Topological Methods in Nonlinear Analysis Volume 59, No. 2B, 2022, 833–849 DOI: 10.12775/TMNA.2021.038

O2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

FIXED POINT THEOREM FOR GENERIC 2-GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES

Atsumasa Kondo

ABSTRACT. We establish a fixed point theorem for a class of mappings called generic 2-generalized hybrid mappings in the setting of a real Hilbert space. Two examples of that class of mappings are presented herein. The mappings are not quasi-nonexpansive even though they have fixed points. One of these maps is even not continuous. The fixed point theorem proved in this article improves many previous works in the literature.

1. Introduction

Let E be a Banach space with a norm $\|\cdot\|$. For a mapping $T: C \to E$, the set of fixed points is denoted as

$$F(T) = \left\{ x \in C : Tx = x \right\},\$$

where C is a nonempty subset of E. The Schauder fixed point theorem [21] asserts that any continuous mapping defined on a compact and convex set has a fixed point. A mapping $T: C \to E$ is called *nonexpansive* if

$$||Tx - Ty|| \le ||x - y|| \quad \text{for all } x, y \in C.$$

Obviously, a nonexpansive mapping is continuous. Under the setting of a reflexive Banach space, Kirk [12] proved the existence of fixed points for nonexpansive

²⁰²⁰ Mathematics Subject Classification. 47H10.

Key words and phrases. Fixed point; generic 2-generalized hybrid mapping; Hilbert space. The study is supported by the Ryousui Gakujutsu Foundation of Shiga University.