Topological Methods in Nonlinear Analysis Volume 59, No. 1, 2022, 331–357 DOI: 10.12775/TMNA.2021.028

O2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

LIOUVILLE-TYPE THEOREMS FOR GENERALIZED HÉNON–LANE–EMDEN SCHRÖDINGER SYSTEMS IN \mathbb{R}^2 AND \mathbb{R}^3

Xiyou Cheng — Kui Li — Zhitao Zhang

ABSTRACT. In the paper we study the Liouville-type theorems for generalized Hénon–Lane–Emden elliptic system in \mathbb{R}^N . By the methods of spherical averages, Rellich–Pohozaev type identities, Sobolev inequalities on S^{N-1} , feedback and measure arguments, and scale invariance of the solutions, we show that if the pair of exponents is subcritical, then this system has no positive solutions for N = 2 and no bounded positive solutions for N = 3.

1. Introduction

In this paper we consider the following generalized Hénon–Lane–Emden–Schrödinger system

(1.1)
$$\begin{cases} -\operatorname{div}(|x|^{\vartheta}Du) = |x|^{a}v^{p}, & x \in \mathbb{R}^{N}, \\ -\operatorname{div}(|x|^{\vartheta}Dv) = |x|^{b}u^{q}, & x \in \mathbb{R}^{N}, \end{cases}$$

where the dimension $N \ge 2$, $p, q > 0, \vartheta \ge 2 - N$ and $a, b \in \mathbb{R}$. This system is a natural extension of the weighted Lane-Emden equation (see [7], [11])

(1.2)
$$-\operatorname{div}(|x|^{\vartheta}Du) = |x|^{a}u^{p}, \quad x \in \mathbb{R}^{N}.$$

²⁰²⁰ Mathematics Subject Classification. 35J60, 35B33, 35B53.

Key words and phrases. Nonlinear elliptic weighted system; Schrödinger system; positive solutions; Liouville-type theorem.

Research supported by the NSF of China (12031015, 11901535, 11771428, 11926335).