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ON A POWER-TYPE COUPLED SYSTEM

OF MONGE–AMPÈRE EQUATIONS

Zhitao Zhang — Zexin Qi

Abstract. We study an elliptic system coupled by Monge–Ampère equa-

tions:



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
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
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

detD2u1 = (−u2)
α in Ω,

detD2u2 = (−u1)
β in Ω,

u1 < 0, u2 < 0 in Ω,

u1 = u2 = 0 on ∂Ω,

here Ω is a smooth, bounded and strictly convex domain in R
N , N ≥ 2,

α > 0, β > 0. When Ω is the unit ball in R
N , we use index theory of fixed

points for completely continuous operators to get existence, uniqueness re-
sults and nonexistence of radial convex solutions under some corresponding

assumptions on α, β. When α > 0, β > 0 and αβ = N2 we also study

a corresponding eigenvalue problem in more general domains.

1. Introduction

Consider the following system coupled by Monge-Ampère equations:

(1.1)
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

detD2u1 = (−u2)
α

in Ω,

detD2u2 = (−u1)
β

in Ω,

u1 < 0, u2 < 0 in Ω,

u1 = u2 = 0 on ∂Ω.
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Here Ω is a smooth, bounded and strictly convex domain in R
N , N ≥ 2, α > 0,

β > 0; detD2u stands for the determinant of Hessian matrix ( ∂2u
∂xi∂xj

) of u.

Monge–Ampère equations are fully nonlinear second order PDEs, and there

are important applications in geometry and other scientific fields. Monge–

Ampère equations have been studied in the past years [1], [6], [9], [12], [16].

However, to our best knowledge, only a few works have been devoted to coupled

systems. We refer the reader to [10] where the author established a symme-

try result for a system, which arises in studying the relationship between two

noncompact convex surfaces in R
3. It seems to be H. Wang [13], [14] who first

considered systems for Monge–Ampère equations. He investigated the following

system of equations:

(1.2)















detD2u1 = f(−u2) in B,

detD2u2 = g(−u1) in B,

u1 = u2 = 0 on ∂B.

Here and in the following B := {x ∈ R
N : |x| < 1}. By reducing it to a

system coupled by ODEs and using the fixed point index, the author obtained

the following results:

Theorem 1.1 ([13, Theorem 1.1]). Suppose f, g : [0,∞) → [0,∞) are con-

tinuous.

(a) If f0 = g0 = 0 and f∞ = g∞ =∞, then (1.2) has at least one nontrivial

radial convex solution.

(b) If f0 = g0 =∞ and f∞ = g∞ = 0, then (1.2) has at least one nontrivial

radial convex solution.

The notations were

f0 := lim
x→0+

f(x)

xN
, f∞ := lim

x→∞

f(x)

xN
.

The above theorem implies the solvability of (1.2) is related to the asymptotic

behavior of f, g at zero and at infinity. Obviously, it asserts the existence of

a radial convex solution for system (1.1) if Ω = B and one of the following cases

holds:

(1) α > N , β > N ,

(2) α < N , β < N .

What we are curious about is, for the sublinear-superlinear case, i.e. α < N ,

β > N , does system (1.1) admits a radial convex solution when Ω = B?

We obtain that:

Theorem 1.2. Let Ω = B, then (1.1) has a radial convex solution if α > 0,

β > 0 and αβ 6= N2.


