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1. Introduction 

It is generally accepted that intelligent action involves considerable use of transfer. For 

example, Carbonell [1] has argued that learning proceeds by analogical reasoning; Rosch 

[12] has argued that categorization proceeds by seeing objects in terms of prototypes; 

and Leyton [9] has argued that the human perceptual system is organized as a hierarchy 

of transfer. 

The role of geometry is also seen as fundamental to the representations produced by 

the cognitive system. For example, Gallistel [2] has elaborated the powerful role of 

geometry in animal learning and navigation; Lakoff [3] has emphasized the role of 

geometry in semantics; and Leyton [9] has proposed an extensive role for geometry in 

causal explanation. 

We bring together the two above factors, transfer and geometry, in the book, Leyton 

[10], by developing a generative theory of shape in which transfer is a fundamental 

organizing principle. In this approach, transfer is basic to the very meaning of geometry. 

The purpose of the present paper is to give an introduction to this transfer-based theory 

of geometry. 

2. Transfer 

In this section, we will give a basic introduction to this theory of transfer, with examples 

from human perception, robot kinematics, and object-oriented programming. In the 

subsequent sections we will look at the structure of differential equations and scientific 

laws. 
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A generative theory of shape characterizes the structure of a shape by a sequence of 

actions needed to generate it. According to our theory, these actions must maximize 

transfer. That is: 

MAXIMIZATION OF TRANSFER. Make one part of the generative sequence 

a transfer of another part of the generative sequence, whenever possible. 

We will show that the appropriate formulation of this is as follows: A situation 

of transfer involves two levels: the fiber group, which is the group of actions to 

be transferred; and the control group, which is the group of actions that will 

transfer the fiber group. The justification for these structures algebraically being 

groups is given in Leyton [10], but the theory of transfer will work equally for 

semi-groups, which is the most general case we would need to consider for 

generativity. 

Now, we can think of transfer as the control group moving the fiber group 

around some space. Furthermore, the action of transfer combines the fiber group 

and control group into a total group written thus: 

Fiber Group ® Control Group 

This total group contains all the information of the situation. It contains not only 

the fiber group and the control group, but the algebraic relation between them. 

a wreath product to be fully described later. However, for now the reader needs to 

understand only that the operation encodes the fact that there is a transfer relationship 

between the control group and the fiber group; i.e., the control group moves the fiber 

group around. The purpose of the present section is to give the reader an intuitive 

description of transfer, together with several examples that will illustrate the power of 

transfer. The precise mathematical structure will be given in section 5, where we will 

elaborate our claim that transfer is best modeled by a wreath product. Although it will 

not be required in the present section, a rigorous definition of wreath product is given in 

the footnote below.1 
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Figure 1. The generation of a side, using translations. 

It is now necessary for us to work through several examples so that the reader can 

begin to become familiar with aspects of this approach, and see also the wide range of 

applications. 

(1) Human Perception 

In Leyton [4], [5], [6], [7], [8], [9], we put forward several hundred pages of 

this view could explain a wealth of psychological results in the area of perceptual 

organization, shape representation, and motion perception. For example, all the Gestalt 

grouping phenomena can be explained very economically using this 
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principle: the perceptual groupings correspond to symmetry groups G. and these are 

control-nested recursively in a manner described above. We showed that this applies not 

only to static shape perception but also to motion perception. 

In order to illustrate this, let us begin with a very simple example. We will show the 

way in which the human visual system structures a square. In a sequence of 

psychological experiments, Leyton [6], [7], we showed that human vision represents a 

square generatively, in the following way. It begins with the top side. Perceptually the 

top side is generated by starting with a corner point, and applying translations to trace 

out the side, as shown in Fig. 1. 

Next, this translational structure is transferred from one side to the next - 

rotationally around the square. In other words, we have a transfer of translation by 

rotation. This is illustrated in Fig. 2. 

Therefore, the transfer structure is defined as: 

Figure 2. Transfer of translation by rotation. 

where rg means rotation by d degrees. The successive group elements are obviously 

rotations by successive 90° increments. Thus the transfer structure illustrated in Fig. 2, 

is this: 

(1) 

At first, the reader might question our putting the entire group of translations in the 

fiber position, even though the group is “cut off’ at the end points of 

where Translations is the fiber group and Rotations is the control group. Recall that, in 

any transfer situation, the control group moves the fiber group around. 

We will represent the translations group simply as the additive group R. The 

rotations group is Z4, the cyclic group of order 4, represented as 
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a side. However, this is handled very easily in our system by placing what we call an 

occupancy group, Z, (a cyclic group of order 2), at each point along the infinite line. 

The group switches between two states, “occupied” and “non- occupied,” for the point 

at which it is located. Obviously, all the points along the finite side of the square are 

occupied, and all the points past its end-points are unoccupied. Algebraically, we place 

the occupancy group as an extra level, in the structure of nested control, below the R 

group, thus: 

In Leyton [10], we investigate occupancy structures in detail, and show that they elegantly 

represent many phenomena, e.g., in Gestalt perception, quantum physics, etc. In the 

present paper, however, we will omit the occupancy level, to keep the discussion focussed 

on the geometric (spatial) structure. Observe that the occupancy group is a color group, 

not a geometrical group; i.e., it has no spatial action. 

Thus let us now return to the purely geometric structure, given in expression (I) 

above. The next thing we want to do is to show that this expression gives generative 

coordinates to the square. As before, we will assume, without loss of generality, that the 

top side is generated by translation from the left end; and that the set of sides is generated 

from the top side by clockwise rotations. In other words, we are using the standard 

scenario for drawing a square: simply trace out the sides successively in the clockwise 

direction. The group R ® Z+ gives the structure of this trace, which we see is actually 

control-nested. The control-nested structure will give the generative coordinates of each 

point, as follows: 

Because the structure is generative, we can consider the fiber group R as mapped 

onto each side. For example, consider the top side. As shown in Fig. 3, the zero translation, 

e, is mapped to the left corner on the side. Then, any other point on the side is uniquely 

described by the translation t that generated it from the initial point. Fig. 3a shows the 

actual translation that was applied, i.e., as an action, and Fig. 3b shows the action 

converted into the label for the point. The same structure occurs on any side. 
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Figure 4. The mapping of Z4 onto a square. 

In order to describe the phenomenon we are going to investigate, it is necessary to 

fill in some other coordinates on the square. Consider the top left- hand corner point, as 

shown in Fig 6. We have assumed that the entire history starts here. Therefore the 

amount of translation here is zero - i.e., the point is at the identity element e1of the fiber 

group R. Furthermore, the amount of rotation that has been applied so far is also zero - 

i.e., the side on which the point sits is at the identity element e2 of the control group Z4. 

Therefore, as shown in Fig. 6. the top left corner-point has the pair of coordinates (e1, e2) 

in R (w) Z4. Now consider the point at translational distance t along the top side. Its 

coordinates are clearly, (r, e2) as shown in Fig. 6. Next consider the top right-hand corner 

point, and consider its description as the first point on the right-hand side. As such, it 

has undergone no translation along that side, and is therefore at the identity element e1 

of the fiber group R. However, the point must have coordinate r90 in the control group 

Z4 because the right side is achieved by a 90° rotation from the 
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top side. Thus the point has the pair of coordinates (e , r ). Finally, as we saw earlier, the 

lower labeled point on the right-hand side has coordinates (f, r90). 

The crucial thing we need to observe is the transfer structure involved in this. First 

observe that the relationship between the two points on the top side is the translation t 

given by the top straight arrow in Fig. 7. Similarly the relationship between the two 

points on the right side is the translation t given by the downward straight arrow. The 

transfer effect of rotation is to send the translation on the top side to the translation on 

the right side. This is shown by the circular arrow in Fig 7, which sends the straight arrow 

on the top side to the straight arrow on the right side. As we have said before, the control 

group Z4, takes the fiber group R and transfers it from one side on to the next. 

We now need to observe that the group we are studying, R ® Z4, satisfies the 

following three conditions: 

391,: The group is decomposable into a control-nested structure G, ® G2@ 

... ® G 
n. 

39? : Each level is “1-dimensional”, i.e., either a cyclic group (in the discrete case) 

or a 1-parameter group (in the continuous case). 

39? : Each level is represented as an isometry group. 

Figure 6. The coordinates of four points. 
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Figure 7. The control-nested structure of those coordinates. 

We will call a group that obeys the above three conditions, an iso-regular group. 

Intuitively, we will summarize the three conditions by saying that the group is a 

controlnested hierarchy of repetitive isometries. Iso-regular groups will be fundamental 

to our theory of shape-generation. In our theory, such groups describe non-deformed 

objects. The theory states that any shape has an underlying iso-regular group. To 

generate the shape, one starts by generating its iso-regular group, and then adding actions 

that create deformation. These actions are imposed as further levels of transfer on the 

iso-regular structure. 

(3) 
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Figure 8: The transferred coordinates from a square. 

Figure 9. The transfer of transfer. 

The theory we give is equally applicable to 3-dimensional shape. For example, 

consider the structure of a cylinder. The standard group-theoretic description of a 

cylinder is 

(4) 
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where 5(9(2), the group of planar rotations around a fixed point, gives the rotational 

symmetry of the cross-section, and R gives the translational symmetry along the axis. 

Notice that in (4) the operation linking the two groups is the direct product operation x. 

For us, the problem with this expression is that it does not give a generative 

description of the cylinder. In computer vision and graphics, cylinders are described 

generatively as the sweeping of the circular cross-section along the axis, as shown in Fig. 

10. To our knowledge, the group of this sweeping structure has never been given. We 

propose that the appropriate group is: 

2 Although the the direct product description (4) of the cylinder is used universally, we argue that 

that there is a strong mathematical reason why it cannot model the cylinder as a generative structure, and 

is therefore inappropriate for modeling crystal growth in physics, drilling and milling in manufacturing, 

assembly of revolute structures in robotics, etc. The reason is as follows: In the generative representation 

of a cylinder, the group R must move the group 50(2) along the cylinder. This movement must take place 

by the conjugation g - g -1 of 50(2) by the elements g of R (conjugation is the group-theorists tool for 

movement). However, in the direct product formulation (4), the rotation group 50(2) is a normal subgroup; 

which means that conjugation of 50(2) by R will leave 50(2) invariant. Therefore it will not be able to 

move 50(2) along the cylinder. This means that the direct product formulation cannot model generative 

structure (i.e., crystal growth, drilling and milling, robot assembly, etc.). In contrast, we shall see that, in 

the control-nested formulation (5), the rotation group 50(2) is not a normal subgroup. Therefore, in this 

latter formulation, it can move 50(2). Indeed the fibering that occurs in a wreath product operation will 

ensure that R moves 50(2) along the cylinder in the correct way. 

(5) 

This fact is critical: The cylinder is an example of a standard shape primitive in graphics. 

In Leyton [10], we argue that each of the standard primitives is characterized by an iso-

regular group. In fact, we show that our algebraic methods lead to a systematic 

classification of shape primitives. 

We also argue that, having generated a shape primitive via an iso-regular group, 

one then obtains the non-primitive shapes by applying additional fiber and control levels. 

For example, we show how Boolean operations and spline deformations can be 

algebraically formulated within this framework. 
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Figure 10. The sweep structure of a cylinder. 

Now let us turn to the deepest problem in human perception: the problem of 

perceptual organization. This problem is standardly formulated as the following 

question: What are the structural principles by which the perceptual system forms 

groupings? The problem of grouping is the longest unsolved problem in perception 

- having been investigated for the entire 20th century. It underlies all aspects of 

perception, from image segmentation to 3D shape representation. Yet literally no 

progress has been made in solving this problem. However, using the theory 

developed in Leyton [10], the solution naturally drops out of our algebraic theory 

of transfer, as follows: We have said that the human perceptual system organizes 

any stimulus set generatively into a recursive hierarchy of transfer, i.e., into a 

control-nested hierarchy of groups: We show that the perceptual 

groupings come directly from this recursive transfer structure, as follows: 

I ? 

i i 

J 
J 

Let us conclude this initial review of human perception by considering the 

basic visual problem of projection. The visual image is the projection of some 

environmental shape onto the retina. We argue that the appropriate approach to 

handle this is to describe the environmental shape generatively, and to add the 

projective process as an extra generative level, resulting in the shape on the image. 

Thus, the image shape is given a complete generative description in which the 
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the space or quadrilaterals, the phenomenon ol privileged figures in a space ot distorted 

figures is a basic inviolable result in human perceptual psychology. This completely 

violates Klein’s principle that geometric objects are the invariants of the specified 

transformation group - which is the most famous principle of 20th century geometry and 

physics. As we shall see, our generative theory of geometry is the direct opposite of 

Klein’s approach. In our system, geometric objects are characterized by generative 

sequences. This means that they cannot be invariants, because invariance destroys 

recoverability of the applied operations, 
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and recoverability is basic to the computation of the sequences. Quite simply: You cannot 

characterize geometric objects generatively, if you cannot recover their generative 

history. But you cannot recover their generative history if they are invariants under 

generative actions. 

(2) Serial-Link Manipulators 

A generative theory of shape encodes shape by a system of actions. Since we argue that 

the human perceptual system encodes shape generatively, this means that the perceptual 

system represents shapes in terms of actions. We argue that a major consequence of this 

is that the human perceptual system is structured by the same principles as the motor 

system, since the motor system is structured by action. 

Now, we have said that actions are intelligently organized if they are organized by 

transfer; and we have given an initial set of illustrations of how the perceptual system is 

organized by transfer. We will now show that the motor system must also be organized 

by transfer. To do so, we consider the most common type of motor system, the serial-

link manipulator. 

Review of serial-link manipulators: The most famous example of a serial-link 

manipulator is the human arm: Such a structure is a series of rigid links going from the 

base to the hand. Each link corresponds biologically to a bone. Furthermore, each 

successive pair of links is connected by a joint. The base end is called the proximal (near) 

end of the manipulator, and the hand end is called the distal (far) end of the manipulator. 

Standardly, a serial-link manipulator is specified by embedding a coordinate frame in 

each successive link. Each frame is judged relative to the next frame in the proximal 

direction, e.g., the frame of the hand is judged relative to the frame of the forearm, and 

the frame of the forearm is judged relative to the frame of the upper arm, etc. The 

relationship between two successive frames is given by a matrix A. Thus the overall 

relationship between the hand coordinate frame and the base coordinate frame is given 

by the product of matrices 

corresponding to the succession of links. In robotics, each matrix A. is modeled as a rigid 

motion, and is therefore a member of the special Euclidean group 5E(3), the group 

generated by translations and rotations (but no reflections). Standardly, the order from 

left to right along the matrix sequence (7) corresponds to the order from base to hand 

(proximal to distal). However, without loss of generality, we will choose the left-to-right 

order as corresponding to the hand- 
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to-base order (distal-to-proximal). This will maintain consistency with our other notation. 

The entire group we have given in (8) for the serial-link manipulator, is very 

different from the group that is normally given in robotics for serial link- manipulators. 

Standardly, it is assumed that, because one is multiplying the matrices in (7) together, and 

therefore producing an overall Euclidean motion T between hand and base, the group of 

such motions T is simply 5E(3). However, we argue that this is not the case. The group is 

the much more complicated group given in expression (8). This group encodes the 

complex link-configurations that can occur between the hand and base. If the group were 

simply 5E(3), then there would be a single configuration of links between hand and base 

and this would remain rigidly unaltered as the hand moves. However, there are infinitely 

many different configurations that the links can take between hand and base, and the 

group in (8) gives the relationships between all these configurations. To put it another 

way: It is conventionally assumed that, because the overall relation between hand and 

base is a Euclidean motion, the group of motions between the hand and base is the group 

of rigid motions. However, the structure between hand and base is not rigid. Therefore 

the group is not SE(3). It is the much more complicated group (8). 
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Most crucially, notice that we produced this group by considering the transfer 

relationships involved. It is this that allowed us to specify the algebraic structure. 

(3) Object-Oriented Programming: Inheritance 

The fact that each frame in a serial-link manipulator is judged relative to the next frame 

in the distal-to-proximal direction, means that serial-link manipulators are an example of 

what are called parent-child structures in object-oriented programming. Parent-child 

relationships express the fundamental structuring principle of object-oriented software 

called inheritance. Meyer [11] defines inheritance as a classification scheme in which 

one class is “an heir of another if it incorporates the other’s features in addition to its 

own.” Such object relationships are basic, for instance, to assembly-subassembly 

organization in mechanical CAD. For example, most major mechanical programs such 

as Pro/ ENGINEER provide menus which allow the designer to determine the parent- 

child relationships in an assembly hierarchy, and most part information windows in the 

program provide the user with the parent-child positioning of any selected part, because 

feasible modification of an individual part is impossible without knowing these 

relationships. Parent-child relationships are also a major explicit part of all animation 

software, such as 3D Studio Viz/Max, where kinematic relationships between limbs are 

given exactly as defined in robotics. Again, all object-subobject relations in architectural 

CAD are parent-child relations; e.g., doors are placed relative to walls and move with 

them as the designer modifies the room. 

The examples mentioned in the previous paragraph are all geometric parent- child 

relationships. A major part of Leyton [10] gives an algebraic theory of such relationships 

in object-oriented programming. We claim that the inheritence. 

3. Transfer in Differential Equations 

In the next section we will look at the nature of scientific laws, and see that they are 

structured by transfer. However, the topic of transfer in science has a more general 

setting within the theory of differential equations. Transfer is, in fact, fundamental to 

methods of solving differential equations. Most methods exploit the fact that the 

solutions of a differential equation can be transferred onto each 
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other. This phenomenon is considerably more profound than it might at first seem. For 

example, it is basic to the structure of scientific laws. 

Differential equations are by far the most frequently used modeling method 

throughout the world. It is no exaggeration to say that more than several trillion 

differential equations are solved per second across the world, e.g., in electrical power 

plants, factories, financial institutions, etc. Clearly all this depends on methods for 

solving differential equations, and a large variety of such methods have been developed. 

However, basic to these methods is symmetry. This is the modern approach that was 

created by Sophus Lie, and for which he formulated the machinery of Lie groups and 

Lie algebras. In fact, the use of symmetry to solve differential equations is very familiar 

to high-school students, as follows: 

Consider the first-order differential equation: 

(9) 

From high-school, we are all familiar with the fact its solution is the integral 

 

                                          (10) 

where C is a constant of integration. Because of this constant, we know that there are a 

whole set of solution curves, each one obtained by substituting a particular number for 

C. This means that the solution curves are all translations of each other, as illustrated in 

Fig 12. 

Figure 12. Transfer of solutions onto solutions, in a differential equation. 

This is the first example of Lie theory that anyone encounters. The differential 

equation (11) admits a 1-parameter Lie group of translations in the y direction. The 

consequence is that you can map the solutions to each other 
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using this translation group. The group is represented by the constant of integration C in 

(10). 

Other types of differential equations can have other types of symmetry groups. For 

example, a first-order differential equation of this type: 

A=/2) <>» 
ax y 

admits a 1-parameter group of scalings. You can then map its solution curves onto each 

other via this group. Thus the constant C of integration will occur not as an addition onto 

a solution, as in (10), but as a multiplicative factor on the solution. This constant will 

actually represent the scaling group involved. 

What we have seen in this section can be summarized as follows: 

Solving differential equations depends on the transfer of solutions onto solutions. 

In the next section, we will see that this is fundamental to the structure of scientific 

laws. 

4. Scientific Structure 

At the foundations of any branch of physics there is a dynamical equation, which is 

regarded as the fundamental dynamical law of that branch of physics. This law 

determines the evolution of a system state. For example, in Newtonian mechanics, the 

dynamic equation is Newton’s second law, F = ma, which determines the trajectory of 

a system in classical mechanics; in quantum mechanics, the dynamical law is 

Schrodinger’s equation which determines how a quantum-mechanical state will evolve 

over time; in Hamiltonian mechanics, we have Hamilton’s equations which determine 

how a point will move in phase space. 

The law, being a dynamical equation, is expressed as a differential equation. Very 

profoundly, the lawful nature of the equation is given by the symmetries of the equation, 

as follows: 

Consider Fig. 13. The bottom flow-line in the figure shows an experiment being run 

in a laboratory in New York. The system is set up at time 0, in initial state s(0), which is 

the left-most point on that flow-line. The flow-line then represents the evolution of the 

system’s state in the experiment. Suppose that the evolution is found to be governed by 

a particular dynamic equation. 
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Figure 13. The transfer of a scientific experiment. 

Now, the upper flow-line in Fig. 13 shows the same experiment being run in a 

laboratory in Chicago. By this we mean that the system in Chicago is started in a 

translated version T[s(0)] of the initial conditions s(0) in New York. That is, the lefthand 

point of the upper flow-line is T[s(0)]. The upper flow-line then represents the evolution 

of the system’s state in the Chicago experiment. Let us assume that the upper flow-line 

turns out to be a translated version of the lower flow-line. This translation is shown by 

the vertical arrows in Fig. 13. 

The important question is this: Is the upper flow-line described by the same dynamic 

equation that was discovered for the New York experiment? In other words, can one say 

that both flow-lines are solution-curves for the same dynamic equation? If one can, then 

the dynamic equation begins to appear lawful, i.e., to apply everywhere. This lawfulness 

is equivalent to discovering that the equation has translational symmetry. 

What we mean by this is the following: A dynamical equation prescribes flow-lines; 

these are the solution-curves to the equation. We ask: Does the translation of one flow-

line in the set of solution-curves produce another flow- line in that set? If it does, then 

we say that the dynamical equation has translational symmetry. This is equivalent to 

saying that it is a law; i.e., that it works anywhere. 

We have illustrated the relation between symmetries and laws using translational 

symmetry as an example. However, the same argument applies to the choice of any other 

kind of symmetry, e.g., rotational symmetry. In physics, the basic program is to hunt for 

dynamical equations that have symmetries; i.e., are lawful. Conversely, one can start 

with a symmetry group and use it to help construct a lawful dynamical equation. For 

example, this was Einstein’s technique in establishing the correct form of Maxwell’s 

electromagnetic equations. 

In any branch of physics, the appropriate symmetry group will be one that sends 

solution-curves to other solution-curves of the dynamic equation. The appropriate 

groups for the following branches of physics are: 

Newtonian mechanics <-> Galilean group Special 

relativity         <-> Lorentz group 
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Hamiltonian mechanics <-> Symplectic group 

Quantum mechanics <-> Unitary group 

It is clear that the phenomenon we have been describing above is one of transfer. 

That is, a dynamical equation permits transfer if the transferred version of any solution-

curve (flow-line) is also a solution-curve. It is this that makes the equation lawful. 

Therefore the phenomenon of transfer is equivalent to the lawful property of the equation. 

Lawfulness Transfer 

Now, we have said that the lawful property is due to symmetries in the equation. However, 

we shall see that, to describe this structure in terms of transfer gives a deeper description 

- one that captures more fully the process of scientific discovery. 

Let us therefore describe the situation in terms of transfer. Observe first that the flow 

itself is a symmetry across the state-space. This is because a dynamical equation 

(differential equation) prescribes a vector field and a vector field prescribes a 1-parameter 

group G1 of actions along the flow-lines of the vector field4. 

In particular, let us now isolate any individual flow-line. The group G1  can be 

considered as “confined” to that flow-line. For example, in Fig. 13, the group G1  would 

be moving along any one of the horizontal lines. 

Now, let us consider the symmetry discussed above: the symmetry G2 of the 

differential equation. This maps flow-lines to flow-lines. This is illustrated by the vertical 

arrows in Fig. 13. Thus G2 is acting across the flow-lines, and G1  is acting along any 

flow-line. This means that we can consider the flow-lines as fibers, and G2, as a control 

group transferring G1  from one flow-line (fiber) to another. That is. we have this control-

nested structure: 

4 For ease of discussion we are assuming that the dynamical equation is a first-order differential 

equation. A first-order equation prescribes a flow like a “fluid” directly on the the space of independent 

variables. This is the situation for example in quantum mechanics and Hamiltonian mechanics. If, 

however, the dynamic equation is second-order - e.g., as in the case of Newtonian mechanics or 

Lagrangian mechanics - then we will consider the bundle of independent worldlines. This is handled 

using our concept of a wreath covering in Leyton [10]. In this way, the second-order case also has a flow 

structure, and we can describe it using a wreath product. 

(12) 

This combined group fits the rigorous definition of wreath product. Notice that this a 

richer algebraic structure than is normally used to express symmetries in 
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physics. First, there is an independent copy of G1 on each of the fibers. We can think of 

this as representing experiments that were independently done before a process of 

induction discovered a relation between these experiments. Then after induction had 

established the control group G2, experiments could be coordinated and one could, for 

example, establish a single “wave front” of points moving along the flow. This in fact, 

corresponds to the “diagonal” of the wreath product (see later). Thus all the stages of 

scientific discovery are contained in the wreath structure, as opposed to the conventional 

symmetry structure in physics. This is fully exaborated in Leyton [10] where we deal 

with wreath products as hierarchies of detection. 

A related reason why one searches for symmetries of the dynamic equation comes 

from Noether’s theorem, which states that, to each continuous symmetry of the dynamic 

equation, there is a conservation law; i.e., a conserved quantity such as energy, linear 

momentum, angular momentum, etc. It is clear therefore that the possible control groups 

G, in the wreath product (12) above, correspond to the possible conservation laws of the 

system. As illustrations, let us consider quantum mechanics and Hamiltonian mechanics: 

Quantum Mechanics 

In quantum mechanics, a state of the world is given by a wave function. The space of 

wave functions (world states) is called Hilbert space; i.e., any point in Hilbert space is a 

world state. The dynamic equation tells us how the world states evolve over time. This 

equation is called Schrodinger’s equation. Schrodinger’s equation specifies a rigid 

rotation of Hilbert space; i.e., Schrodinger’s equation says that any point in Hilbert space 

will simply rotate around Hilbert space over time. Therefore the flow-lines generated by 

Schrodinger’s equation correspond to a rotation group acting on Hilbert space. We shall 

denote this rotation group by G1 

Now, because one wants to identify conservation laws, one wants to find symmetry 

groups of the flow. These will send flow-lines onto flow-lines. Remarkably, any such 

symmetry group will also be a rotation group G2 of Hilbert space. This will rigidly rotate 

the flow-lines of the Schrodinger equation onto each other. 

Thus we have two groups G1 the rotation group prescribed by Schrodinger’s 

equation, and G2, the rotation group of symmetries. According to our generative theory 

of shape, we should regard these two groups, respectively, as the fiber group and control 

group of the wreath product in expression (12). 

What we have just said illustrates a basic point that we make in Leyton [10]: With 

respect to scientific structure, there is the following correspondence. 
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Conservation Laws <--> Wreath Products. 

Mathematically we will construct this by setting up a correspondence between any 

pair of commuting observables V and W and the wreath product of their 1- parameter 

groups, Gv and Gw: 

Hamiltonian Mechanics 

Hamiltonian mechanics is generally regarded as the most powerful formulation of 

classical mechanics. In fact, it depends on exactly the type of structure defined above. In 

Hamiltonian mechanics, the space of states is called phase space - its independent 

dimensions are the position and momentum variables of the system. The total energy of 

the system is given by a smooth function H on this space, and is called the Hamiltonian. 

The “gradient” of this function generates a flow on phase space. These are the flow-lines 

that describe the system’s evolution over time. The flow corresponds to a 1-parameter 

group GH along its flow-lines. 

Now, any other dynamical variable that one might wish to measure besides energy, 

e.g., angular momentum, is also given by a function F on phase space. The “gradient” of 

this function also generates a flow across phase space. This fiow corresponds to its own 

1-parameter group GF along its flow-lines. 

Fig. 14 illustrates the two flows we have just considered: The flow of the energy 

function H. which corresponds to the time-evolution of the system; and the flow of the 

dynamical variable F, which corresponds to some other property we might wish to 

measure; e.g., angular momentum. 

Figure 14. The flow of the Hamiltonian H, and the flow of another dynamical variable F. 
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The crucial issue is this: Do the flow-lines of F transfer the flow-lines of H onto 

each other? If they do, then Noether’s theorem states that there will be a conservation law 

corresponding to F; that is, F will be conserved; e.g., angular momentum will be 

conserved. 

Now the group generating the H flow is GH and the group generating the F flow is 

GF. According to our generative theory of shape, the appropriate way to describe this is as 

the wreath product: 

5. The Wreath Product Theory of Transfer 

In this final section, we fully describe the structure of a wreath product. Fig. 15 gives an 

intuitive sense of the structure. A wreath product is a group in which there are two levels: 

The upper level corresponds to the control group. The lowei level is the set of transferred 

versions of the fiber group, including the origina non-transferred version. The versions 

are represented by the vertical columns it the diagram. As indicated by the long arrow, the 

control group transfers thesi versions onto each other. 

The crucial thing to notice is that the wreath product contains all the transferred 

versions of the fiber group. We shall call the transferred versions, the fiber-group copies. 

Each of the fiber-group copies must be labelled individually by an index. The indexes we 

use are the elements of the control group. There is one fiber-group copy for each element 

of the control group. Thus, let us use this notation: 

(13) 

Notice that the H flow goes in the fiber position, and the F flow goes in the control 

position. Careful consideration reveals that this is an example of the diagram we gave 

earlier on p. 240. The H lines in the Hamiltonian system correspond to the horizontal lines 

in that diagram, because these lines are the evolution lines of the system. The F lines in 

the Hamiltonian system correspond to the vertical lines in that diagram, because these 

lines are the symmetries that transfer the evolution lines onto each other. 

where the index g on a fiber-group copy is an element of the control group G(C). 
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Figure 15. A wreath product. 

The transferring action of the control group on the fiber-group copies is then easy 

to model: Any element h, in the control group, translates the fiber- group copies onto 

each other as indicated by the long arrow. This is achieved by having h act on the indexes 

of the fiber-group copies. That is, h sends the fiber- group copy C(F)e to the fiber-group 

copy G(F)hg. 

The above action on indexes corresponds to a deep algebraic aspect of wreath 

products, as follows: There are two group products that are needed to fully define a 

wreath product: (1) The fiber-group copies are combined using the direct product 

operation. The reader should think of the entire bottom block in Fig. 15 as the direct 

product of the fiber-group copies. We will call this the fiber-group product, and denote 

it thus: 

(2) The fiber-group product (lower level) and the control group (upper level) are 

combined using a semi-direct product. Thus we have: 

group (here the fiber-group product). We argue that transfer corresponds to the 

automorphic action used in the wreath-product case, as follows: Given a member h of 

the control group (upper level), its automorphic action on the fiber-group product (lower 

level) is to translate the latter’s index structure by h. thus: 
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This automorphic action corresponds algebraically to conjugation of the fiber- group 

product by h. Thus, the transfer of the fiber-group copy G(F)g to the fiber- group copy 

G(F)hg is given algebraically by conjugation of G(F)g by h. That is: 
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We are therefore lead to the following crucial conclusion: 

Theory of transfer. Transfer corresponds to the automorphic action of the control group 

on the fiber-group product in a wreath product. 

The type of wreath product we have described above is called a regular wreath product. 

It is useful also to consider a generalization of this called a permulational wreath product. 

Here, the fiber group acts on a set we will call the fiber set F. Each fiber-group copy acts 

on its own copy of the fiber set. In addition, each copy of the fiber group is indexed not 

directly in the control group, but in a set we will call the control set C. The control group 

is then regarded as acting on the control set. In this way, we get the movement of the 

fiber-group copies. In fact, quite literally, they will be transferred from one copy of the 

fiber set to another. 


