Topological Methods in Nonlinear Analysis
Volume 59, No. 2A, 2022, 423-465
DOI: $10.12775 /$ TMNA. 2020.028
(c) 2022 Juliusz Schauder Centre for Nonlinear Studies

Nicolaus Copernicus University in Toruń

MAX-PLUS CONVEXITY IN ARCHIMEDEAN RIESZ SPACES

Charles Horvath

To the memory of Andrzej Granas
teacher and friend

Abstract

We study the topological properties of max-plus convex sets in an Archimedean Riesz space E with respect to the topology and the max-plus structure associated to a given order unit \boldsymbol{u}; the definition of max-plus convex sets is algebraic and we do not assume that E has an a priori given topological structure. To a given unit \boldsymbol{u} one can associate two equivalent norms on E one of which, denoted $\|\cdot\|_{\boldsymbol{u}}$, is classical, the other $\|\cdot\|_{\boldsymbol{h} \boldsymbol{u}}$ is introduced here following a previous unpublished work of Stéphane Gaubert on the geodesic structure of finite dimensional max-plus; it is shown that the distance $\mathrm{D}_{\boldsymbol{h} \boldsymbol{u}}$ on E associated to $\|\cdot\|_{\boldsymbol{h} \boldsymbol{u}}$ is a geodesic distance, called the Hilbert affine distance associated to \boldsymbol{u}, for which max-plus convex sets in E are precisely the geodesically closed sets. Under suitable assumptions, we establish max-plus versions of some fixed points and continuous selection theorems that are well known for linear convex sets and we show that hyperspaces of compact max-plus convex sets are Absolute Retracts. We formulate a max-plus version of the Knaster-KuratowskiMazurkiewicz Lemma from which, following A. Granas and J. Dugundji, all of the consequences of the classical KKM Lemma can be derived in a max-plus version. P. de la Harpe showed that the interior of the standard simplex Δ_{n} equipped with the classical Hilbert metric-defined by the crossration of four appropriate points is isometric to a finite dimensional normed space. We give an explicit proof of that result: the norm space in question is \mathbb{R}^{n} with the Hilbert affine norm $\|\cdot\|_{\boldsymbol{h} \boldsymbol{u}}$ with respect to $\boldsymbol{u}=(1, \ldots, 1)$.

[^0]
[^0]: 2020 Mathematics Subject Classification. 14T99, 46A40, 54H25, 54C55, 54C65, 62P20.
 Key words and phrases. Archimedean Riesz spaces; max-plus; geodesics; fixed points; Ky Fan inequality; Hilbert metric.

