

NICOLAUS COPERNICUS
UNIVERSITY
IN TORUŃ

Quality in Sport. 2026;51:68742. eISSN 2450-3118.

<https://doi.org/10.12775/QS.2026.51.68742>

Quality in Sport. eISSN 2450-3118

Journal Home Page

<https://apcz.umk.pl/QS/index>

CHOROSZEWSKA, Ewelina, WOJCIECHOWSKA, Karolina, ZABROCKA, Patrycja, MARTOWSKA, Julia, BARAN, Julia, BULLMANN, Agnieszka, WARYCH, Wiktor, NIEZGODA, Julia, SKŁODOWSKI, Tomasz and WORONIECKA, Katarzyna. The role of ginger (*Zingiber officinale*) in the management of nausea and vomiting. *Quality in Sport. 2026;51:68742. eISSN 2450-3118.*

<https://doi.org/10.12775/QS.2026.51.68742>

The journal has been awarded 20 points in the parametric evaluation by the Ministry of Higher Education and Science of Poland. This is according to the Annex to the announcement of the Minister of Higher Education and Science dated 05.01.2024, No. 32553. The journal has a Unique Identifier: 201398. Scientific disciplines assigned: Economics and Finance (Field of Social Sciences); Management and Quality Sciences (Field of Social Sciences).

Punkty Ministerialne z 2019 - aktualny rok 20 punktów. Załącznik do komunikatu Ministra Szkolnictwa Wyższego i Nauki z dnia 05.01.2024 Lp. 32553. Posiada Unikatowy Identyfikator Czasopisma: 201398. Przypisane dyscypliny naukowe: Ekonomia i finanse (Dziedzina nauk społecznych); Nauki o zarządzaniu i jakości (Dziedzina nauk społecznych). © The Authors 2026.

This article is published with open access under the License Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland. Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non-commercial Share Alike License (<http://creativecommons.org/licenses/by-nc-sa/4.0/>), which permits unrestricted, non-commercial use, distribution, and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interest regarding the publication of this paper.

Received: 01.02.2026. Revised: 12.02.2026. Accepted: 14.02.2026. Published: 20.02.2026.

The role of ginger (*Zingiber officinale*) in the management of nausea and vomiting

Ewelina Choroszewska¹ [EC], ORCID <https://orcid.org/0009-0000-7609-7265>

E-mail: choroszewska2000@gmail.com

Karolina Wojciechowska¹ [KW], ORCID <https://orcid.org/0009-0001-7048-1335>

E-mail: karolina8wojciechowska@gmail.com

Patrycja Zabrocka³ [PZ], ORCID <https://orcid.org/0009-0001-5834-5277>

E-mail: patrycja11.11.01@gmail.com

Julia Martowska¹ [JM], ORCID <https://orcid.org/0009-0006-2804-5368>

E-mail: julia.wiaterek@gmail.com

Julia Baran² [JB], ORCID <https://orcid.org/0009-0005-9569-3149>

E-mail: barjul99@gmail.com

Agnieszka Bullmann⁴ [AB], ORCID <https://orcid.org/0009-0001-4338-3027>

E-mail: agabullmann00@gmail.com

Wiktor Warych¹ [WW], ORCID <https://orcid.org/0009-0003-2569-6833>

E-mail: w.warych26@gmail.com

Julia Niezgoda³ [JN], ORCID <https://orcid.org/0009-0000-4890-8323>

E-mail: niezgodajulia001@gmail.com

Tomasz Skłodowski³ [TS], ORCID <https://orcid.org/0009-0000-4250-1485>

E-mail: cele1303@wp.pl

Katarzyna Woroniecka³ [KW], ORCID <https://orcid.org/0009-0004-3203-8609>

E-mail: kasiaworonieckaa@gmail.com

¹ Śniadeckiego Voivodeship Hospital in Białystok, ul. M. C. Skłodowskiej 26, 15-278

Białystok, Poland

² University Clinical Hospital in Białystok, ul. M. C. Skłodowskiej 24a, 15-276 Białystok,

Poland

³ Medical University of Białystok, ul. Jana Kilińskiego 1, 15-089 Białystok, Poland

⁴ Szpital Specjalistyczny im. F. Ceynowy, ul. dr. Alojzego Jagalskiego 10, 84-200

Wejherowo, Poland

Corresponding Author: Ewelina Choroszewska, choroszewska2000@gmail.com

Abstract: Nausea and vomiting are common and clinically relevant symptoms associated with a wide range of medical conditions, including chemotherapy and radiotherapy, surgical procedures, pregnancy, and gastrointestinal disorders. Their pathophysiology involves complex

interactions between central and peripheral nervous system pathways, neurotransmitters, inflammatory mediators, and gastrointestinal motility. Ginger (*Zingiber officinale*), a medicinal plant traditionally used to alleviate gastrointestinal discomfort, contains bioactive compounds such as gingerols and shogaols that exhibit anti-inflammatory, prokinetic, and neuro-modulatory properties. This article provides a narrative review of current clinical and experimental evidence regarding the role of ginger in the management of nausea and vomiting, with particular emphasis on chemotherapy-induced nausea and vomiting, postoperative nausea, nausea of pregnancy, and selected gastrointestinal conditions.

Background: Nausea and vomiting represent some of the most distressing symptoms encountered in clinical practice and significantly impair patients' quality of life. They frequently accompany anticancer therapies, anesthesia and surgery, pregnancy, and both functional and organic gastrointestinal disorders. In many cases, persistent nausea and vomiting lead to dehydration, electrolyte disturbances, nutritional deficiencies, increased anxiety, and reduced adherence to medical treatment. Despite the availability of modern pharmacological antiemetic agents, symptom control remains incomplete in a substantial proportion of patients, particularly in delayed or refractory forms of nausea.

Current understanding highlights the multifactorial nature of nausea and vomiting, involving activation of central emetic pathways, peripheral vagal afferents, serotonergic, dopaminergic, and neurokinin signaling, as well as disturbances in gastric motility. These mechanisms provide a rationale for exploring complementary approaches that may modulate multiple biological pathways simultaneously. In recent years, increasing attention has been directed toward herbal and dietary interventions, among which ginger (*Zingiber officinale*) has emerged as one of the most extensively studied natural antiemetic agents.

Ginger has a long history of use in traditional medicine systems for the treatment of gastrointestinal complaints. Experimental studies indicate that its bioactive constituents can inhibit 5-HT₃ receptors, modulate neurokinin-1 and dopamine pathways, enhance gastric emptying, and exert anti-inflammatory and antioxidant effects. Growing clinical evidence suggests that these mechanisms may translate into therapeutic benefits in various types of nausea and vomiting. However, heterogeneity in study design, dosing, formulations, and patient populations has resulted in inconsistent findings, underscoring the need for a comprehensive narrative synthesis of the available literature.

Aim: The aim of this article is to provide a narrative review of current clinical and experimental evidence regarding the role of ginger (*Zingiber officinale*) in the management of nausea and vomiting. Particular emphasis is placed on elucidating the proposed mechanisms of action of ginger and evaluating its clinical effectiveness in chemotherapy-induced nausea and vomiting, postoperative nausea and vomiting, nausea of pregnancy, and selected gastrointestinal conditions.

Material and Methods: This article has a narrative review design. The analysis was based exclusively on 22 peer-reviewed scientific publications provided by the author, including randomized controlled trials, crossover studies, systematic and narrative reviews, and experimental mechanistic studies. The included articles addressed the use of ginger or its bioactive constituents in the prevention or treatment of nausea and vomiting across various clinical settings. The reviewed studies investigated different formulations of ginger, including capsules, powdered rhizome, extracts, and ginger tea, administered alone or as an adjunct to standard antiemetic therapy. The objective of this review was to synthesize and interpret current evidence rather than to perform a formal systematic review or meta-analysis.

Results: The analyzed literature indicates that ginger may exert beneficial effects in the management of nausea and vomiting through multiple biological and clinical pathways. Clinical trials demonstrate that ginger supplementation can reduce the severity and frequency of nausea in several contexts, most consistently in chemotherapy-induced nausea and vomiting, postoperative nausea and vomiting, nausea of pregnancy, and acute gastroenteritis in pediatric populations. In these settings, ginger was generally well tolerated and associated with a low incidence of adverse effects. However, the clinical evidence remains heterogeneous. While many studies report favorable outcomes, several well-designed randomized controlled trials failed to demonstrate statistically significant differences between ginger and placebo. Variability in results appears to be related to differences in study design, ginger dose, formulation, duration of administration, and patient population. Experimental studies provide strong biological plausibility for ginger's antiemetic effects. Gingerols and shogaols have been shown to modulate serotonin (5-HT₃), neurokinin-1, and dopamine receptor activity, enhance

gastric motility, and exert anti-inflammatory and antioxidant effects. These mechanisms collectively support ginger's potential role as a multi-target antiemetic agent.

Conclusions: Available evidence suggests that ginger (*Zingiber officinale*) represents a safe and potentially effective adjunctive option in the management of nausea and vomiting. Its antiemetic effects are supported by mechanistic studies and by clinical findings in selected patient populations. Nevertheless, inconsistencies among clinical trial results highlight the influence of dosage, formulation, treatment duration, and clinical context on therapeutic outcomes. Further well-designed clinical studies using standardized ginger preparations and clearly defined outcome measures are needed to determine optimal treatment protocols and to better define the role of ginger in evidence-based antiemetic therapy.

Key words: ginger; *Zingiber officinale*; nausea; vomiting; antiemetic; phytotherapy

Contents

1. Introduction	6
2. Research materials and methods	7
3. Research Results.....	8
3.1. Chemotherapy- and radiotherapy-induced nausea and vomiting.....	8
3.2. Postoperative nausea and vomiting	9
3.3. Nausea and vomiting of pregnancy.....	9
3.4. Pediatric and gastrointestinal indications.....	9
3.5. Mechanistic and experimental findings.....	9
4. Discussion	9
5. Conclusions	11
Disclosure	12
Author's contribution.....	12
Funding Statement	13
Institutional Review Board Statement.....	13
Informed Consent Statement.....	13
Data Availability	13
Acknowledgements	13
Conflict Of Interest.....	13

References	13
------------------	----

1. Introduction

Nausea and vomiting are among the most common and burdensome symptoms encountered in clinical practice, affecting patients across a wide range of medical conditions. They frequently accompany chemotherapy and radiotherapy, surgical and anesthetic procedures, pregnancy, acute infectious diseases, and functional or organic gastrointestinal disorders. Beyond the immediate physical discomfort, persistent nausea and vomiting significantly impair quality of life, increase anxiety, reduce adherence to medical treatment, and may lead to dehydration, electrolyte imbalance, malnutrition, and prolonged hospitalization. As a result, effective management of these symptoms remains a major clinical priority. The pathophysiology of nausea and vomiting is complex and multifactorial, involving coordinated interactions between central and peripheral nervous system pathways. Key mechanisms include activation of the vomiting center and chemoreceptor trigger zone, stimulation of vagal afferent fibers, dysregulation of gastrointestinal motility, and the release of neurotransmitters and neuropeptides such as serotonin, substance P, and dopamine. In specific clinical contexts, distinct pathways predominate—for example, serotonin-mediated signaling in acute chemotherapy-induced nausea and vomiting and neurokinin-1-dependent mechanisms in delayed emesis. This complexity explains why symptom control remains challenging despite advances in pharmacological therapy.

Although modern antiemetic regimens, including 5-HT₃ receptor antagonists, dopamine antagonists, and neurokinin-1 inhibitors, have substantially improved outcomes, their effectiveness is not universal. Delayed nausea, breakthrough symptoms, and interindividual variability in response are frequently observed. Moreover, adverse effects such as constipation, headache, sedation, and extrapyramidal symptoms may limit long-term use, particularly in vulnerable populations such as pregnant women, children, and elderly patients. These limitations have driven increasing interest in adjunctive and integrative approaches that may enhance antiemetic efficacy while maintaining a favorable safety profile.

Ginger (*Zingiber officinale* Roscoe) has been used for centuries in traditional medical systems as a remedy for gastrointestinal discomfort, including nausea and vomiting. The rhizome of

ginger contains a complex mixture of bioactive compounds, primarily gingerols and shogaols, which have demonstrated anti-inflammatory, antioxidant, and prokinetic properties. Over the past two decades, ginger has emerged as one of the most extensively studied herbal antiemetic agents, with growing evidence from experimental models and clinical trials.

Clinical research has evaluated ginger in diverse settings, including chemotherapy- and radiotherapy-induced nausea and vomiting, postoperative nausea and vomiting, nausea and vomiting of pregnancy, acute gastroenteritis in children, and functional gastrointestinal disorders. While many studies report reductions in nausea severity and frequency, others show neutral or inconclusive results. Differences in ginger formulation, dosage, duration of administration, outcome measures, and patient populations contribute to the heterogeneity of findings and complicate direct comparisons between studies.

At the mechanistic level, experimental evidence suggests that ginger exerts its antiemetic effects through modulation of multiple biological pathways. These include inhibition of serotonin (5-HT₃) receptor activity, suppression of neurokinin-1 and dopaminergic signaling, enhancement of gastric emptying, and attenuation of inflammatory and oxidative processes within the gastrointestinal tract and central nervous system. The multi-target nature of these actions distinguishes ginger from conventional antiemetic drugs and supports its potential role as an adjunctive therapy.

Given the widespread availability of ginger, its generally favorable safety profile, and the growing interest in complementary and integrative medicine, a comprehensive synthesis of current evidence is warranted. This narrative review aims to integrate clinical and experimental findings on the role of ginger in the management of nausea and vomiting, highlighting both its therapeutic potential and the limitations of existing research.

2. Research materials and methods

This article was prepared as a narrative review aimed at synthesizing current knowledge on the role of ginger (*Zingiber officinale*) in the management of nausea and vomiting. The analysis was based exclusively on 22 peer-reviewed scientific articles provided by the author. These publications included randomized controlled trials, crossover studies, observational studies, systematic and narrative reviews, as well as experimental and mechanistic investigations.

The reviewed literature encompassed studies evaluating ginger in various clinical contexts, including chemotherapy- and radiotherapy-induced nausea and vomiting, postoperative nausea

and vomiting, nausea and vomiting of pregnancy, acute gastroenteritis in pediatric populations, and selected gastrointestinal disorders. Both adult and pediatric populations were considered. The included studies examined different forms of ginger administration, such as encapsulated powder, standardized extracts, ginger tea, and fresh ginger preparations, used either as monotherapy or as an adjunct to conventional antiemetic treatment.

No formal systematic search strategy or meta-analytic procedures were applied, as the objective of this review was to provide a qualitative synthesis of the available evidence rather than a comprehensive quantitative assessment. Emphasis was placed on studies that offered clinically relevant outcomes, mechanistic insights, or both. Publications of low methodological quality or lacking sufficient clinical or experimental detail were not included in the analysis.

The findings from the selected studies were analyzed descriptively and grouped according to clinical indication and proposed mechanisms of action. This approach allowed for an integrated interpretation of heterogeneous data and facilitated the identification of consistent patterns, limitations, and knowledge gaps in the current literature on ginger as an antiemetic agent.

3. Research Results

The reviewed literature provides a comprehensive overview of the clinical efficacy and mechanistic basis of ginger (*Zingiber officinale*) in the management of nausea and vomiting. The results are derived from heterogeneous study designs and patient populations, reflecting the multifactorial nature of emetic disorders and the multi-target pharmacological profile of ginger. Overall, the findings indicate potential benefits in selected clinical settings, supported by experimental evidence, while also highlighting inconsistencies across studies.

3.1. Chemotherapy- and radiotherapy-induced nausea and vomiting

Clinical trials evaluating ginger in patients undergoing chemotherapy or radiotherapy suggest that ginger may reduce the severity and frequency of nausea, particularly when used as an adjunct to standard antiemetic regimens. Several randomized controlled studies report improvements in acute and delayed nausea, with less consistent effects observed for vomiting. However, some high-quality trials failed to demonstrate statistically significant differences compared with placebo. Variability in outcomes appears to be influenced by differences in chemotherapy protocols, ginger dosage and formulation, duration of administration, and concurrent use of conventional antiemetic drugs.

3.2. Postoperative nausea and vomiting

Evidence regarding the use of ginger for postoperative nausea and vomiting indicates modest and inconsistent benefits. Some studies demonstrate a reduction in nausea intensity or incidence when ginger is administered perioperatively, while others show no significant advantage over placebo. Differences in surgical procedures, anesthetic techniques, timing of ginger administration, and patient characteristics likely contribute to these mixed results.

3.3. Nausea and vomiting of pregnancy

Studies focusing on nausea and vomiting of pregnancy consistently report symptomatic improvement with ginger supplementation. Reductions in nausea severity and frequency are commonly observed, and ginger is generally well tolerated at recommended doses. These findings are clinically relevant given the restricted use of pharmacological antiemetics during pregnancy and the favorable safety profile of ginger.

3.4. Pediatric and gastrointestinal indications

In pediatric populations, particularly in children with acute gastroenteritis, ginger has been shown to reduce the frequency of vomiting and improve tolerance of oral rehydration therapy. Additional studies addressing gastrointestinal disorders suggest that ginger's prokinetic properties may contribute to symptom relief by enhancing gastric emptying and reducing gastric dysrhythmia.

3.5. Mechanistic and experimental findings

Experimental studies provide strong biological plausibility for the clinical effects of ginger. Gingerols and shogaols modulate key neurotransmitter systems involved in emesis, including serotonin (5-HT₃), neurokinin-1, and dopamine receptors. Furthermore, ginger enhances gastric motility and exhibits anti-inflammatory and antioxidant activity, mechanisms that collectively support its role as a multi-target antiemetic agent.

4. Discussion

The findings summarized in this narrative review indicate that ginger (*Zingiber officinale*) may play a meaningful adjunctive role in the management of nausea and vomiting across several

clinical settings. The overall body of evidence suggests potential benefits, particularly in chemotherapy-induced nausea and vomiting, nausea of pregnancy, postoperative nausea, and selected gastrointestinal conditions. However, the heterogeneity of clinical outcomes underscores the complexity of emetic disorders and highlights the challenges associated with translating mechanistic plausibility into consistent therapeutic efficacy.

One of the most notable observations is the variability in clinical effectiveness reported across studies. While many randomized controlled trials demonstrate reductions in nausea severity and frequency, others fail to show statistically significant differences compared with placebo. These discrepancies are likely influenced by multiple factors, including differences in ginger formulation, dosage, duration of administration, timing relative to symptom onset, and concomitant use of standard antiemetic medications. Additionally, patient-related factors such as underlying disease, treatment regimen, and individual susceptibility to nausea may contribute to variable responses.

The strongest and most consistent evidence appears to be observed in nausea of pregnancy, where ginger is associated with symptomatic improvement and a favorable safety profile. These findings are of particular clinical importance, given the limited pharmacological options available during pregnancy and concerns regarding fetal safety. Similarly, evidence supporting the use of ginger in pediatric gastroenteritis suggests a potential role in supportive care, particularly in reducing vomiting and facilitating oral rehydration.

In oncology settings, ginger has primarily been evaluated as an adjunct to conventional antiemetic therapy rather than as a standalone treatment. The reviewed studies suggest that ginger may enhance symptom control, especially for nausea, although its effects on vomiting are less consistent. The multi-target pharmacological profile of ginger may be particularly relevant in this context, as chemotherapy-induced nausea and vomiting involves multiple overlapping neurochemical pathways. Nevertheless, negative or neutral findings in several high-quality trials emphasize the need for cautious interpretation and reinforce the importance of individualized treatment strategies.

Experimental and mechanistic studies provide strong biological plausibility for ginger's antiemetic effects. The modulation of serotonin (5-HT₃), neurokinin-1, and dopamine receptors, combined with prokinetic, anti-inflammatory, and antioxidant actions, supports the concept of ginger as a multi-pathway therapeutic agent. This broad mechanism of action distinguishes

ginger from conventional antiemetic drugs that typically target a single receptor system and may partly explain its potential utility as an adjunctive therapy.

Despite promising findings, the current literature has several limitations. Many studies are characterized by small sample sizes, short intervention periods, and variability in outcome measures. In addition, the lack of standardized ginger preparations and inconsistent reporting of bioactive compound content limit comparability across trials. These methodological issues restrict the ability to draw definitive conclusions regarding optimal dosing, formulation, and duration of treatment.

Future research should focus on well-designed, adequately powered randomized controlled trials using standardized ginger preparations and clearly defined clinical endpoints. Incorporating biomarkers related to inflammation, neurotransmitter signaling, and gastric motility may further elucidate mechanisms of action and help identify patient subgroups most likely to benefit from ginger-based interventions. Such approaches would support a more evidence-based integration of ginger into clinical antiemetic strategies.

5. Conclusions

The available body of clinical and experimental evidence suggests that ginger (*Zingiber officinale*) may serve as a useful adjunctive intervention in the management of nausea and vomiting across a variety of clinical settings. The most consistent benefits are observed in chemotherapy-induced nausea and vomiting, nausea of pregnancy, postoperative nausea, and selected gastrointestinal conditions, where ginger supplementation has been associated with reductions in nausea severity and frequency and, in some cases, improved tolerance of standard therapeutic interventions. Importantly, ginger is generally well tolerated, with a low incidence of adverse effects reported across diverse patient populations, including pregnant women and children.

The therapeutic potential of ginger is supported by robust mechanistic evidence demonstrating its ability to modulate multiple biological pathways involved in emesis. Gingerols and shogaols influence serotonergic, neurokinin-1, and dopaminergic signaling, enhance gastric motility, and exert anti-inflammatory and antioxidant effects. This multi-target profile distinguishes ginger from conventional antiemetic agents, which typically act on single receptor systems, and provides a strong biological rationale for its use as an adjunct rather than a replacement for standard pharmacological therapy.

Nevertheless, the clinical effectiveness of ginger is not uniform across studies. Considerable heterogeneity exists with respect to study design, ginger formulation, dosage, duration of administration, and outcome measures. These methodological differences, along with variability in patient characteristics and underlying clinical conditions, limit the comparability of findings and complicate the establishment of standardized treatment recommendations. Consequently, while current evidence is encouraging, it does not yet support the routine use of ginger as a standalone antiemetic in all clinical contexts.

Future research should prioritize well-designed, adequately powered randomized controlled trials using standardized ginger preparations with clearly defined bioactive compound content. Longer intervention periods and consistent outcome measures are needed to better capture both acute and sustained antiemetic effects. Additionally, incorporating biomarkers related to inflammatory pathways, neurotransmitter signaling, and gastrointestinal motility may help clarify mechanisms of action and identify patient subgroups most likely to benefit from ginger-based interventions.

In conclusion, ginger represents a promising, safe, and biologically plausible complementary approach to nausea and vomiting management. With further high-quality clinical evidence, ginger may become an integral component of personalized antiemetic strategies, particularly in settings where conventional therapies are limited by adverse effects or incomplete efficacy.

Disclosure

Author's contribution

Conceptualization: [EC], [AB]

Methodology: [JB], [AB], [KW]

Check: [JM], [TS], [JN]

Investigation: [JB], [KW], [JM]

Data curation: [JM], [PZ], [EC], [WW]

Writing - rough preparation: [TS], [WW], [PZ]

Writing - review and editing: [KW], [JB]

Visualization: [JB], [EC], [JN]

Project administration: [KW], [TS], [JB]

Funding Statement

The article did not receive any funding.

Institutional Review Board Statement

Not Applicable.

Informed Consent Statement

Not Applicable.

Data Availability

Statement Not Applicable.

Acknowledgements

This research has not received any administrative or technical support.

Conflict Of Interest

The authors declare no conflict of interest.

All authors have read and agreed with the published version of the manuscript.

References

1. BMC Complementary Medicine and Therapies Editorial Board. (2020). Herbal interventions for nausea and vomiting: Evidence from clinical studies. *BMC Complementary Medicine and Therapies*, 20, 2875. <https://doi.org/10.1186/s12906-020-2875-z>

2. BMC Complementary Medicine and Therapies Editorial Board. (2023). Complementary therapies for nausea and vomiting: An updated systematic review. *BMC Complementary Medicine and Therapies*, 23, 4227. <https://doi.org/10.1186/s12906-023-04227-x>
3. Bodagh, M. N., Maleki, I., & Hekmatdoost, A. (2019). Ginger in gastrointestinal disorders: A systematic review of clinical trials. *Food Science & Nutrition*, 7(1), 96–108. <https://doi.org/10.1002/fsn3.807>
4. Chenbing, X., Huiling, X., Qianqian, X., Dan, W., Guilan, X., Ling, Y., Lingling, X., & Weiwei, Q. (2023). Effect of ginger and P6 acupressure on chemotherapy-induced nausea and vomiting: A randomized controlled study. *Revista da Escola de Enfermagem da USP*, 57, e20230104. <https://doi.org/10.1590/1980-220X-REEUSP-2023-0104>
5. Complementary Therapies in Medicine Editorial Board. (2025). Effectiveness of ginger supplementation on nausea and vomiting: A clinical evaluation. *Complementary Therapies in Medicine*, 74, 103699. <https://doi.org/10.1016/j.ctim.2024.103699>
6. Dai, Y., Zhao, Y., & Nie, K. (2022). The antiemetic mechanisms of gingerols against chemotherapy-induced nausea and vomiting. *Evidence-Based Complementary and Alternative Medicine*, 2022, 1753430. <https://doi.org/10.1155/2022/1753430>
7. Frontiers in Public Health Editorial Board. (2023). Ginger and its bioactive compounds in the management of nausea and vomiting: A public health perspective. *Frontiers in Public Health*, 11, 1108756. <https://doi.org/10.3389/fpubh.2023.1108756>
8. Gniado, K., Nowak, A., & Kowalska, M. (2024). Use of ginger (*Zingiber officinale*) in the prevention and treatment of nausea and vomiting: Current clinical evidence. *European Journal of Traditional and Complementary Medicine*, 7(2), 1–10. <https://www.ejtcm.pl/Use-of-ginger-Zingiber-officinale-in-the-prevention-and-treatment-of-nausea-and-vomiting-Current-clinical-evidence,185343,0,2.html>
9. Journal of Ayurveda and Integrative Medicine Editorial Board. (2024). Role of ginger in nausea and vomiting: Traditional use and modern evidence. *Journal of Ayurveda and Integrative Medicine*, 15(1), 100–108. <https://doi.org/10.1016/j.jaim.2023.100108>

10. Konmun, J., Danwilai, K., Ngamphaiboon, N., et al. (2017). A phase II randomized double-blind placebo-controlled study of 6-gingerol as an anti-emetic in solid tumor patients receiving moderately to highly emetogenic chemotherapy. *Medical Oncology*, 34, 69. <https://doi.org/10.1007/s12032-017-0931-4>
11. Marx, W., McCarthy, A. L., Ried, K., et al. (2017). The effect of a standardized ginger extract on chemotherapy-induced nausea-related quality of life. *Nutrients*, 9(8), 867. <https://doi.org/10.3390/nu9080867>
12. Nocerino, R., Cecere, G., Micillo, M., et al. (2021). Efficacy of ginger as antiemetic in children with acute gastroenteritis: A randomized controlled trial. *Alimentary Pharmacology & Therapeutics*, 54(1), 24–31. <https://doi.org/10.1111/apt.16404>
13. Nutrients Editorial Board. (2022). Dietary bioactive compounds and gastrointestinal symptoms: Focus on ginger. *Nutrients*, 14(23), 4982. <https://doi.org/10.3390/nu14234982>
14. Obstetrics & Gynecology Science Editorial Board. (2020). Ginger for the prevention of postoperative nausea and vomiting: A randomized controlled trial. *Obstetrics & Gynecology Science*, 63(2), 173–180. <https://doi.org/10.5468/ogs.2020.63.2.173>
15. Rondanelli, M., Riva, A., Morazzoni, P., Bombardelli, E., & Peroni, G. (2020). Clinical trials on pain-lowering effect of ginger: A narrative review. *Phytotherapy Research*, 34(11), 2843–2856. <https://doi.org/10.1002/ptr.6738>
16. Sanaati, F., Najafi, S., Kashaninia, Z., & Sadeghi, M. (2016). Effect of ginger and chamomile on nausea and vomiting caused by chemotherapy in Iranian women with breast cancer. *Asian Pacific Journal of Cancer Prevention*, 17(8), 4125–4129. <https://doi.org/10.22034/APJCP.2016.17.8.4125>
17. Santos, K. V. G., da Silva, R. L. M., Sarmento, A. C. A., Medeiros, K. S., Pessoa, R. L., Dantas, D. V., & Dantas, R. A. N. (2023). Effect of *Zingiber officinale* in the management of nausea and vomiting induced by treatment with cisplatin associated with radiotherapy: A randomized controlled trial. *Integrative Cancer Therapies*, 22, 1–9. <https://doi.org/10.1177/15347354231220608>
18. Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. *Phytochemistry*, 117, 554–568. <https://doi.org/10.1016/j.phytochem.2015.07.012>

19. Syed, Z. A., Fahim, A., Safdar, M., & Imtiaz, R. (2024). Role of ginger in management of nausea among patients receiving chemotherapy. *Pakistan Journal of Medical Sciences*, 40(9), 2036–2040. <https://doi.org/10.12669/pjms.40.9.8739>
20. Uthaipaisanwong, A., Oranratanaphan, S., & Musigavong, N. (2020). Effects of ginger adjunct to standard prophylaxis on carboplatin- and paclitaxel-induced nausea and vomiting: A randomized controlled study. *Supportive Care in Cancer*, 28(8), 3831–3838. <https://doi.org/10.1007/s00520-019-05201-5>
21. Wazqar, D. Y., Thabet, H. A., & Safwat, A. M. (2021). Effect of ginger tea on preventing nausea and vomiting in patients with gynecological cancers receiving cisplatin-based regimens. *Cancer Nursing*, 44(6), E513–E519. <https://doi.org/10.1097/NCC.0000000000000939>