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LOCAL STRONG SOLUTIONS

OF THE NONHOMOGENEOUS NAVIER–STOKES SYSTEM

WITH CONTROL OF THE INTERVAL OF EXISTENCE

Reinhard Farwig — Hermann Sohr — Werner Varnhorn

Abstract. Consider a bounded domain Ω ⊆ R
3 with smooth boundary

∂Ω, a time interval [0, T ), 0 < T ≤ ∞, and in [0, T )×Ω the nonhomogeneous

Navier-Stokes system ut −∆u + u · ∇u +∇p = f , u|t=0 = v0, divu = k,

u|∂Ω = g, with sufficiently smooth data f, v0, k, g. In this general case there
are mainly known two classes of weak solutions, the class of global weak

solutions, similar as in the well known case k = 0, g = 0 which need not

be unique, see [5], and the class of local very weak solutions, see [1], [2],
[3], which are uniquely determined but have no differentiability properties

and need not satisfy an energy inequality. Our aim is to introduce the

new class of local strong solutions in the usual sense for k 6= 0, g 6= 0
satisfying similar regularity and uniqueness properties as in the well known

case k = 0, g = 0. Further, we obtain precise information through the
given data on the interval of existence [0, T ∗), 0 < T ∗ ≤ T . Our proof is

essentially based on a detailed analysis of the corresponding linear system.

1. Introduction

Let Ω ⊆ R
3 be a bounded domain with boundary ∂Ω of class C2,1 and let

[0, T ), 0 < T ≤ ∞, be the time interval. Then we consider in [0, T ) × Ω the

general nonhomogeneous Navier–Stokes system

(1.1) ut −∆u+ u · ∇u+∇p = f, u|t=0 = v0, divu = k, u|∂Ω = g,
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where the vector u denotes the velocity and ∇p the associated pressure gradient.

In the physical model the divergence k = divu is assumed to vanish. However,

for mathematical reasons it will be convenient, in particular for linear problems,

to consider also the more general case of a prescribed divergence k 6= 0, compare

[4, Remark 1.9(1)]. We refer to [3] and [5] for very weak and weak solutions of

this system, respectively. In particular, a counterpart of this paper on the level

of very weak solutions can be found in [3], see also [4] for a general review on

very weak solutions. However, the focus of this paper is put on the existence of

local in time strong solutions.

For simplicity we use for weak and strong solutions the same data class to

exploit both theories simultaneously; see [5] for a more general theory of weak

solutions.

Next we describe the general assumptions on the data f , v0, k and g; here

N(x) denotes the outward normal vector at x ∈ ∂Ω.

Assumptions 1.1.

(a) f = divF , F ∈ Ls/2(0, T ;Lq/2(Ω)), with 4 ≤ s ≤ 8, 4 ≤ q ≤ 6, 2/s +

3/q = 1,

(b) for v0 ∈ L2
σ(Ω), ‖v0‖Bq,s

T
(Ω) :=

(
∫ T

0

‖e−tAv0‖
s
q dt

)1/s

<∞,

(c) k ∈ Ls(0, T ;Lq(Ω)), g ∈ Ls(0, T ;W−1/q,q(∂Ω)) with compatibility con-

dition
∫

Ω

k(t) dx = 〈g(t), N〉∂Ω, t-a.e.

Here Lr(Ω) denotes the usual Lebesgue space of functions (or vector or matrix

fields) with norm ‖ ·‖r and pairing 〈 · , · 〉Ω with its dual Lr′(Ω), 1 < r <∞, r′ =

r/(r − 1). Moreover, L2
σ(Ω) = C∞0,σ(Ω)

‖·‖2
where C∞0,σ(Ω) := {v = (v1, v2, v3) ∈

C∞0 (Ω); div v = 0}. Usual Bochner spaces are denoted by Ls(0, T ;Lq(Ω)) with

norm ‖ · ‖q,s,T , 1 < q, s <∞, and with pairing 〈 · , · 〉Ω,T .

The nonlinear term u · ∇u, defined by u · ∇u = (u · ∇u1, u · ∇u2, u · ∇u3),

can be written, when divu = 0, also as u · ∇u = div (uu) = ∇ · (uu) where uu =

(uiuj)i,j=1,2,3. Here we note that the divergence of a matrix-valued function

F = (Fij)i,j=1,2,3 is defined columnwise.

The initial value norm ‖v0‖Bq,s

T
(Ω) is a so-called Besov space norm, see [3],

[6]–[9], and Section 3 for details. The space W−1/q,q(∂Ω) is a Sobolev trace space

of negative order −1/q, namely the dual of the trace space W 1/q,q′(∂Ω).

Let P = P2 : L
2(Ω)→ L2

σ(Ω) denote the Helmholtz projection and A = A2 =

−P∆ in Assumption 1.1(b) the Stokes operator on L2
σ(Ω). Since A2 = Aq on

C∞0,σ(Ω), we simply write A for any Stokes operator Aq, 1 < q <∞; by analogy,

since P2 = Pq on C∞0 (Ω), we also write P for Pq.


