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Abstract

Introduction: Nowadays, depression is one of the most common illnesses, affecting over 300
million people worldwide. Over the course of a lifetime, several dozen percent of the adult
population of various ages and backgrounds will experience it. Depression is a debilitating
disorder characterized by low mood, reduced interests, impaired cognitive functions, and
vegetative symptoms such as sleep or appetite disturbances. According to the World Health
Organization (WHO), it is the leading cause of disability and has a significant impact on quality
of life, both privately and professionally. Its symptoms are heterogeneous and often overlap
with other disorders, which means that this illness is not always accurately diagnosed. To assist
physicians, in recent years researchers in this field have developed numerous machine learning

methods aimed at improving the diagnostic and treatment process of this condition.

Aim of the study: The aim of this study is to summarize the current state of knowledge on the

use of machine learning methods in the diagnosis of depression.

Methods and materials: A literature review was conducted using the PubMed database with

relevant search terms.

Results: Articles describing studies that applied machine learning methods to predict and
identify depression were included in the review. The machine learning models in these studies
used data derived from neuroimaging, electronic health records (EHR), and peripheral blood

transcriptomes.



Conclusion: Our review suggests that machine learning has great potential in the diagnosis of
depression. This area of artificial intelligence offers new ways to analyze data and automate
diagnostic processes. In the future, machine learning algorithms may become an integral part

of standard psychiatric diagnostics.

Key words: depression, diagnostics, machine learning, artificial intelligence

Abstrakt

Woprowadzenie: W dzisiejszych czasach depresja jest jedna z najczgs$ciej wystgpujacych
chordb, dotykajaca ponad 300 miliondéw ludzi na Swiecie. W ciagu catego zycia choruje na nig
kilkanascie procent populacji 0s6b dorostych w réoznym wieku i z r6znych srodowisk. Depresja
to wyniszczajaca choroba charakteryzujaca si¢ obnizonym nastrojem, zmniejszonymi
zainteresowaniami, upo$ledzonymi funkcjami poznawczymi i objawami wegetatywnymi,
takimi jak zaburzenia snu lub apetytu. Wedlug Swiatowej Organizacji Zdrowia (WHO),
stanowi glowng przyczyne niepelnosprawnosci oraz znaczaco wplywa na jakos$¢ zycia,
zarowno w sferze prywatnej, jak i zawodowe;j. Jej objawy sg niejednorodne i czgsto pokrywaja
si¢ z innymi zaburzeniami, co sprawia, ze choroba ta nie zawsze jest trafnie diagnozowana.
Aby pomoc lekarzom, w ciggu ostatnich kilku lat badacze w tej dziedzinie opracowali wiele
metod uczenia maszynowego, ktore majg pomoc w poprawie procesu diagnostyki i leczenia tej

choroby.

Cel pracy: Celem tej pracy jest podsumowanie aktualnego stanu wiedzy na temat uzycia metod

uczenia maszynowego w diagnostyce depresji.

Metody i materialy: Dokonano przegladu literatury dostepnej w bazie PubMed uzywajac

kluczowych wyrazen.

Wyniki: Do przegladu wybrano artykuly opisujace badania, w ktorych wykorzystano metody
uczenia maszynowego w celu przewidywania i identyfikacji depresji. Modele uczenia
maszynowego w tych badaniach wykorzystywaly dane pochodzgce z neuroobrazowania,
elektronicznej dokumentacji medycznej (EHR) oraz transkryptomy krwi obwodowej.

Podsumowanie: Nasz przeglad sugeruje, ze uczenie maszynowe ma ogromny potencjat w

diagnostyce depresji. Ten obszar sztucznej inteligencji oferuje nowe sposoby analizy danych i



automatyzacji procesow diagnostycznych. W przysztosci, algorytmy uczenia maszynowego

moga stac si¢ integralng cz¢$cig standardowej diagnostyki psychiatryczne;.

Stowa klucze: depresja, diagnostyka, uczenie maszynowe, sztuczna inteligencja

I.  Wprowadzenie

Obecnie depresja jest jedna z najpowszechniejszych i najpowazniejszych chorob psychicznych,
ktorej doswiadcza ponad 300 milionéw ludzi na catym §wiecie [1]. Okoto dwa razy czesciej
dotyka kobiet niz m¢zczyzn 1 wystepuje u jednego na szesciu dorostych w ciggu ich zycia [2].
Jej globalna czgstos¢ wystgpowania wzrosta gwattownie o 48% ze 172 milionéw do 258
milionéw w latach 1990-2017 [3]. Etiologia depres;ji jest wieloczynnikowa, a jej dziedzicznos¢
szacuje si¢ na okoto 35%. Wazng role odgrywaja réwniez czynniki srodowiskowe, w tym
przemoc seksualna, fizyczna i emocjonalna w dziecinstwie [2]. Znana jest jako jedno z
gldwnych zaburzen nastroju, charakteryzujace si¢ znaczng i dtugotrwata depresja emocjonalna,
spowolnionym mysleniem i uposledzeniem funkcji poznawczych [4]. Towarzysza temu takie
objawy jak niepokéj i pobudzenie, wyczerpanie i brak energii, poczucie winy lub
bezwarto$ciowosci [5]. Choroba ta stanowi gldwna przyczyne¢ niesprawnosci i niezdolnosci do
pracy na $wiecie, a takze moze prowadzi¢ do innych probleméw zdrowotnych. Tacy pacjenci
obarczeni sg wigkszym ryzykiem cukrzycy, otytosci, udaru, choréb uktadu krazenia,
nowotworoOw czy choroby Alzheimera [2]. Ponadto nieleczona depresja jest gldownym
czynnikiem przyczyniajacym si¢ do samobojstw, dotykajacym setki tysigcy przypadkow
rocznie [6,7]. Dlatego tez, tak wazne jest jej wczesne rozpoznanie 1 wdrozenie odpowiedniego

leczenia.

W ciggu ostatnich lat odnotowano nieznaczng poprawe w opiece nad zdrowiem psychicznym
w kontekscie depresji [8]. Wynika to z faktu, Ze depresja jest ztozong jednostka kliniczna, ktorej
objawy sa niejednorodne i1 czgsto pokrywaja si¢ z objawami innych zaburzen, takich jak
choroba afektywna dwubiegunowa, schizofrenia czy choroba Parkinsona. Moze to stanowi¢
trudnosci dla lekarzy w zakresie zar6wno dokladnej diagnozy, jak i1 dobrania odpowiedniego,
skutecznego leczenia [6,9]. Obecnie identyfikacja oséb z depresja opiera si¢ calkowicie na
doswiadczeniu klinicysty [6]. Diagnoza stawiana jest w duzej mierze na podstawie
samodzielnie opisywanych objawéw 1 wywiadéow klinicznych [1]. Ztotym standardem jest

ustrukturyzowany wywiad psychiatryczny [10], ktéry obejmuje sprawdzone skale depresji,



takie jak Center for Epidemiologic Studies—Depression Scale, Hamilton Rating Scale for
Depression-17, Montgomery-Ashberg Depression Rating Scale i Beck Depression Inventory
[11]. Chociaz jest rutynowo stosowana, metoda ta pozostaje subiektywna dla klinicysty
przeprowadzajgcego wywiad, co moze prowadzi¢ do roznic w diagnozie [1]. Ponadto istnieje
uprzedzenie spoteczne wokot diagnoz depresji, co utrudnia wielu pacjentom bycie szczerymi

co do swoich mysli i uczu¢ podczas wizyt lekarskich [11].

W zwigzku z tym problemem, badane sg alternatywne metody obiektywnej diagnozy opartej
na biologii, ktore pozwolg na lepszg identyfikacje¢ osob cierpigcych na depresj¢ i utoruja droge
do skuteczniejszych interwencji i prawidlowo dobranych strategii leczenia [13,13]. Aby pomoc
klinicystom, badacze w tej dziedzinie opracowali wiele metod uczenia maszynowego (ang.
machine learning, ML)[6]. Uczenie maszynowe jest poddziedzing sztucznej inteligencji, ktorej
celem jest uczenie si¢ nowych elementéw wiedzy z duzych ilosci danych [14]. W ostatnich
latach metody te zyskuja na znaczeniu jako narzedzie wspomagajace procesy diagnostyczne w
medycynie. ML moze poprawi¢ wydajno$¢ procesu diagnostycznego, gwarantujac
jednoczesnie jego doktadnosé. Ponadto moze dostarczac istotnych klinicznie informacji, ktére

uzupehniaja informacje tradycyjnych metod [14].
Il.  Cel pracy

Celem tej pracy jest podsumowanie aktualnego stanu wiedzy na temat uzycia metod uczenia
maszynowego w diagnostyce depresji oraz zilustrowanie, w jaki sposob ML moze przyczyni¢

si¢ do procesu diagnostycznego w psychiatrii.
1. Metody i materialy

Dokonano przegladu literatury dostgpnej w elektronicznej bazie danych PubMed uzywajac
kluczowych wyrazen. Przeszukiwania ograniczono do informacji opublikowanych migdzy
pazdziernikiem 2015 r. a pazdziernikiem 2024 r. przy uzyciu termindow wyszukiwania
“depression”, “diagnostics”, “machine learning”, “artificial intelligence” zaréwno w izolacji,
jak 1 w potaczeniu. Badania zostalty uwzglednione, jesli skupialy si¢ na klasyfikacji oséb z
depresja 1 zdrowych osob stanowigcych grupe kontrolng (lub innych zaburzen moézgu) przy

uzyciu metod uczenia maszynowego.



IV.  Wyniki

A. W sytuacjach, w ktdrych klasyfikacja DSM (Diagnostic and Statistical Manual of Mental
Disorders) jest niejednoznaczna, a subiektywne wrazenie kliniczne moze by¢ mylace,
potrzebne jest obiektywne ale i1 tez skuteczne narzedzie diagnostyczne wykorzystujace na
przyktad pomiary obrazowania moézgu [15]. Neuroobrazowanie, w szczego6lnosci metoda
rezonansu magnetycznego (MRI) wykazato swoja zdolnos¢ do nieinwazyjnego badania
struktury i funkcji mézgu u pacjentdw z depresja, co moze postuzy¢ jako potezne narzedzie do

badania roznicujacych biomarkerow [9].

Rézne cechy mozgu zwigzane z depresja sa badane za pomocg réznych modalnosci MRI.
Ogolnie wyr6znia si¢ metody obrazowania strukturalnego i funkcjonalnego. Najczestsze
metody MRI stosowane do badania struktury mézgu obejmujg obrazowanie T1-wazone, T2-
wazone oraz obrazowanie tensora dyfuzji (DTI). Obrazy T1-wazone wykorzystuje si¢ do
badania obszarow korowych. Dzigki wysokiemu kontrastowi mig¢dzy istota szarg i bialg
pozwalajg na precyzyjniejsze oznaczanie regiondéw istoty szarej. Obrazowanie to poprzez
badanie regionalnych réznic i zmian objetosci, umozliwia oceng nasilenia zaniku w obszarach
korowych. Obrazy T2-wazone stuzg do oceny hiperintensywnosci istoty biatej (WMH), ktore
wigzg si¢ z niedokrwiennymi zmianami w moézgu. Pomiary objetosci WMH sg istotne w
identyfikacji depresji (zwlaszcza depresji pdznego wieku), gdyz sg powigzane z jej rozwojem
lub ryzykiem rozwoju. Natomiast aktywno$¢ modzgu, a takze laczno$¢ funkcjonalna miedzy
réznymi obszarami korowymi jest badana za pomoca obrazowania fMRI poprzez
wykorzystanie ukrytego przeptywu krwi. Tak uzyskane dane anatomiczne 1 fizjologiczne daja
wielowymiarowy obraz struktury i funkcji mézgu. Umozliwia to budowe modeli ML, ktore
rozrdzniajg osoby z depresjg od zdrowych [9]. W latach 2016-2017 przeprowadzonych zostato
kilkanascie badan opartych na uczeniu maszynowym, ktore wykorzystywaly obrazowanie
metoda rezonansu magnetycznego jako dostep do gromadzenia danych. Do pordéwnania
wybrano tylko te, ktore skupialy si¢ na odroznieniu pacjentow z MDD (major depressive
disorder) od zdrowej kontroli (HC) [15].



Tabela 1. Podsumowuje rézne aspekty 10 wybranych badan.

Referencje Wielko$¢ préby | Funkcja Metoda Walidacja Doktadno$é¢
krzyzowa
16 MDD =58 FC (rsfMRI) PLS Loocv 80.0%
HC =65
17 MDD = 29 FC (rsfMRI) SVM Loocv 91.9% (1st sample)
HC =33 86.4% (2nd
(1st sample); sample)
MDD =46
HC =57
(2nd sample)
18 MDD =31 FC (rsfMRI) SVM Loocv 95.0%
HC =29
19 MDD =25 FA (DTI) SVM LOOCV 74.0%
HC =25
20 MDD = 180 FC (rsfMRI) SVM 10-fold CV 45.0%~56.1%
HC =180
21 MDD = 38 FC (rsfMRI) SVM LOOCV 76.1%
HC =29
22 MDD = 333 (4 | FC (rsfMRI) SVM Loocv 89.2%
biotypes)
HC =378
23 MDD = 23 GM, WM | SVM 5-fold CV 70.0%
HC =20 (SMRI)
24 MDD =15 Spatial SVM 5-fold CV 66.0%
HC =19 independent
components
(rsfMRI)
25 MDD =16 Contrast maps | SVM LOOCV 75.0%
HC =16 (task fMRI)




MDD, major depressive disorder; GM, gray matter; MRI, magnetic resonance imaging; DTI, diffusion tensor
images; FC, functional connectivity; WM, white matter; CV, cross-validation; LOOCV, leave-one-out cross-

validation; FA, fractional anisotropy; PLS, partial least squares regression; SVM, support vector machines.

Funkcje wykorzystywane w powyzszych badaniach koncentrowaty si¢ gloéwnie na
wykorzystaniu cech fMRI (7 fMRI w stanie spoczynku; 1 fMRI zwigzane z zadaniem). Ogolnie
rzecz biorac, dane gromadzone za pomoca rsfMRI wykazaty wyzsza dokladno$¢ niz inne
modalno$ci. Ponadto prawie wszystkie wybrane badania wykorzystywaly metode SVM jako
podstawowa metod¢ klasyfikacji 1 metode LOOCV do walidacji krzyzowej. SVM jest
najpopularniejszym wyborem wsrdd metod, dzigki niezawodnym podstawom teoretycznym i
elastycznej reakcji na dane wielowymiarowe. Duza zmienno$¢ jej wydajnosci moze wynikac z
r6znych rozmiaréw probek. Nie mniej jednak wyniki tych badan wskazuja, ze uczenie SVM
stosowane do danych neuroobrazowania moze klasyfikowa¢ obecno$¢ lub brak MDD. W
przypadku walidacji krzyzowej zaleta metody LOOCYV jest dostarczanie wigkszej ilosci danych
do etapu szkolenia metody uczenia si¢. Podsumowujac, w wybranych badaniach podejscie
taczace spoczynkowa tacznos¢ funkcjonalng MRI i wieloczynnikowa analize wzorcow
pozwolito na pomys$lng identyfikacje pacjentéw z depresja. Nalezy jednak podkresli¢, ze
zdecydowana wigkszos¢ tych badan obejmowata niewielkie proby, ktore nie przektadajg si¢ na
bardziej realistycznga populacje. Dlatego tez istnieje potrzeba uwzglednienia wigkszych

rozmiarOw prob w przysztych badaniach [15].

B. Proces diagnostyczny depresji przeprowadzany przez lekarzy podstawowej lub
specjalistycznej opieki zdrowotnej zazwyczaj opiera si¢ na Miedzynarodowym Katalogu
Choréb Swiatowej Organizacji Zdrowia w wersji 10 lub 11, ICD-10/11, Podreczniku
diagnostycznym 1 statystycznym zaburzen psychicznych DSM lub na podstawie scenariusza
wywiadu, takiego jak Composite International Diagnostic Interview (CIDI). Pomocne moga
by¢ réwniez standardowe kwestionariusze, takie jak Hospital Anxiety and Depression Scale
(HADS), Beck Depression Inventory (BDI) czy Patient Health Questionnaire-9 (PHQ-9) [7,
26]. PHQ-9 jest uwazany za zloty standard w badaniach przesiewowych i zostal potwierdzony
na arenie mi¢dzynarodowej [26]. W ostatnich latach podjeto wiele prob wspierania wezesnych
diagnoz depresji. Badacze skorzystali migdzy innymi z rosnacej dostgpnosci elektronicznej
dokumentacji medycznej (EHR) oraz nowych postepow w uczeniu maszynowym (ML).
Uzycie EHR w krajach rozwini¢tych jest dobrze ugruntowane. Na przyktad w krajach tj. USA,
Wielka Brytania, Australia, Nowa Zelandia i Holandia, wykorzystanie tego systemu w opiece



podstawowej przekroczyto 90%. Warto zauwazyé, ze potaczenie technik uczenia
maszynowego z danymi EHR bylo juz stosowane w innych dziedzinach medycyny, co
umozliwito stworzenie m.in. modeli predykcyjnych dla schorzen sercowo-naczyniowych i
cukrzycy [7].

W 2023 roku poréwnano badania, w ktorych wykorzystano metody uczenia maszynowego do
trenowania, walidacji i testowania modeli uczenia maszynowego w celu przewidywania i
identyfikacji zaburzen depresyjnych na podstawie danych EHR. Badania réznity si¢ pod
wzgledem wybranej definicji depresji oraz rodzaju i zakresu predyktorow. W czesci badan
zastosowano kombinacj¢ definicji opartych na kodach NHS Read, kodach SNOMED
(Systematized Nomenclature For Medicine), ocenach opartych na ICD lub DSM i/lub
przepisywaniu lekéw przeciwdepresyjnych (AD). Natomiast w cze$ci wykorzystano
kwestionariusze, takie jak PHQ-9 lub HADS. W wigkszo$ci badan uzyto takich predyktorow
jak: pte¢, wiek, objawy i1 inne diagnozy psychiatryczne, choroby wspotistniejace, historig
rodzinng (naduzycia fizyczne/seksualne/substancji), palenie, czynniki spoteczne/rodzinne
(zaloba, rozwod, samotne rodzicielstwo), naduzywanie alkoholu/substancji. Co wigcej,
niektore predyktory zostaly zdefiniowane poprzez wstepne przetworzenie notatek
klinicznych/innych informacji tekstowych. Kilka badan wykorzystalo rowniez pomiary
fizjologiczne, na przyktad wskaznik masy ciala (BMI), ci$nienie krwi i cholesterol, jako
predyktory niekategoryczne.

Do najpowszechniejszych technik statystycznych, zastosowanych do klasyfikacji depresji,
nalezg modele regresji i Random Forest, XGBoost i SVM. Ogo6lna wydajno$§¢ modelu w
poréwnywanych badaniach wynosita 0,78 przy odchyleniu standardowym 0,07 (wartos¢ AUC-
ROC). Jednym z czynnikow ograniczajacych wydajnos¢ jest definicja samej depresji 1 uzytych
predyktorow. Niezbedne jest prawidtowe i dokladne zdefiniowanie depresji, poniewaz ta
definicja jest uzywana do trenowania ML. Ponadto, dane tj. rodzinna historia depresji, alkoholu,
narkotykow, przemocy fizycznej 1 seksualnej oraz wspolistnienie innych problemow zdrowia
psychicznego wydaja si¢ by¢ niedostatecznie rejestrowane. Skutkuje to usunigciem istotnych
czynnikow predykcyjnych z powodu niskiej czestosci ich wystgpowania [27]. Co wigcej,
wykorzystywanie recept na leki przeciwdepresyjne jako cze$ci definicji moze bigdnie
identyfikowa¢ zbyt wiele przypadkow [27]. Wynika to z faktu, ze leki te s3 réwniez
przepisywane w przypadkach tj. zaburzenia lekowe, przewlekty bol, zaburzenia obsesyjno-

kompulsywne czy zespot stresu pourazowego [7].
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C. Coraz wiecej badan dowodzi, ze sygnalizacja molekularna depresji jest powigzana z
ekspresja mikroRNA 1 ze dysregulacja tego procesu moze inicjowaé¢ lub zaostrzaé
patofizjologi¢ depresji. Juz w 2012 roku odkryto, ze ekspresja kilku mikroRNA w korze
przedczotowej osob dotknigtych zaburzeniami depresyjnymi (ktore popetnity samobdjstwo)
byla znacznie obnizona, w poréwnaniu z dopasowanymi uczestnikami proby kontrolnej [28].
ML odniosto juz sukces w zakresie wykrywania biomarkeréw, prognozy i diagnozy choréb w
psychiatrii [29]. Np. badania z 2019 wykazaly skuteczne wykorzystanie ML w identyfikacji
sygnatury mikroRNA w surowicy dla choroby Alzheimera, ktora moze przewidywac stan
choroby z doktadnoscia 85,7% [30]. Biorac pod uwage wazng role mikroRNA w patofizjologii
depres;ji i skutecznos¢ ML w wykorzystywaniu ztozonych danych, w 2020 roku podj¢to badania
w celu wykazania czy analiza profili mikroRNA we krwi przez ML moze stuzy¢ jako nowe
podejscie do odkrywania biomarkerow w MDD. Uczestnicy badania zostali zrekrutowani z
kliniki ambulatoryjnej Douglas Mental Health University Institute w Montrealu w Kanadzie i
ocenieni przez doswiadczonego psychiatre przy uzyciu SCID-1 zgodnie z kryteriami DSM-IV.
Liczba probek mikroRNA obejmowata 140 przypadkéw depresji i 28 zdrowych oséb
kontrolnych. Catkowita liczba cech mikroRNA wynosita 285. Do analizy danych przez ML
uzyto najnowoczesniejszego, ale interpretowalnego podejscia regularized gradient boosted
machines (implementacja XGBoost, Chen 1 Guestrin, 2016)[28], jako ze algorytm ten sprawdzit
si¢ juz w poprzednim badaniu dotyczacym schizofrenii [31]. Przypadki MDD mozna byto
odrozni¢ od zdrowych 0sob kontrolnych z AUC wynoszacym 0,97. Wyniki sugeruja, Ze analiza
profili mikroRNA we krwi przez ML moze stanowi¢ niezawodne podejscie do odkrywania
biomarkeréw depresji 1 prowadzi¢ do jej szybszej 1 trafniejszej diagnozy. Wielkos¢ proby w
tym badaniu byta jednak stosunkowo niewielka, dlatego istnieje potrzeba dalszych badan
obejmujacych wigksza liczbe probek i uwzgledniajacych inne szczegdtowe dane kliniczne

pacjentow [28].

D. W celu poprawy diagnostyki i zrozumienia etiologii depresji w 2021 roku przeprowadzono
badanie, ktorego gtownym celem byto stworzenie modelu predykcyjnego do diagnozy tej
choroby w oparciu o transkryptomy krwi obwodowej. Zebrano dziewig¢ zestawoéw danych
ekspresji RNA pacjentow z zaburzeniami depresyjnymi i zdrowych probek pochodzacych z
bazy danych Gene Expression Omnibus. Nast¢pnie przeprowadzono metaanalize aby odkry¢
roznicowo ekspresjonowane geny (DEG) réznigce si¢ miedzy osobami chorymi a grupg
kontrolng. W ten sposéb ujawniono, ze szes¢ DEGs (AKR1C3, ARG1, KLRB1, MAFG,
TPST1 i WWC3) moze odgrywac¢ wazng rolg¢ w patofizjologii depresji. Nastgpnie zbadano je
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pod katem ich zdolno$ci diagnostycznych. Kazdy gen oceniano indywidualnie. Tym sposobem
uzyskano AUC wynoszaca odpowiednio 0,63 + 0,04, 0,67 + 0,07, 0,70 + 0,11, 0,64 + 0,08, 0,68
+0,0710,62 +0,09. Aby uzyskac lepsza skuteczno$¢ diagnostyczng, porownano cztery modele
ML (SVM, RF, kNN i NB) z AUC wynoszagcym odpowiednio 0,84 + 0,09, 0,81 £ 0,10, 0,73 +
0,11 i 0,83 + 0,09. Ze wzgledu na najwyzsza $rednig AUC wybrano SVM jako model
diagnostyczny dla depresji. Ostatecznie badacze uzyskali model diagnostyczny SVM
obejmujacy 70 gendw cech, ktory byt w stanie odrézni¢ probki MDD od zdrowych oséb
kontrolnych 1 wygenerowat AUC wynoszace 0,83. Wyniki pokazaty, ze moc predykcyjna tego
modelu byla wyzsza niz pojedynczego genu jako wskaznika klasyfikacji. Badanie to
dostarczylo kilku biomarkerow, ktore moga by¢ cennym podejsciem do diagnozowania
zaburzen depresyjnych w praktyce klinicznej. Ponadto zwraca uwage na to, w jaki sposéb
metaanaliza 1 ML moga by¢ wykorzystywane do znajdowania wzglednie obiektywnych
markerdw transkrypcyjnych dla ztozonych choréb psychicznych [13].

V. Podsumowanie

Powyzszy przeglad potwierdza potencjalne zastosowanie technik uczenia maszynowego w
diagnostyce zaburzen depresyjnych. Wyniki tego przegladu wskazuja, ze wykorzystanie
technik uczenia maszynowego i neuroobrazowania, EHR czy transkryptomdw krwi obwodowej
moze zapewni¢ wydajnos¢ porownywalng lub nawet wyzsza niz ta, ktorg mozna uzyskaé¢ w
opiece podstawowej. Ponadto takie podejScie moze znaczaco usprawni¢ proces wykrywania
choroby, umozliwi¢ wcze$niejsze interwencje oraz poprawi¢ efektywno$¢ leczenia, co jest
szczegolnie istotne w kontek$cie globalnego wzrostu liczby przypadkow depres;i.
Podsumowujac, przyszte badania powinny koncentrowac si¢ na wykorzystywaniu wigkszych
prob oraz integracji réznych zrédet danych, aby tworzy¢ bardziej wszechstronne narzedzia

diagnostyczne.
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