundamental idea.

In contrast to [68], this new survey paper does not aim at any completeness.
It is intended to give some insight in the classical result and the ideas of its
proofs, to point out the major lines and limitations of generalizations, and last
but not least give a short impression of the large variety of applications.

From this it should be clear that I will not present the theory in its ut-
most generality. In particular, I will describe the theory only in the framework
of finite-dimensional spheres (except of the section 5 on index theories, where
this restriction wouldn’t make sense). In many cases, the generalization of Bor-
suk’s theory to boundaries of symmetric neighborhoods of the origin in infinite-
dimensional spaces is easy to obtain, once the appropriate (usually nontrivial)
generalization of the Brouwer degree is available. Even though this kind of gen-
eralizations is of great interest for applications (cf. section 6), I will omit them,
because they would provide no additional insight in the topology behind this
theory.

1. Basic Facts and Tools

We recall a few notions which are essential for the understanding of this paper
(throughout this paper, all maps between topological spaces are assumed to be
continuous).

Brouwer Degree. Let
L:={(f,A): ACR" compact, f: A—=R",0¢ f(0A4)}.
The Brouwer degree deg : £ — Z has in particular the following properties:
(i) (Normalization) If f € C1(A) and
det Df(x) #0, forallz € f~1(0),
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then
deg(f,A)= Y signdet Df(x).
z€f~1(0)
(ii) (Homotopy) If F : A x [0,1] — R" is a map with 0 ¢ F(04 x [0,1]),
then

deg(F(-,0), A) = deg(F(-,1), A).
(iii} (Solution)
deg(f, A) # 0= f7(0) # 0.
Let f: 8" 1 — 8" 1 and let
F:K':={zeR":|z|]<1} —R"
be an extension of f. Then we define the degree
deg f := deg(F,K™).

It is an easy consequence of the homotopy property that deg f is well-defined,
i.e., independent of the particular F.

Amap f: 8" 1 — S~ 1igcalled essential if it is not homotopic to a constant
map. It is well known that

f:8™1 - 87! essential <= deg f # 0.

Cohomology. Let (X, A) be a topological pair, i.e., X is a topological space
and A C X. Let K be a field.
Cohomology theories assign to each pair (X, A) and each ¥ € Z a vector

space
H*(X,A) = HF¥X, A4; K)

(we will write H*(X) := H*(X,0) for short) such that at least the following

properties are given:

(i) (Homomorphism) A map f : (X,A) — (Y,B) (ie., f : X — Y with
f(A) C B) induces homomorphisms

f*:H*¥(Y,B) — Hk(X, A).
(ii) (Constant Maps) f* =0 for all constant maps f and all k # 0.

(iii) (Homotopy) If f ~ g: (X, A) — (Y, B) (i.e., thereis an F : X x [0,1] —
Y with F(Ax[0,1]) C B and F(-,0) = f and F(-,1) = g), then f* = g*.

(iv) (Exactness) There is an exact sequence
- — HY(X, A) 5 HE (X)) 5 HR(A) — HMY(X, 4) — -

with the inclusions i: A — X and j : (X,0) — (X, A).
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(v) (Cup Product) Let V1,V; C X be open. There is a product
U: HI(X, V) x H¥(X,Vz) — HITE(X, Vi UVy)

(4, k € Np) such that, if f: (X;W,V2) = (V; W, Ws) (ie.,, f: X =Y
with f(V;) C W;, i =1, 2), then for a € H¥(Y,W;) and B € H*(Y, W)

f(aup)=frauf*pe H*MX, ViUV,
In general, properties (i)-(v) do not uniquely determine the cohomology the-
ory, but for us there is no reason why to be more explicit.
The following example will be of particular interest. Let RP™ be the n-

dimensional real projective space, i.e., the sphere S™ with antipodal points iden-

tified. Then
Z/2, fork=0,...,n;

HF(RP™;Z/2) =
0, for all other %’s.

Let o € H*(RP™;Z/2) be the unique nontrivial element (k = 1,...,n). Then
ag = a’f =a;U---Uam (k-times).

Lusternik-Schnirelmann Category. Let A be a closed subset of X. The
Lusternik-Schnirelmann category of A in X is defined by

catXA:=min{k€N0:EIclosedAl,...,AkCA:A1U---UAk=A,

and all A; are contractible in X }.

Joins. Let n € N, and let
n
Ty = {(t1,...,ts) €[0,1]" : Zt,- =1}.
i=1

For the sets X1, ..., X, we define the join
.X]_*'--*Xn = (Pn x Xy x ---XXn)/~1
where

(31""Tsﬂ1$1""7zn) ~ (tl,"‘1tn’y1,""yn)

=g =t A NSy =t , Al £0 =>$i=yi)'

We will use this definition only for compact spaces Xi,...,X,, in which case
there is a natural topology on X7 * -+ x X;.
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2. The Classical Antipodal Theorem

The antipodal theorem has many fathers. The first variants are due to
L. Schnirelmann [64] together with L. Lusternik [52,53,54]. Another version
(cf. Theorem B below) was conjectured by S. Ulam (cf. [15, p. 178]), seemingly
his only contribution to the theory. But there is no doubt that Borsuk’s classical
paper [15] was the real starting point for the theory.

An important sign for the structural profundity of the antipodal theorem is
the large variety of equivalent formulations of this result. The following selection
of eight versions contains the most important ones and those which we will need
later.

A. Fach odd f : S™ — S™ is essential (more precisely deg f is odd) [15].

B. For each f: S™ — R™ there ezists an x € S™ with f(z) = f(~z) [15].

C. Each closed cover {Ay,...,Ant1} of S™ contains ot least one set A; with
AN (—4;) # 0 [15,53].

D. Let Ay,...,Ant1 C 8™ be closed with A;N(—A;) =0 fori=1,...,n+1.
I

n+1
U A; U (—4;) =87,
i=1

then AjN---N Apy1 # 0.

E. Any f : K™ — R™ with an odd restriction f |s» has a zero (or
equivalently a fized point).

F. Form < n, there is no odd f : S™ — S™.

G. catgp=RP™ > n + 1 (in fact, equality holds) [52, 53, 54, 64].

H. Let M, N be linear subspaces of a normed space E with dim M < dim N.
Then there is an xo € N\{0} with dist(zo, M) = ||zo||, [48].

REMARKS. Theorems A-C are the original antipodal theorems of Borsuk.
Not all of the equivalence proofs are obvious. The papers (7,19, 26, 62] should
cover most of the nontrivial parts. For other equivalent formulations, cf. e.g.
[30, 73, 75].

In order to illustrate the topological background of these results, I will sketch
in the following some proofs of the antipodal theorem.

Degree Theory. Extend the odd f : S — 5™ in Theorem A to an odd
f: K™t — R+, Tt is possible to approximate f sufficiently close by a smooth
odd f : K™ — R™! with Df(z) nonsingular for all z € f~1(0). Here the
approximation by a smooth map fy is standard, whereas the further approxima-
tion in order to fulfill the nonsingularity condition is based on a nontrivial use
of a transversality argument (Sard’s lemma), cf. e.g. [34]. Since 0 € f~1(0) and
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with z € f~1(0) also —z € F~1(0), f has an odd number of zeros, thus from
normalization and homotopy

deg f = deg(f,K™) =1 (mod 2).

Cohomology. Assume that we have a closed covering of RP™ by sets
Wi,...,W,,, which are contractible in RP™ to a point, and let V3,...,Vy, be
open contractible neighborhoods. Then with i : V;, — RP"

it =0: H(RP") —» HY(Vy).
By exactness,
jr - H{RP™, Vi) — H'(RP")
is onto. Let Bk € j; ~'(cu), where @y € H*(RP®;Z/2) is the unique nontrivial
element. Then

fU---UPBm € H*(RP", V1 U---UVy) = H"(RP",RP") =0,

and hence
aT:JIIBIU"'UJ;ﬁm‘_—J*(ﬂlU"U,Bm)=0a
e, m>n+1.

Combinatorics. The unit sphere
n
5% in (R, |- ll),  where [zl =) |z,
=1

is symmetrically homeomorphic to the ordinary sphere S™. 8™ has a canonical
symmetric triangulation L with vertices

:I:e(i) = :};(6,-1,...,6,-7”.1) (i=1,"‘1n+1)'

In order to prove Theorem D, we choose a symmetric subdivision K of L such
that, for all k € {1,...,n+1}, each simplex S in K does not intersect with both
Ap, and — Ag, and such that

SNA; #90, fork=1,...,n+1,

implies A; N--- N Ap41 # 0 (ie., to say diam S is smaller than the Lebesgue
number of the cover {41,...,Ant1,—A1,..., —Ans1}).
For a vertex p € K, let

jp:=min{k€{l,...,n+1} : p€ AL U (—Ax)}.
Then the map f : K® — L° between the 0-skeletons K and L° of K and L,

f (—1)relis),  forp € Aj,;
= (_l)jp+le(1'p)’ forp € (—Aj,,)a
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induces a simplicial map f : K — L. From a combinatorial lemma, which goes
back to Tucker (cf. [26,30,33,49,71]), we can deduce that an odd number of
simplices in K is mapped onto the simplex [e;, —e2,...,(—1)"en41].

Other Proofs. An algebraic proof is given in [5,46]. Of practical interest
are proofs of the Borsuk-Ulam result based on a homotopy extension argument
[2,10, 58,70], since this provides a framework for numerical techniques. Other
interesting proofs may be found e.g. in [25, 74, 76].

3. The Role of Symmetry

In this section, we try to understand better the role of the antipodal condition
in the different variants of Borsuk’s theorem.

In the thirties and forties, it was mainly H. Hopf who tried to get a deeper
insight in this symmetry condition by replacing it by closely related conditions,
which nevertheless are of a somewhat different nature. They are good examples
to make clear in what sense the antipodal condition is essential. They will lead
us to the next section, in which we will consider symmetries with respect to
group actions which turn out to yield the most appropriate framework for this
theory.

A. H. Hopf [39] introduced the following notions.

DEFINITION 3.1. (i) A map f : ™ — R" is called free if there exists an
h: 8™ — S™ such that

f(z) # f(h(z)), for all z € S™.

(ii)) A closed covering {Ai,...,An} of S™ is called free if there exists an
h: 8™ — 8™ such that

A;Nh(A) =0, forallie{l,...,m}.

The close relation to the antipodal conditions (h = — idgn) is obvious, never-
theless it turned out that practically nothing of the Theorems (B) and (C) can
be preserved with these new conditions. Pannwitz [60] constructed for all n € N
a free f: S™ — R?, and from a slight modification of Theorems 1-3 in [67] one
can easily deduce the existence of a free cover {A;,..., Ag} of S".

B. Starting from the observation that antipodal points on the sphere have
distance 2 or geodesic distance 7, H. Hopf [40] replaced the antipodal condition
by a condition on the (geodesic) distance and proved:
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THEOREM 3.2. Let a €]0,2). Then for each f : S® — R™ there exist z,y €
S™ with |z —y |=a and f(z) = f(y).
He also obtained a generalization of Theorem C in this context. In fact, these

results can easily be deduced from the original antipodal theorem by some clever
homotopy argument.

Thus the full antipodal theorem is preserved under this more general condi-
tion. Nevertheless some restriction of this statement is necessary as we will see
in the following section C.

C. It is quite natural to try to modify Theorem 3.2 in the following way.
Instead of a coincidence in two points z and y one would like to obtain a coin-
cidence

f@) = -+ = f(zx)

in k points. Of course, for this one needs an image space of a smaller dimension.
KNASTER’S CONJECTURE (cf. [45]). Let
f: 8" =R™ and z1,...,Tpn-m+2 €S", 2<m<n.
Does there ezist a transformation g € O(n + 1) such that

flgz) =+ = f(gZn-m+2)?

Of course, m = n is exactly Theorem 3.2. For m < n, several partial an-
swers (cf. e.g. [44,79]) motivate that the dimension assumption is appropriately
chosen. Nevertheless, Makeev [55] and Babenko and Bogatji [6] were able to dis-
prove Knaster’s conjecture. This makes it clear that only for rather “symmetric”
configurations of the points 1,...,%Zs_m+2 one has a chance for a positive an-
swer.

REMARK. Hopf’s condition as in section B is a special case of a so-called
multivalued involution.

DEFINITION 3.3. A setI' C X x X is called a multivalued involution if
a) for all z € X thereis a y € X with (z,y) €T,
B) (z,y) €T implies (y,z) €T.
There is a large number of extensions of the antipodal theorem in terms of
multivalued involutions (cf. e.g. [1,8,42]).
4. Group Actions

The considerations of the last section are more of theoretical interest rather
than of importance for applications. We have seen that one has to be very careful
with weakening the antipodal condition. Now in this section we want to have a
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closer look at the nature of this symmetry condition. We will introduce group
actions and equivariant maps, and we will see that they yield an excellent frame-
work to embed the classical antipodal theorem and to extend it in a convincing
way. Moreover, this class of generalizations has found various deep applications

(cf. section 6).
Let G be a compact Lie group (the only examples of major interest for us
will be the finite groups and §!) and X a topological space.

DEFINITION 4.1. A map
:GxX3(g,z)—greX
is called a G-action if
g1{g2 x) = (g1 92) z, forall g1,90 € G,z € X
and
ez =z, for z € X, e € G, the identity of G.

A space X with a G-action is called a G-space.

EXAMPLE 1. Let X = —X C R"®. We can write the group Z/2 as the
multiplicative group {—1,+1} of two elements. The canonical map

®:Z/2xX>(g9,z)—greX

is obviously a Z/2-action. The element —1 € Z/2 induces the antipodal map on
X.

DEFINITION 4.2. Let X,Y be G-spaces. A map f: X — Y with

flgo)=gf(@), forallgeG,zeX,
is called (G-)equivariant or a G-map.

EXAMPLE 2. Let X =—-X CR™andY =-Y CR™ Anoddmap f: X —
Y is a Z/2-map with respect to the antipodal actions as in example 1.

Examples 1 and 2 show that we can easily interpret the classical antipodal
theorem in the language of G-spaces and G-maps. In order to obtain the ap-
propriate framework for generalizations in this context, we need some further
notations.

DEFINITION 4.3. For a G-space X and a subgroup H C G we denote
X¥:={zeX:gz=x, foral g€ H}.

The G-action on X is called
a) free if XH = § for all subgroups H # {e},
B) semifree if XH = XG for all subgroups H # {e},
7v) fized point free if XG = {).
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Of course, for Z/p-actions with p prime, there is no difference between free
and fixed point free actions.

EXAMPLE 3. Typical examples for Z/m-actions on $2*~1(c C") are

27i

Z/m x 8271 3 (a,(21,- .., 20)) — (¥ Fizy, .. .,e“%k"zn) € g1
with given fixed k1, ..., kn € Z. The action is free iff the greatest common divisor
ged(kj,m) =1, forj=1,...,n.

The same formula with m = 1 and a € §* = R/Z also stands for an S*-action.

EXAMPLE 4. Let X be a topological vector space of 1-periodic functions
F:R—oR" e,
flz+1) = f(z), for all z € R,
such that for all ¢t € R,

o f=f(+t)eX, forall f € X,
with o3 : X — X continuous. This operation
RxX>(t,fl—ofeX

generates an Sl-action on X. It is obvious that, in general, most of the sets X
for subgroups H C S! are nontrivial.

The pioneers in Borsuk theory for more general group actions were Hirsch
[36], Eilenberg [27], and Smith [65] for finite group actions and Hopf and Rueff
[41] for S'-actions. Already in these very early papers of the thirties and forties,
it turned out that the more general framework allowed a much larger variety
of now not necessarily equivalent extensions of Borsuk’s original results. I will
concentrate only on those generalizations which turned out to be of major interest
for applications or for the theory. These are particularly the extensions of the
Theorems A and F.

a) Theorem A says in the language of group actions that if a map f: S* — 5™
is equivariant with respect to a (special) free Z/2-action on S™, then deg f is odd.
This can be generalized in the following way.

THEOREM 4.4. Let G be a compact Lie group acting freely on S™, and let
f:8™ — 8™ be an equivariant map. Then

degf=1 (mod o(G)),
where o(G) s the order of G.

For infinite groups, this reads deg f = 1.
If G does not act freely on S™, the situation is much more complicated (cf.
[24,63]), but at least for semifree actions, the generalization is easy to state.



M H TIPODAL THEOREM
SPHERES AND SYMMETRY: BORSUK’S ANTIPODAL T 2

THEOREM 4.5. Let G be a compact Lie group acting semifreely on S™ through
linear isometries. If f : S™ — S™ is equivariant, then

deg f = deg f |[(snye  (mod o(G)).

It may be noted that the linearity of the action is not essential: Smith [65]
showed for groups G = Z/m that (§™)€ is always a homology sphere. Therefore
one has a degree deg f |(g»)c as for ordinary spheres and, in fact, the same
formula as in Theorem 4.5 holds.

b) Theorem F reads in the language of group actions as follows: For m < n,
there is no map f : S — 8™ which is equivariant with respect to free Z/2-
actions on §™ and S™.

The same result holds for arbitrary compact Lie groups GG and free G-actions
on S™ and S™ (cf. [25] for the case of finite groups, from which the case of
infinite groups follows easily).

The question becomes much more delicate if one allows nonfree G-actions.
The case, where the G-actions on S™ or §™ have fixed points, is of no interest,
because then the existence of a G-map f : S™ — S™ implies (™) # 0, in which
case each constant map f : S — 8™ to a point z € (§™)¢ is G-equivariant.

So let us consider the following question.

Let G be a compact Lie group. For which pairs (m, n) there exist fixed point
free G-actions on S™ and S™ and a G-map f : ™ —» §™?

Marzantowicz [56] and Bartsch [11] gave a fairly complete answer to this
question (allowing only linear G-actions). It turned out that the answer heavily
depends on the structure of the group: For p being a prime number, one obtains
in the case of finite groups:

a) If G = (Z/p)*, then m > n.
B) If G =Z/p*, then m + 1> (n+1)/p* L.
v) G is a p-group<=> (n — 00 = Mm — 00).

In the case of infinite groups, Bartsch [11] conjectured that p-toral groups (i.e.,
extensions of a p-group by a torus (S*)¥) replace p-groups in the above equiva-
lence 7).

c) There are also various extensions of the theorems of Borsuk-Ulam (Theo-
rem B) and Lusternik-Schnirelmann-Borsuk (Theorem C) in the context of this
chapter for free actions of cyclic groups Z/p (cf. e.g. [21,51,59,66,67]). Note
the strong (in fact linear) dependance on p in all these results. For example, in
the Borsuk-Ulam results, for larger p, one has to choose a smaller dimension m
of the image space R™ in order to obtain the desired coincidences.
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5. Index Theories

Up to now, we considered the antipodal theorem and its generalizations only
on spheres. But there are very good reasons to go beyond this restriction. Some
examples may illustrate this.

ExAMPLE 1. (Bourgin-Yang results [17,77]) If we replace in Theorem B the
assumption f : §® — R™ by f : S — R™ with m < n, we should expect a larger
set of coincidence points. How can we measure its size?

ExXAMPLE 2. (Clark [20]) Let V' C R™ be an m-dimensional linear subspace
and A = —A C R™. Clark showed that if A is big enough then ANV # 0. Of
course we have to make precise what we mean with big enough.

EXAMPLE 3. (Variational methods) Suppose f : S® — R is an even C-
functional. It is rather evident (deformation lemma) that a ¢g € R, where the
topological structure of the spaces

Je:= f_l(] — 00,¢])
changes, must be a critical value of f, i.e.,
f(z)=0, for some z € f~(co).

(It is very instructive to check this by drawing the graph of e.g. some polynomial
on R.) It is important to find a practicable criterion for this change in the
topological structure.

In all these examples, index theories turned out to be an appropriate tool.
What is an index theory?

Let X be a free G-space (G a compact Lie group) and A C X a G-invariant
subset. An integer—valued index

ind A € NU {0, 00}

has the following properties:
(i) indA=0<«= A=0.
(i) f: A1 — Aj equivariant == ind A; < ind A».

(iii) A C X closed invariant => there exists an invariant neighborhood B of
A with ind B = ind A.

(iv) ind AUB <ind A +ind B.
(v) ind 8™ = a(n + 1) with some « €]0, 1] depending only on G.
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Before sketching some possible ways of constructing such an index theory, I
would like to indicate its relation to Borsuk’s theory.
In case of G = Z/2, for the standard index theories one even has

indS®"=n+1,

at least
ind 8™ < ind 8™ ifm < n.
The condition (ii) is nothing but an extension of Theorem F.
There are mainly two techniques for the construction of an index, which, in
fact, yield different index theories.

Genus or B-Index. (cf. [47,69,78]) The idea of this definition is a com-
parison with free G-spaces of a particularly simple structure: Let X be a free
G-space. Then the genus g(X, @) is defined by

9(X,G) := inf{n € Ny : 3 equivariant f: X — G},

where G is the n-fold join G * - - - * G with the canonical (diagonal) G-action.
If no equivariant f exists whatever » may be, we understand the definition as
9(X,G) = 00, whereas g(X,G) =0 for X = 0.

In the special case of G = Z/2, there is a canonical identification

(Z/2) = 57,

which is equivariant with respect to the standard Z/2-actions on (Z/2)(™ and
S”—1, A similar remark holds true in case of G = S since

(Sl)(n) o~ g2n—1

In fact, the genus for Z/2- and S'-spaces was first introduced via equivariant
embeddings into spheres. Cf. also [66] for Z/p-spaces. I should also mention
that in case of finite groups G there is another characterization of the genus via
coverings, which is sometimes quite useful (cf. [66]).

Cohomological Index. (cf. [28,29,43]) We have seen that the idea of the
genus is very simple and elementary, and, in fact, this notion is usually very easy
to apply. Nevertheless, sometimes this index theory has some shortcomings. In
particular, it is a nontrivial task to find good estimates for the genus of specific
G-spaces. Furthermore, it turned out that the genus is not a good basis for the
extension to more general situations, in particular to nonfree G-spaces.

Here other index theories have shown to be much more flexible, namely co-
homological index theories. Just to give some flavor of this notion, I will give a
very short sketch of the definition of an ideal-valued and a numerical-valued co-
homological index theory. I would suggest to try to interpret the cohomological
proof of Theorem G from the point of view of this definition.
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We assume X to be a free paracompact G-space, and let EG be a universal
G-space and BG := EG/G its orbit space (classifying space). With the Borel
cohomology H} with coefficients in some field (e.g. the rationals or Z/2), we
can define the ideal-valued index as

Ind® X :=ker(¢" : H3(EG) — H&(X)),
with any equivariant map ¢ : X — EG, or as
Ind€ X := ker(c* : H4(-) = H&(X)),

with the constant map ¢ : X — - to the one point space -. With the induced
map @ : X/G — BG on orbit spaces, these definitions are also equivalent to

Ind® X := ker(¢* : H*(BG) = H*(X/@)).

Of course, for this ideal-valued index, one has to reinterpret the defining prop-
erties of an index theory. E.g. property (iv) now reads

Ind® A - Ind® B c Ind® AU B.
One obtains a numerical-valued index theory by

ind® X :=| Ind® X |:= dim(H%(-)/ Ind® X).

6. Applications

I only want to sketch the broad spectrum of applications in many mathemat-
ical fields which shows the fundamental role of the antipodal theorem and its
generalizations. For a more complete collection of applications cf. [68].

Invariance of Domain. In one of the classical applications, one shows that
continuous and injective maps f : U C R® — R"™ (U open) are open, a result
which can easily be generalized to locally compact perturbations of the identity
in Banach spaces [16, 32].

Measure Theory. The famous ham-sandwich theorem says that, given
bounded measurable sets My,..., M, C R", there is a hyperplane P in R
which simultaneously bisects each of the sets M; such that the two parts of M;
have the same measure (cf. [26]).

Algebra. Dai, Lam, and Peng [23] (cf. also [22]) used the Borsuk-Ulam
theorem for a proof of the fact that the quotient

Rz1,...,za)/(L+ 23 + - +27)

has level n, i.e.,, —1 cannot be written as a sum of less than n squares.
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Graph Theory. Béirény [9] and Lovész [50] proved Kneser’s conjecture:
Split the set of n-subsets of {1,...,2n + k} in k + 1 classes, then one of them
contains two disjoint sets. Another combinatorial application of the Borsuk-
Ulam theorem is the nice result on splitting necklaces [3, 4].

The Van Kampen-Flores Theorem. This result says that the n-skeleton
of the simplex Agy,+2 does not embed into R?" [31, 35].

Banach Spaces. Voigt [72] used a variant of the antipodal theorem (cf.
[30,72]) to show that if L is a linear subspace of the space CBV[0,1] of con-
tinuous functions with bounded variation such that L is closed in C[0,1], then
dim L < oo.

Differential Equations. Many existence problems for differential equations
(mostly boundary value problems or periodic problems) are of the abstract struc-
ture

(f+Lz=y,

with an odd f and a linear L, or of the structure
(g+ L)z =0,

where again L is linear and g is asymptotically odd for x large. Under suit-
able assumptions, both cases can be reduced to Theorem A or some infinite
dimensional generalization.

Variational Methods. The techniques which we sketched in example 3 of
section 5 yield results on the existence and number of critical values of even
(or more generally G-invariant, e.g. S'-invariant) functionals. Via the Euler-
Lagrange formalism, quite often critical points are directly related to solutions
of differential equations. Concerning S'-invariant functionals, there are very
nice applications to problems of estimating the number of periodic solutions of
Hamiltonian systems.

For specific references on applications to differential equations and variational
methods cf. [57, 68, 80].
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