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Abstract 

The main theme of this article is to show the abstraction processes of mathematics allow 

hierarchies of structure, in which for example a ‘comparison’ becomes an object and so allows 

for methods of comparison themselves to be compared. Further, a representation of an object 

need not be unique, and the comparison of representations is important for our understanding 

and use of an abstraction process. 

1. Introduction 

In 1989 the Pop Maths Roadshow started at Leeds University and then toured the UK. For 

this, the authors and Nick Gilbert designed and produced a travelling exhibition of sixteen 

A2 boards entitled ‘Mathematics and Knots’. (This is now available in electronic form at 

the website: http://www.bangor.ac.uk/ma/CPM/ exhibit/) The main aim of our exhibition 

was not simply to explain knot theory to the general public, but instead to examine at a 

popular level various 

methodological themes in mathematics using elementary parts of knot theory as an 

illustration. Thus a more accurate title might have been ‘Mathematics through Knots’. 

We have discussed our processes and ‘philosophy’ in two articles: one, Brown and 

Porter, 1990, on the actual processes involved in the building of our mathematical 

exhibition; the other, Brown and Porter, 1995, on our views on how an examination of 

mathematical methodology can, and probably should, influence the presentation of 

mathematics not only to our students and other 

young people, but also in our attempts to convey mathematics to the general 

public and to fellow scientists. 

http://www.bangor.ac.uk/ma/CPM/
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We will examine some of these methodological themes in this article, since they are 

not exclusive to mathematics and fit with the overall theme of this volume. 

What were these themes? They included Representation, Classification, Invariants, 

Abstraction, Analogy, the breaking down of objects and processes into ‘elementary ’ parts, 

and the rules by which these parts are combined. For this article we would stress one further 

theme that is behind several of these, namely Comparison / Interrelation. Without a means 

of Comparison, without interaction between the objects of study, there can be little chance 

of Classification. Comparison is the essence of the use of Invariants. If two objects have 

different features, are they ‘of the same type’ or ‘different’? It of course depends on your 

comparison, but how does one compare? Finally for an arbitrary object to be broken down 

as a composite of simpler ‘elements’ implies that the ‘elements’ can be compared with the 

object in the first place. Beware, however, comparison is not always possible. Within the 

popular media presentation of Science, no recognition seems to exist that two objects may 

be related to a third without themselves being related. This mistake is also current in many 

branches of science itself! 

2. Themes 

We have already discussed the above themes in the article Brown and Porter, 1990, and 

illustrated them in the exhibition and website through the medium of knots. Here we will 

use a number of different illustrations based around natural, that is, whole, numbers. The 

familiarity of this example will aid us in pointing out features relevant to our themes. 

(a) Classification 

There are several ‘classifications’ of numbers used in everyday life. The simplest is ‘even’ 

(i.e. divisible by 2) and ‘odd’ (not so divisible, and so leaving remainder 1 on division by 

2), but we could also mention prime or non-prime, and the classification according to size 

which can be more vague (large, small, etc.) 

In each classification, some comparison is used. For ‘prime/non-prime’, it is the 

invariant ‘primeness’; in that of size it is the relationship, a < b, which is read a is less 

than or equal to b; and in the even/odd case it is divisibility by 2. 

(b) Comparison 

In (a) we used ‘a < b’. This is an ‘order relationship’ less than or equal. A 

classification could also be done using other similar relationships. 
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Paton, 1997, in his discussion of glue, verb and text metaphors in Biology, has pointed 

out that science frequently uses ‘glue’ and particular verbs to emphasise the interrelations 

between objects. He gives the following quotation: 

distributed decentralised network is more a process than a thing. In the logic of the Net, 

there is a shift from nouns to verbs. Economists now reckon that commercial products are 

best treated as though they were services ...It is not what something is, it s what it is 

connected to, what it does. Flows become more 

important than resources... Kelly (1994) p. 27 

Here our elementary discussion illustrates a mathematical exemplar, but the means of 

comparison ‘things’ is not a ‘thing’ nor a ‘process’ it is both. Like the particle/wave duality 

of quantum physics, our order relations help in the classification of objects (so are 

‘verblike’) but are objects in their own right (i.e. ‘thing’ like). To use the economic example 

above a flow of goods is an object. Turning a relation into an object is the method at the 

heart of abstraction. 
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(c) Abstraction and Representation 

We have already ‘abstracted’ our division-order relation from being a ‘verb’ to a 

‘noun’. The question of its representation is easily handled using an idea of H.Hasse. We 

draw a network with nodes corresponding to the numbers and an upwards line from a to 

b if a\b. The resulting network will be infinite as there are infinitely many natural numbers, 

so we will restrict attention to the subnetworks corresponding to the sets of divisors of 

particular numbers. For instance the set of divisors of 18 is {1, 2, 3, 6, 9, 18} and we get 

that the order relation has Hasse diagram. 

Why is this a good representation of the information? For a start it is fairly simple 

visually, but contains essential information about 18 and its divisors. It shows that 2 and 

3 are not comparable; it shows that there is internal ‘structure’ in the divisor relation such 

as 

(i) given any two nodes, there is a common node above them and, in fact, a ‘least’ such 

node; 

(ii) given any two nodes, there is a common node below them and, in fact, there is a 

‘greatest’ such node. 

These correspond to ‘least common multiple’ (1cm) and ‘greatest common divisor’ 

(gcd). Their existence is a special property of certain order relations. 

(iii) there is a bottom and top element; 

(iv) there are some ‘atoms’, that is, elements which are immediately above the bottom 

element. (Of course, these are the prime factors of the number and we will return to 

them later.) 

A common criticism of mathematics is that in its examples it does not look at 

complicated enough situations or on the other hand that it makes simple things 
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too complicated itself. Here one needs to examine the sense of ‘complication’. We have 

used a simple example and everything is easily seen and understood in this small diagram. 

If we had taken a more complicated example could we have understood it more simply? 

Take for instance 2075, a number of moderate size. The divisors of 2075 are {1,5, 25, 

83, 415, 2075} and, of course, the diagram looks very much the same. There are thus 

properties of 18 and 2075 that are similar. We have found them by examining the Hasse 

diagrams for their sets of divisors. Other numbers may give different forms of diagram. 

For instance 64 also has 6 divisors, but a different Hasse diagram. The number 30 has {1, 

2, 3, 5, 6, 10, 15, 30} as its set of divisors and a cube as its Hasse diagram, but 31 has just 

so ‘complication’ is not dependent on size alone. In each case, the diagram reveals some 

structure of the number, namely the parts of which it is made. Of course, if someone asks 

for the Hasse diagram of 180774 then the number of directions needed and the number of 

nodes needed starts to get in the way of the easy reading of the divisor information, since 

180774 = 2 x 32 x ll2x83 

The diagram is thus only the first step in the abstraction process. The features 

observed have then to be analysed more closely and abstractly. 

(d) Analogy 

Another feature of the abstraction process is that, having used the order relation “divides” 

to compare numbers, we can find analogues of this structure’ elsewhere. An obvious 

example is to take a set, X, and look at all its subsets. This in turn gives us a new set (often 

called the power set of X) 
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We can represent small examples of sets of subsets by Hasse diagrams in a way that 

helps present the information clearly. (The above example gives a cube just like the divisors 

of 30.) There are analogues for the least common multiple and greatest common divisor 

(given by union and intersection respectively). 

In a partially ordered set, other concepts can be defined, though they may not always 

be applicable. Thus the complement of an element can be defined as: if x is an element of 

some partially ordered set, a complement for x is the smallest y such that the ‘least common 

multiple’ of x and y is the top element. In the partially ordered set of divisors of 18, the 

complement of element 9 in 2 since lcm{2,9} = 18, the top element. In the set of subsets of 

{1,2,3}, the complement of {1,3} is, of course, {2}. 

However, this does not make sense unless these least common multiples (usually called 

Terns’) exist nor unless the partially ordered set has a top element. In other words, attempting 

to generalise a feature in observed cases, to a generic abstract case, focuses attention on the 

properties, i.e. the invariant features or conditions, that imply that the property holds. Here 

one is able to see the strength of abstraction at work. We note: 

By abstracting, we get general ideas that can be applied outside the original setting 

especially using analogy. 
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Our examples were simple: ‘divisors’ and ‘subsets’ and comparisons within 

Abstraction makes comparison easier as special features 

of examples are blurred 

Remarks 

numbers. In mathematics analogies are fundamental, but we make analogies not between 

things but between the relations between things. It is the abstract structures which have 

analogous properties. 

question of which came first and when. Notice that mathematicians like to use notations 

which are themselves metaphors. 

It is noticeable that the fact that the concepts can be represented by diagrams has been 

formative. We will see shortly that diagrammatic representation does have limitations and 

progress and interpretation beyond those limits is consequently slower. 
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(e) Indecomposables 

The operations of gcd (and 1cm) give a way of ‘composing’ numbers as do, more simply, 

multiplication and addition. If we can ‘compose’, can we ‘decompose’? Of course we can 

and the ways of decomposing are exactly what the divisor lattices show. We can build up a 

number from simpler/smaller bits. Some numbers are ‘indecomposable’. You cannot split 

them further. These are of course the prime numbers and they have the simple divisor 

structure given by the left hand picture below: 

In our examples of divisor lattices, the primes are the parts growing out of 1, eg. in the 

set of divisors of 18 we have as in the right hand picture above. 

Of course, the number of distinct primes determines the ‘dimension’ of the diagram 

used (18 has 2 prime factors so the diagram is two-dimensional, 64 has only one prime 

factor, so DivM is 1-dimensional, whilst 180774 has a fourdimensional diagram). 

Of course the notion of indecomposables or atoms can be abstracted and analogues 

can be found in other settings, but no decomposition of general elements need exist and 

analogues with the primes may fall apart. The reasons why are very relevant to our 

discussion but we will need some further development before we can return to this. 

We argued for the duality ‘verb/thing’, so can we decompose ‘verbs’ i.e. comparisons, 

into simpler parts. What can this mean? In our examples it is relatively easy to see. 

We have in Divlgthat 2 | 18 is “related to” 18. The relation is not as simple as some 

others. We have 3 | 9 and the portion of the Hasse diagram we need is 
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1 

which is a copy of the diagram on the left below 

for the divisors of 9. Of course, we can see why. If we divide 9 by 3 we get 3 which is 

prime, but if we divide 18 by 2 we get 9 (and a copy of Div9). 

We could thus decompose the relationship a | b into a series of smaller comparisons 

a\br b^b^.-.b^b 

where each comparison is a copy of the atomic Hasse diagram for a prime p which we 

gave above, on the right. These comparisons give the prime decomposition of the quotient 

c = b/a. 

We have some interesting features even in this simple case of the divisors of 18. The 

decomposition of 3 | 18 is not unique. We could go 
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3 | 9 and 9 | 18, or 3 | 6 and 6 | 18 . 

So we have two different routes in the diagram from 3 to 18. They seem in some 

ways equivalent, but they are different. We have two different “moves” - one is multiply 

by 2, the other is multiply by 3. It happens that the end result does not depend on which 

order the moves are made since 2 x 3 = 3 x 2. 

Summarising, the decomposition of objects into irreducible or indecomposable 

pieces need not stop there. We can sometimes decompose comparisons, reducing some 

comparison to a composite of a sequence of “elementary moves”, i.e. indecomposable 

comparison. 

The ‘comparisons’ between objects are often called ‘morphisms’, so as to suggest 

that they are compatible with some internal structure or shape of the objects they compare. 

In a partial order, there is no more than one comparison between objects, but there could 

be other situations where there are several comparisons, for example each could be a 

decision process for a comparison. A key point is that the set of ‘morphisms’ between the 

numbers in the set Divn of divisors of n can itself have structure. This suggests a hierarchy 

of structures with ‘morphisms’ between ‘morphisms’ and so on. This is often the case, but 

why should we bother with such extra abstraction. Is it anything more than a pretty game? 

Our example of (partially) ordered sets of divisors as an invariant of numbers is 

simple and clear, but has the disadvantage of being too rigid. Before leaving the ‘themes’ 

of this first level of methodology, let us very briefly look at a situation with several other 

features. We will then combine the two in the next section to examine higher levels of 

structure in the final section. 

Suppose we have a geometric figure. To keep the situation simple we will assume it 

is a regular n-gon so particular examples are equilateral triangles, squares, regular 

pentagons, etc. A simple image of such a figure cut out of wood and fitting in a hole of the 

same shape and size may help, i.e. a children’s toy. The figure can be lifted, turned around 

or turned over and replaced in its hole. If there are n-sides this yields 2n positions in which 

we can put the block. These positions are the objects we want to study so we will naturally 

be looking for ‘comparisons’ between them. As an illustration look at an equilateral 

triangle on the left: 
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Labelling the vertices (and the ‘vertices’ of the whole) is a natural thing to do and 

with this labelling the comparison between the standard position and that obtained by 

flipping over the block giving the right hand figure might be represented by a symbol 

yielding what is called a ‘permutation’ of the vertex labels 1, 2, 3. 

Applying our methodology, we have already represented our situation symbolically. 

There are various invariants of these positions that aid in a classification of the positions. 

For instance, two positions have the same orientation if reading off the labels 1 then 2 then 

3 you go the same way around the hole. (The above two have different orientation.) This 

classifies the positions into two classes, which might be called ‘clockwise’ and 

‘anticlockwise’ positions. There are two obvious elementary moves: at any position, pick 

the n-gon up, rotate it through 360°/n (i.e. one ‘notch’ clockwise) and put it back (an 

elementary rotation) or pick it up, flip it about a fixed axis of symmetry (in our case of the 

triangle the axis through 2 was used above), and put it back. 

It is well known that these two types of elementary moves generate all comparisons 

between positions. We can thus represent any ‘comparison’ between positions by a 

sequence of such moves. However such a representation will not be unique. 

For instance, keeping the triangle as our example, the comparison 

can be decomposed as rotate, rotate again, then flip or as flip then rotate. Writing R for rotate 

and 5 for flip: 

R2S = SR 

The idea of identifying simple component ‘moves’ allows one to represent complex 

processes as composites of simple ones. This helps in the understanding of those more 

complex processes by representing and interpreting those processes. 
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The resulting representation is however not always unique, as we saw above. At first sight 

this might seem to be a disaster since if different representations of the same complex 

process exist, it may be difficult to decide which one we should we use. The point is more 

that for sufficiently precise formulations of concepts, we would expect a mathematical 

theory which would enable us to make such decisions. This is in fact a significant theory, 

called rewriting theory, and it leads to questions of which rewriting problems are 

decidable, what are the algorithms for making decisions when such can be made, and how 

efficient and usable they can be made. 

The more optimistic and valid view is that such multiple representation of the 

complex process incorporates a wealth of higher order information, but this information 

needs more advanced techniques to handle it, in fact deeper algebra. 

We thus find that abstraction, comparison, interpretation and representation interact 

at a fairly early stage in such situations. To understand this more deeply we need some 

new concepts and examples of them as our existing examples are slightly too rigid for the 

more general points we need to examine. 

Examples 

- The objects might be the divisors of 18 and the arrows represent the fact that a\b (but 

written in the form a —> b. 

- The objects might be positions of a regular «-gon and the arrows the ways of going 

from one to another. 

- The objects might be sets and the arrows would represent functions between the sets. 

- The objects might be sets and the arrows represent relations between them. (A relation 

R from a set A to a set Y is a set of pairs (x,y) with x in X, y in Y. If (x,y) is in R we 

think of this as being ‘x is related to y"). 
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We can do this more generally. Suppose we have a ‘diagram’, that is a collection of objects 

and perhaps some arrows between them. Then we can sometimes find an object which is 

the “greatest” one with arrows to all objects of the diagram. (The resulting object is an 

example of what is called a limit of 

the diagram. See any book on category theory for the exact definition.) 
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Analogues of x v y 

In the set of divisors of tt the element x v y was the least common multiple of the 

numbers x and y . 

Remark 

Colimits have been used to good effect to describe biological hierarchical systems 

(cf. Ehresmann and van Vanbremeersch, 1987). They allow one to model mathematically 

the idea that the whole is greater than the sum of its parts. 

Following our themes we should expect to consider ‘comparisons’ between categories 

(these are called ‘functors’). Moreover there are comparisons between functors, so that 

given categories C and D, there is a category whose objects are the functors from C to D . 

This yields a hierarchy of structures known as n- categories which have recently been 

finding application in parts of theoretical physics. How do these higher order versions of 

categories reflect the other themes? 

We will restrict our attention to two themes, those of breaking down into ‘elementary’ 

parts and representation. We will illustrate with ideas from the theory of categories. When 

we looked at Div|g the elementary parts were fairly obvious, they were the primes, 2 and 

3. It is often not that obvious what ‘irreducibles’ or ‘indecomposables’ to use for building 

blocks. For our discussion we will assume a collection of arrows in the category C has 

been selected and we have checked that it has the property that any arrow in C can be 

written as a composite of these special arrows, although of course we would not expect all 

arrows to be special. We saw this in our example of moves on a triangle (or more generally 

an «-gon). There every arrow could be written as a composite of those arrows that from 

any position corresponded to an elementary rotation or a flip about the vertical axis of 

symmetry, but not all,arrows from the position would have that form. 

A choice of special arrows being made we can represent any arrow by a symbol 

consisting of a list of the special arrows yielding the arrow on composition. This 

representation is an algebraic ‘icon’ allowing manipulation, calculation etc. concerning the 

arrow so is a powerful help in the study of the situation, however it is usually not unique. 

We summarise in general: to 

obtain a representation, 

The analogue and generalisation for a diagram of interacting objects in a category is 

called a colimit. 
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(i) choose some ‘elementary’ special objects that composed or combined suitably will 

generate all the objects of interest, 

(ii) for each specific object, construct a list whose elements are special objects and whose 

composite or combination is the given specific object. (This is subdivision of objects.) 

There are then two generic problems 

a) what would be the consequence to the representation of choosing a different set of 

special objects 

and, even with just one such set, 

b) there may be many lists that have the same composite. 

We saw problem b) with our example of a triangle as 

R2S = SR 

so the lists (R,R,S) and (S,R) yield the same arrow on composition. 

There is another more subtle point: lists may not suffice. For instance if we have a two-

dimensional tiling pattern, it is clearly made up of the tiles as elementary parts but the way 

the parts fit together are too subtle to be simply given by a list - we need some sort of 2-

dimensional listing or gluing information. The study of the ways that one replaces ‘lists’ by 

higher order structures then reveals a lot about the (representation of the) original object. 

Returning to our categorical examples, we find that between two objects there may be 

many different lists yielding the same arrow, so one tries to see if the set of such lists has 

some structure itself so that perhaps there are elementary 'rewriting rules’ that allow one list 

to be changed to another. Ideally one hopes 

that if two lists yield the same arrow then it will be possible to get from one to the other 

by simple application of the rewriting rules. These rewriting rules constitute another level 

of the hierarchy of structure. 

The interpretation of the rewriting rules in terms of the original structure is often very 

subtle. 

Again a summary seems necessary. 

(iii) A representation of objects may not be unique. If it is not, then its lack of uniqueness 

needs study. 

(iv) The reasons why two representations yield the same object yield information on the 

object. These reasons are often themselves structured. 

4. Epilogue 

We have tried to suggest how representation of objects or processes in terms of more 

elementary building blocks naturally leads to a hierarchy of structures. 
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The use of such hierarchies is well established in parts of mathematics and by the use of 

metaphor in the guise of mathematical modelling this hierarchy of structures can lead to a 

deeper understanding of the linkage between the model (i.e. the representation) and the 

processes being modelled (i.e. the interpretation). 

Throughout we have made use of analogy and abstraction as essential tools in the 

development of the ideas and most crucially we have stressed the need for well structured 

notions of comparison. 
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