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THE BANACH–MAZUR DISTANCE

BETWEEN C(∆) AND C0(∆) EQUALS 2

 Lukasz Piasecki — Jeimer Villada

Dedicated to the memory of Professor Kazimierz Goebel

Abstract. Let C(∆) denote the Banach space of all continuous real-valued

functions on the Cantor set ∆ and C0(∆) = {f ∈ C(∆) : f(1) = 0}. From
the 1966 theorem of Cambern, it is well-known that the Banach–Mazur

distance d(C(∆), C0(∆)) ≥ 2. We prove that, in fact, d(C(∆), C0(∆)) = 2.

As a consequence, we answer a question left open in the 2012 paper of
Candido and Galego.

1. Introduction

For a locally compact Hausdorff space K, C0(K) denotes the Banach space of

all continuous real-valued functions on K which vanish at infinity, endowed with

the supremum norm; it is said that a continuous function f : K → R vanishes

at infinity if the set {x ∈ K : |f(x)| ≥ ε} is compact for every ε > 0. If K

is compact, then C0(K) consists of all continuous real-valued functions on K

and this space will be denoted by C(K). In the abstract we denoted the space

{f ∈ C(∆) : f(1) = 0} by C0(∆). Obviously, this notation does not fit the

standard meaning of C0(K) for a locally compact Hausdorff space K because

∆ is compact but C0(∆) is not isometric to C(∆). However, in this particular

case, when K = ∆, we prefer to use the notation C0(∆) to represent the space

{f ∈ C(∆) : f(1) = 0} because it is more natural for our purposes.
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