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Show Me the Data: Statistical Representation 

Abstract 

Statistical representation is the science and art of using data to describe the world around us. 

Statistical representation is based on the fundamental concept that data consists of structure plus 

noise. The challenge facing the statistician is to use the noisy data to learn about the underlying 

structure. This framework accommodates the analysis of data generated by almost all other 

scientific disciplines. There are numerous ways of constructing statistical representations. The 

methods discussed here include tables, graphs, and models. The proper representation depends 

on the nature of the data and the particular issues being addressed. A combination of methods is 

often appropriate. 

1. Introduction 

Statistics is driven by data. The mission of the statistical sciences is to serve science and 

society through the development of techniques for collecting, summarizing, and making 

inferences from data. It is an explosive time for statistics, with no shortage of novel data in 

need of analysis. Statistics has become the quintessential interdisciplinary science because 

scientists and engineers from other disciplines collect the data and formulate the problems 

statisticians seek to solve. Statisticians reach out, intentionally and enthusiastically, to all 

areas of science and engineering in the pursuit of interesting and important problems to 

solve. 

The focus of this article is on statistical representation, which is about using data to 

describe the world around us. Data are generated in many ways (surveys, interviews, 

sensors, ...), come in a multitude of formats (text, numbers, sounds, images, ...), and can 

have a variety of dimensions (spatial, temporal, logical, ...). Despite the rich and varied 

nature of data, there is a fundamental concept 
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Figure 1. Statistical representations 

underlying the statistical use of data to represent the world. This concept is that the process 

that generates the data consists of a regular, predictable component (structure) and a 

random, unpredictable component (noise): 

This simple framework applies to all scientific disciplines. The structure is what we 

strive to understand. The noise is a nuisance that we must deal with. The statistician’s task 

is to wipe the noise from the data so that what remains is a clear vision of the structure. This 

rest of this article will focus on using data to construct a statistical representation of the 

structure using simple graphs and models (Figure 1 represents the discussion that will 

follow). 
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The particular slice of the real world that is being studied will be referred to as a 

system. The term “system” is used in a very general way in this discussion, and just about 

any piece of the world one wishes to specify or imagine can be considered a system. An 

important use of statistical representation is to provide a concise description of a system. 

For example, the descriptive statistical graphics in Figure la illustrate the range of possible 

data values and some idea about which values are likely to occur and which values are 

unlikely. A more complex representation is the scatter plot in Figure lb, in which a 

statistical model has been used to describe the relationship between two elements of the 

system. Here statistical methods were used to find an algebraic definition of the line that 

“best fits” the data and that summarizes the relationship between the two plotted variables. 

Both of these examples make clear the importance of data in statistical representation. Data 

are the fundamental source of information the statistician has about the system being 

studied. 

2. Data 

Before discussing how data are used, it is useful to describe some of the different types of 

data that may occur. One important distinction is whether data are quantitative or 

qualitative. Quantitative data arise when measurements are taken on quantities. For 

example, the number of visits to a web site, voltage through a wire, and income of a person 

would be quantitative data. Qualitative data arise when measurements indicate whether 

some entity possesses a certain quality. The domain of the web site (that is, .com or .edu), 

whether the wire is copper or aluminum, and a person’s gender would be qualitative data. 

Qualitative data must be handled differently than quantitative data. One obvious reason for 

the distinction is that algebraic concepts (addition, subtraction, greater-than, and so forth) 

cannot be meaningfully applied to qualitative data. A given study will often make use of 

both quantitative and qualitative data. Using both types of data simultaneously creates 

interesting challenges. 

Another important data characteristic is whether the data are observational or 

experimental. Observational data are generated by observing the world as it progresses, 

without any external influence by the scientist. Experimental data are generated in a 

controlled setting in which certain factors are set at predetermined levels and others are 

allowed to vary. The advantage of experimental data is that the noise component of the data 

is controlled, and it is easier to identify the factors that determine the structure. The 

disadvantage of experimental data is that they are typically more costly to generate than 

observational data. In many cases experimental data are impossible to collect altogether. 

This is especially relevant for one of the most important areas of 



 

78 Sallie Keller-McNulty, Mark S. McNulty 

study, that of the human condition. Constructing experimental settings in which people 

behave in a natural way is very difficult. Consequently, most societal data are 

observational. Given the unpredictable manner in which most people behave, the noise 

component of such data is often very large relative to the structural component. It is not 

unusual for 90% or more of the data taken on individuals to be unexplainable noise. Sifting 

the grains of structure from such data is the kind of challenge that makes statistics 

rewarding. 

Quantitative versus qualitative, observational versus experimental, data source, data 

format, and data dimension are just a few of the different characteristics data may possess. 

With our increasing ability to gather large amounts of data, an increasing problem is 

keeping track of what, exactly, the data are. An important advance in computer science is 

the development of databases that keep track of such information. In addition to the actual 

data, these databases contain schema and metadata. Schema are the logical structure of the 

database. Traditionally, metadata has been thought to describe the format or layout of the 

data. A new form of metadata has recently emerged, statistical metadata, which are 

descriptive information or documentation (for example, the sampling plan or imputation 

method) about the data that greatly facilitates using and sharing the data. The metadata can 

now be as voluminous as the original data. This has led to the creation of metadata 

databases. Research is ongoing to develop statistical representations of metadata and 

methods to mine metadata (Wegman 1999). 

Given a set of data, the statistician is faced with the task of saying something about 

the structure of the system that generated the data. Scrutinizing a list of data records is not 

very productive. Making sense of a list of even 30 data points pushes most of our 

capabilities to the limit, and most data sets are far larger than that. Somehow these long 

lists must be reduced to a manageable set of values. The intuitive solution to this problem 

is to aggregate the data. When the data are quantitative the natural inclination is to compute 

averages of the data and to examine those values. This turns out to be precisely the correct 

strategy, given the structure plus noise model of the data. The reason is that the averaging 

process minimizes the noise component of the data and magnifies the structural 

component. This result is so powerful that the vast majority of all statistical computations 

are based upon averages. In order to measure different aspects of the underlying structure 

the data may be transformed in various ways and the weighting may not be simple, but in 

the end an average is indeed taken. 

The averaging operation cannot be applied directly to qualitative data; averaging the 

values MALE and FEMALE gives a nonsensical result. With qualitative data, a natural 

way to aggregate and summarize the data is to create a table based upon the different 

possible classifications, and to compute the fraction of the data that fall in each 

classification. This computation is a type of 
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average and has the same desirable property of magnifying structure. The structure in this 

case is the tendency of individuals to fall in one table cell or another. While a table 

constructed for a single variable can be quite useful, it provides no information about a key 

element of structure: relationships. The description of the relationships within the system 

is often a primary objective of statistical representation. Tables can be used to fulfill that 

objective if they are based on the cross-classification of two variables. Of course, tables 

can also be constructed using quantitative variables by defining value ranges to be the 

classification categories. 

3. Graphs 

Graphs have historically been a powerful mode of statistical representation. In the 

previous section, we noted that the ability of humans to interpret lists of data is very 

limited. However, our ability to process graphical displays is outstanding. Indeed, nothing 

can outperform human visual capabilities for pattern (structure) recognition. Graphical 

displays help to isolate patterns and features that are worthy of further study, uncover 

unexpected behavior, or lend support for expected behavior of the system under study. 

Graphical displays also play a role in helping the analyst determine how rich a model the 

data can support. 

Some of the simplest displays are frequently the most useful. The histogram, one-

dimensional scatter plot, and boxplot (see Chambers et al. 1983 for an excellent description 

of these and other graphical displays) in Figure la make it immediately obvious that the 

data have a large degree of skew and that statistical methods requiring an assumption of 

underlying normality (Gaussian distribution) are likely to fail. These displays can be easily 

used to compare subsets of data. Figure 2 demonstrates this concept with AIDS incidence 

data for 38 U.S. metropolitan statistical areas (MSA) from 1983 to 1990. 

Two-dimensional scatter plots are arguably the most widely used graphic by all of 

science. The likely reason is that they represent system relationships clearly and directly, 

and relationships are usually the focus of attention. Variations on the scatter plot theme 

can be used to identify unexpected structure. For example, Figure 3 is a scatter plot for five 

of the MS As in Figure 2. Each MSA has been plotted with a different symbol and 

connected by the solid lines. Comparing Figures 2 and 3, it is apparent that the most 

extreme incidence counts in each year come from the same MSA. 

Low-dimensional tables of data can also be converted to useful graphical displays. 

For example, Figure 4a displays pairwise comparisons between groups, highlighting the 

control group comparison. The box heights represent the pooled standard error of the group 

mean. Figure 4b displays the mean response and 
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standard error for a 3x3-treatment design. Again the height of the bars represent the 

standard errors. Figure 4b clearly represents the changing trends in both levels of the 

treatment structure. The information in these examples can simply not be conveyed as 

clearly using tables of means and p-values. 

Figure 2. One-d scatter plots and box plots of AIDS incidence from 1983 to 1990 
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Figure 3. Time plot of AIDS incidence for five MSAs from 1983 to 1990 

.- .gure 4. Graphical display of tabular data 

Three and higher dimensional statistical graphics and dynamic graphics, including stereo 

displays and virtual reality, are very active areas of research (Wegman 1998). In statistical 

sciences, this research frequently has a cognitive psychology component (Cleveland 1985) 

which seeks to assess the usefulness if the 

 displays vis-a-vis human cognition. 
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4. Models 

Statistical graphics go hand-in-hand with the development and verification of 

algebraic representations of a system’s structure. Such algebraic representations are 

known as models. Models are especially useful for quantifying the relationships that exist 

within a system. Modeling consists of two major steps. The first step is specifying the 

form of a model. For example, it might be assumed that a straight line summarizes the 

relationship (structure) between salary and education. Graphics play a major role in model 

specification. One would never (or, should never) specify a straight-line model when the 

scatter plot of the data showed that the relationship was curvilinear. Given that the model 

is a straight line, what is its slope and what is its intercept? All models contain unknown 

parameters such as these. The problem of finding values for the unknown parameters is 

solved in the second modeling step, estimation. Estimating, or fitting, the model entails 

using the observed data to infer values for the unknown parameters. While the details can 

become messy, the basic idea has an appealing visual interpretation. The chosen parameter 

values give a model that, when plotted with the data, gives the “best fit”, as illustrated in 

Figure lb. 

Modeling requires more than just data. It also requires other information about the 

system being studied. This “other” information generally comes from a supporting 

discipline, e.g., engineering, physics, economics, sociology, that specializes in 

understanding how that particular type of system works. Statisticians often become quite 

expert in some of these fields, and wear the hat of both the statistician and the supporting 

discipline expert. The converse is also true; scientists whose formal training is in other 

disciplines have made many major contributions to statistics. The extent and the way in 

which the supporting information is used creates broad classes of statistical models. If the 

information is heavily utilized in the model specification step then the model is structural, 

otherwise the model is predictive. If the information is formally utilized in the estimation 

step then the model is Bayesian, otherwise it is frequentist. 

The naming convention for structural and predictive models is a little misleading. 

Both types of models are used for prediction. Recall that if the information from the 

supporting discipline is incorporated into the model specification then the model is 

structural. If little supporting information is used during the specification phase then the 

model is predictive. The idea is that a structural model actually represents the inner 

workings of the system as understood by the supporting discipline. With a predictive 

model, whether the model actually mimics the real world is not an issue. The only concern 

is how well the model predicts. Of course, because structural models use more 
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information one would hope that they would predict better than predicative models. 

However, predictive models sometimes perform better because of their simplicity. 

The distinction between Bayesian and frequentist models is based upon the way in 

which the information from the supporting discipline is incorporated into the model 

estimation step. Under the frequentist approach estimation is entirely based upon the data; 

the final estimates are functions solely of the data. Under the Bayesian approach, 

estimation is based formally upon both knowledge of the system and the data; the final 

estimates are a blend of what the Bayesian believes and what the data say. Figure 5 depicts 

these two approaches, both of which have strong advocates and opponents. Frequentists 

argue that their methodology is less likely to be influenced by the bias and predisposition 

of the analyst. Bayesians argue that their approach utilizes more information in a legitimate 

manner and therefore produces better model estimates. There is likely an element of truth 

to both arguments. 

Figure 5. Bayesian versus frequentist parameter (g ) estimation 

6. Conclusions 

Statistical representation has a solid, and sometimes very abstract, theoretical 

foundation. However, the methods used generally have a strong intuitive appeal. This is 

especially true of graphical displays, one of the most powerful tools of statistical 

representation. If a graph does not make intuitive sense it is not a good graph. While the 

details of statistical modeling can become quite complex, the relationships and structure 

that the model seeks to reveal and quantify are generally of obvious interest to even a 

casual observer. The methods of statistical 
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representation are tools developed for use by other scientists. Without a strong interaction 

with the rest of science, statistics becomes somewhat of an empty exercise. 
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