

CIECIERSKA, Kinga, NAPIERAŁA, Michał, ŁAPIŃSKI, Maciej, ZINKO, Oksana, WASILKOWSKA, Krystyna, ZIMNOCH-WŁODARCZYK, Aleksandra, ŁATKOWSKA, Sylwia, RZECZYCKA, Aleksandra and SOCHA, Wiktoria. The impact of whiplash injury on temporomandibular joint function: a literature review. *Quality in Sport*. 2026;49:67996. eISSN 2450-3118.

<https://doi.org/10.12775/QS.2026.49.67996>
<https://apcz.umk.pl/QS/article/view/67996>

The journal has been awarded 20 points in the parametric evaluation by the Ministry of Higher Education and Science of Poland. This is according to the Annex to the announcement of the Minister of Higher Education and Science dated 05.01.2024, No. 32553. The journal has a Unique Identifier: 201398. Scientific disciplines assigned: Economics and Finance (Field of Social Sciences); Management and Quality Sciences (Field of Social Sciences).

Punkty Ministerialne z 2019 - aktualny rok 20 punktów. Załącznik do komunikatu Ministra Szkolnictwa Wyższego i Nauki z dnia 05.01.2024 Lp. 32553. Posiada Uniakatowy Identyfikator Czasopisma: 201398.

Przypisane dyscypliny naukowe: Ekonomia i finanse (Dziedzina nauk społecznych); Nauki o zarządzaniu i jakości (Dziedzina nauk społecznych). © The Authors 2026.

This article is published with open access under the License Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland. Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non-commercial Share Alike License (<http://creativecommons.org/licenses/by-nc-sa/4.0/>), which permits unrestricted, non-commercial use, distribution, and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interest regarding the publication of this paper.

Received: 05.01.2026. Revised: 15.01.2026. Accepted: 15.01.2026. Published: 17.01.2026.

Short Article

The impact of whiplash injury on temporomandibular joint function: a literature review

Kinga Ciecierska [KC]

Mazovian Dental Center Ltd.,

1 Nowy Zjazd Street, 00-301 Warsaw, Poland.

ORCID: <https://orcid.org/0009-0004-6888-8672>

e-mail: kingaa.ciecierska@gmail.com

Michał Napierała [MN]

Medical University of Silesia in Katowice,

15 Poniatowskiego Street, 40-055 Katowice, Poland.

ORCID: <https://orcid.org/0009-0005-9543-3881>

e-mail: xmichael121@gmail.com

Maciej Łapiński [ML]

Medical University of Białystok,

1 Jana Kilińskiego Street, 15-089 Białystok, Poland

ORCID <https://orcid.org/0009-0008-4509-8618>

e-mail: maciek.lapinski.99@gmail.com

Oksana Zinko [OZ]

Gajda-Med District Hospital,
19 Teofila Kwiatkowskiego Street, 06-102 Pułtusk, Poland.

[ORCID <https://orcid.org/0009-0009-7581-0896>](https://orcid.org/0009-0009-7581-0896)

[e-mail: oksankazinko@gmail.com](mailto:oksankazinko@gmail.com)

Krystyna Wasilkowska [KW]

St. Luke's Hospital in Bolesławiec,
4 Jeleniogórska Street, 59-700 Bolesławiec, Poland.

[ORCID: <https://orcid.org/0009-0007-6890-3459>](https://orcid.org/0009-0007-6890-3459)

[e-mail: vasilkova9595@gmail.com](mailto:vasilkova9595@gmail.com)

Aleksandra Zimnoch-Włodarczyk [AZW]

Beskid Oncology Center, City Hospital of John Paul II in Bielsko-Biała
Department of Gynecology and Obstetrics and Gynecologic Oncology,
21 Stanisława Wyspiańskiego Street, 43-300 Bielsko-Biała, Poland.

[ORCID <https://orcid.org/0009-0009-3851-2726>](https://orcid.org/0009-0009-3851-2726)

[e-mail: a.zim.wlo@gmail.com](mailto:a.zim.wlo@gmail.com)

Sylwia Łatkowska [SŁ]

[Zdrowie Plus Non-Public Health Care Center \(NZOZ\),
58 Wojciechowskiego Street, Warsaw, Poland.](https://orcid.org/0009-0004-1251-6554)

[ORCID: <https://orcid.org/0009-0004-1251-6554>](https://orcid.org/0009-0004-1251-6554)

[e-mail: latkowskasm@gmail.com](mailto:latkowskasm@gmail.com)

Aleksandra Rzeczycka [AR]

Medical University of Lodz,
251 Pomorska Street, 92-213 Lodz, Poland
[ORCID: <https://orcid.org/0009-0005-9343-7205>](https://orcid.org/0009-0005-9343-7205)
[e-mail: aleksandra.rzeczycka.mail@gmail.com](mailto:aleksandra.rzeczycka.mail@gmail.com)

Wiktoria Socha [WS]

Medical University of Lodz,

251 Pomorska Street, 92-213 Lodz, Poland

ORCID: <https://orcid.org/0009-0003-1847-7501>

e-mail: wika.socha@wp.pl

Corresponding Author:

Kinga Ciecielska, e-mail: kingaa.ciecielska@gmail.com

Abstract

Introduction: Whiplash injuries are one of the most prevalent consequences of traffic collisions and are associated with a wide range of conditions referred to as whiplash-associated disorders (WAD). These manifestations are most commonly associated with pain and limited mobility of the cervical spine. A growing number of research indicates that these injuries may also impair the function of the temporomandibular joints (TMJs), thereby contributing to the development of their subsequent disorders.

The aim of the study: The objective of the study was to discuss the correlations and dependency between whiplash injury and temporomandibular joint function. Acquiring this knowledge enables specialists to make precise diagnoses and implement appropriate therapeutic procedures, thereby reducing the risk of misdiagnosis or misdiagnosis omissions.

Materials and methods: The following literature review provides a comprehensive discussion of the association between whiplash injuries and temporomandibular joint function. In December 2025, an extensive search of prominent electronic databases (PubMed, Google Scholar) was undertaken in order to identify relevant published studies on this subject.

Conclusions: Studies indicate that whiplash injury may impair TMJ function and contribute to the development of TMJ disorders. The mechanisms underlying this relationship may be functional or neurophysiological in nature, but remain under investigation.

Symptoms may be transient or persist long-term for several years, underscoring the necessity for a holistic diagnosis and an interdisciplinary therapeutic approach in patients after whiplash injury.

Keywords: whiplash injuries, temporomandibular disorders, temporomandibular joint, cervical vertebrae

Introduction

Whiplash injury is a significant clinical problem, being one of the most prevalent consequences of traffic accidents.[1] It is estimated that it affects up to 83% of patients involved in such collisions. [2] The mechanism of injury may be associated with hyperextension of the lower cervical spine in relation to the relative flexion of the upper region, causing the cervical spine to assume a characteristic S-shaped form. [3] Sudden movements of the head relative to the torso lead to overload of the muscle structures, ligaments, and nerves of the cervical region. Consequently, due to anatomical connections, this may affect the function of the temporomandibular joints. The craniocervical and temporomandibular areas are functionally related, and any head and neck injuries may disrupt motor control and impair natural masticatory function. [4] The literature increasingly describes cases of temporomandibular joint pain, limited mandibular mobility, and myofascial symptoms subsequent to whiplash injury. [5,6] These manifestations constitute a picture of temporomandibular dysfunction, which may be divided into two categories: those affecting the muscles and those affecting the joint structures themselves. [7] The symptoms discussed may be secondary to the injury or lead to the manifestation of pre-existing disorders. [8] A frequently observed phenomenon among researchers is a higher incidence of temporomandibular joint pain following whiplash injury, compared with individuals who have not sustained such trauma. [9,10] It is therefore imperative to perform comprehensive and interdisciplinary diagnostics of patients following injury, including not only examination of the cervical spine, but also assessment of the temporomandibular joints and masticatory muscles. These evaluations are crucial for maximizing the effects of treatment and mitigating the risk of possible post-traumatic complications.

The aim of the study

The aim of this study is to analyze the connection between acceleration-deceleration injuries and temporomandibular disorders (TMDs), with particular emphasis on the clinical manifestations, pathophysiological mechanisms, and risk factors for TMD following injury. Identifying this relationship is crucial to reduce the likelihood of misdiagnosis, avoid undiagnosed conditions, serious complications and enables the implementation of appropriate therapeutic procedures. The latest reports on this subject are presented in this article.

Materials and methods

The study was conducted by means of a review of the latest available literature, especially articles on whiplash injuries and temporomandibular joint dysfunction found in the PubMed

and Google Scholar databases. A multiple search terms were employed, including: “whiplash injuries,” “temporomandibular disorders,” “temporomandibular joint,” and “cervical vertebrae.” All selected articles were the most relevant articles available for this review.

Clinical picture

A study of 300 patients diagnosed with temporomandibular disorders (TMDs) who had previously been involved in a traffic accident, conducted by Friedman et al., determined that the most commonly reported symptoms were jaw pain, neck pain, post-traumatic headache and severe clicking in the temporomandibular joints. The most prevalent TMD diagnoses included: myofascial trigger points, excessive activity of the jaw closing muscles, TMJ synovitis and disc derangements.[11]

In turn, Pressman et al. most frequently observed disc displacement, abnormal fluid or swelling of the temporomandibular joint in the majority of their studies employing magnetic resonance imaging. [12]

An accurate MRI-based diagnosis provided a comprehensive understanding of the condition, leading to the publication of a study in 2021 that analyzed alterations in the temporomandibular joints (TMJs) and surrounding muscles following whiplash-associated injury (wTMD) compared with alterations observed in patients with idiopathic temporomandibular disorders (iTMD). [13] The most significant abnormal findings in the MRI study of the wTMD group were as follows: disc deformity, degeneration of the mandibular condyles, anterior displacement of the disc without reduction, anterior displacement of the disc with reduction, and effusion. [13] In the analysis of the masticatory muscles, the most significant structural changes were observed in the lateral pterygoid muscle (LPM) with both volume and signal changes on MRI being considerably more prevalent in the post-traumatic group. In the case of other muscles, including the temporal, medial pterygoid muscle (MPM) and masseter, changes were rarely observed or not detected at all. The degree of muscle pain upon palpation was most severe in the masseter muscle in both groups, while the temporal muscle, LPM and MPM exhibited heightened tenderness in patients with whiplash injury compared to iTMD group. Surprisingly, however, despite the observation of actual structural changes in the lateral pterygoid muscle on MRI, tenderness was rare in both groups. [13]

A review of the literature also reveals gender-related differences in clinical symptoms and structural changes in TMJ tissues after whiplash injury. In their study, Lee et al. examined 50 men and 50 women, taking into account their injury history, clinical symptoms and MRI results. The results of the study indicated that women reported higher levels of pain and muscle tenderness during palpation and demonstrated greater signal and volume changes in the lateral pterygoid muscle (LPM) as well as greater anterior disc displacement without reduction (40% vs. 20%) in comparison to men. [14]

Patophysiological mechanisms

The lateral pterygoid muscle participates in controlling mandibular movement through its attachment to the articular disc and mandibular condyle. Its upper head plays a significant role in rotation and translation of the disc and condyle, therefore any damage or functional impairment may be associated with temporomandibular joint dysfunction. [15] Researchers emphasize that changes in the LPM and disc displacement caused by whiplash injury may be a significant risk factor for TMD [16].

Over the years, various possible pathophysiological mechanisms for the development and maintenance of TMD pain have been investigated. The concepts of pain spreading, superimposition, and referral of pain have been analyzed. [17-19] A significant role has been attributed to neurophysiological mechanisms related to central sensitization. It is imperative to acknowledge the pivotal role of central sensitization in the process of lowering the pain threshold and perpetuating the persistent pain experienced by these patients. This phenomenon is attributed to the heightened sensitivity of the central nervous system observed in patients with chronic WAD. [20]

Risk factors and long-term outcomes

Research indicates that acute disorders following whiplash injury frequently resolve spontaneously within several months. The persistence of symptoms depends on the severity of the injury, the presence of prior temporomandibular joint disorders, and the patient's age. [21] The following negative prognostic factors identified as potentially contributing to the development of temporomandibular disorder (TMD) are: high-impact speed (>60 km/h), increased initial pain intensity, head position during impact, lack of a headrest, advanced age, and female gender. [21] The role of the female gender as a risk factor for delayed recovery is also emphasized in a meta-analysis by Walton et al. [22] Additionally, the intensity of neck pain in the acute phase after cervical spine injury may also increase the risk of developing chronic orofacial pain. [23] Furthermore, patients with recent cervical spine injury exhibited heightened levels of pain and disability in the jaw and neck area in comparison to control patients who had not sustained neck injury. [23] It is also vital to acknowledge that individuals who exhibit heightened baseline pain sensitivity are more prone to developing painful temporomandibular disorders in comparison to those with reduced sensitivity. [24] Authors Salé and Isberg suggest that one in three people who have suffered a cervical spine injury are at risk of developing delayed temporomandibular joint symptoms that may require clinical treatment. [25] A 15-year follow-up study of patients with temporomandibular joint symptoms after whiplash injury revealed that joint pain persisted in two-thirds of the patients and the prevalence remained elevated compared to pre-injury levels or the control group. [26]

Conclusions

A review of the extant literature reveals that whiplash injury is associated with an increased prevalence of temporomandibular joint dysfunction in comparison to the population without a history of such trauma. Clinical and imaging studies, including MRI-based studies, demonstrate the existence of structural alterations in the joints and masticatory muscles, especially the lateral pterygoid muscle. Changes in the position of the articular disc and features of increased muscle tenderness are also described. Available reports suggest that the association between whiplash injury and temporomandibular joint dysfunction is multifactorial and involves functional, neuromuscular and neurophysiological mechanisms, including central sensitization processes. Individual differences are also evident, encompassing gender-dependent differences indicating greater severity of symptoms and structural alterations in tissues in women. The manifestation of TMD symptoms may be transient or persistent. In consideration of the data presented, a comprehensive diagnostic approach for patients following whiplash injuries is vital. Such evaluations should focus on the function of TMJs and masticatory muscles, in order to reduce the risk of misdiagnosis or the onset of late complications. An interdisciplinary approach may be crucial for improving the prognosis and quality of patients life. It is imperative to consider whiplash injuries as a potential contributing factor to the development of temporomandibular joint disorders. However, further prospective studies are necessary to better understand the mechanisms underlying this relationship.

Disclosure

Author's contribution:

Conceptualization: K.C., M.N.;

Methodology: K.C., O.Z.;

Investigation: M.Ł., K.W., S.Ł., A.Z-W., A.R., W.S.;

Writing rough preparation: K.C.;

Writing review and editing: K.C., O.Z., K.W., S.Ł., A.Z-W., M.N., M.Ł., A.R., W.S.;

Supervision: K.C.;

Project administration: K.C.

All authors have read and agreed with the published version of the manuscript.

Funding Statement:

This research received no external funding.

Institutional Review Board Statement:

Not applicable.

Informed Consent Statement:

Not applicable.

Data Availability Statement:

Not applicable.

Conflict of Interest:

The authors declare no conflict of interest.

References:

- [1] Côté P, Cassidy JD, Carroll L, Frank JW, Bombardier C. A systematic review of the prognosis of acute whiplash and a new conceptual framework to synthesize the literature. *Spine (Phila Pa 1976)*. 2001 Oct 1;26(19):E445-58. doi: 10.1097/00007632-200110010-00020. PMID: 11698904.
- [2] Cassidy JD, Carroll LJ, Côté P, Lemstra M, Berglund A, Nygren A. Effect of eliminating compensation for pain and suffering on the outcome of insurance claims for whiplash injury. *N Engl J Med*. 2000 Apr 20;342(16):1179-86. doi: 10.1056/NEJM200004203421606. PMID: 10770984.
- [3] Grauer JN, Panjabi MM, Cholewicki J, Nibu K, Dvorak J. Whiplash produces an S-shaped curvature of the neck with hyperextension at lower levels. *Spine (Phila Pa 1976)*. 1997 Nov 1;22(21):2489-94. doi: 10.1097/00007632-199711010-00005. PMID: 9383854.
- [4] Zafar H. Integrated jaw and neck function in man. Studies of mandibular and head-neck movements during jaw opening-closing tasks. *Swed Dent J Suppl*. 2000;(143):1-41. PMID: 11234611.
- [5] Epstein JB, Klasser GD, Kolbinson DA, Mehta SA. Orofacial injuries due to trauma following motor vehicle collisions: part 2. Temporomandibular disorders. *J Can Dent Assoc*. 2010;76:a172. PMID: 21167088.
- [6] Gray R, Al-Ani Z. Risk management in clinical practice. Part 8. Temporomandibular disorders. *Br Dent J*. 2010 Nov;209(9):433-49. doi: 10.1038/sj.bdj.2010.981. PMID: 21072093.
- [7] Maini K, Dua A. Temporomandibular Syndrome. 2023 Jan 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. PMID: 31869076.
- [8] Häggman-Henrikson B, Rezvani M, List T. Prevalence of whiplash trauma in TMD patients: a systematic review. *J Oral Rehabil*. 2014 Jan;41(1):59-68. doi: 10.1111/joor.12123. Epub 2013 Dec 30. PMID: 24443899.
- [9] Häggman-Henrikson B, Lövgren A, Wu WY, Peck C, Westergren H, List T. Prevalence of Temporomandibular Disorder Symptoms After Whiplash Trauma-A Systematic Review and Meta-Analysis. *Eur J Pain*. 2025 Mar;29(3):e4792. doi: 10.1002/ejp.4792. PMID: 39921489; PMCID: PMC11806439.
- [10] Landzberg G, El-Rabbany M, Klasser GD, Epstein JB. Temporomandibular disorders and whiplash injury: a narrative review. *Oral Surg Oral Med Oral Pathol Oral Radiol*. 2017 Aug;124(2):e37-e46. doi: 10.1016/j.oooo.2017.03.001. Epub 2017 Mar 10. PMID: 28483470.

[11] Friedman MH, Weisberg J. The craniocervical connection: a retrospective analysis of 300 whiplash patients with cervical and temporomandibular disorders. *Cranio.* 2000 Jul;18(3):163-7. doi: 10.1080/08869634.2000.11746128. PMID: 11202833.

[12] Pressman BD, Shellock FG, Schames J, Schames M. MR imaging of temporomandibular joint abnormalities associated with cervical hyperextension/hyperflexion (whiplash) injuries. *J Magn Reson Imaging.* 1992 Sep-Oct;2(5):569-74. doi: 10.1002/jmri.1880020515. PMID: 1392250.

[13] Lee YH, Lee KM, Auh QS. MRI-Based Assessment of Masticatory Muscle Changes in TMD Patients after Whiplash Injury. *J Clin Med.* 2021 Apr 1;10(7):1404. doi: 10.3390/jcm10071404. PMID: 33915742; PMCID: PMC8036470.

[14] Lee YH, Lee KM, Auh QS, Hong JP. Sex-related differences in symptoms of temporomandibular disorders and structural changes in the lateral pterygoid muscle after whiplash injury. *J Oral Rehabil.* 2019 Dec;46(12):1107-1120. doi: 10.1111/joor.12845. Epub 2019 Jul 15. PMID: 31228222.

[15] Klineberg I. The lateral pterygoid muscle: some anatomical, physiological and clinical considerations. *Ann R Australas Coll Dent Surg.* 1991 Oct;11:96-108. PMID: 1844052.

[16] Lee YH, Lee KM, Auh QS, Hong JP. Magnetic Resonance Imaging-Based Prediction of the Relationship between Whiplash Injury and Temporomandibular Disorders. *Front Neurol.* 2018 Jan 9;8:725. doi: 10.3389/fneur.2017.00725. PMID: 29375466; PMCID: PMC5767220.

[17] Hellström F, Thunberg J, Bergenheim M, Sjölander P, Pedersen J, Johansson H. Elevated intramuscular concentration of bradykinin in jaw muscle increases the fusimotor drive to neck muscles in the cat. *J Dent Res.* 2000 Oct;79(10):1815-22. doi: 10.1177/00220345000790101401. PMID: 11078000.

[18] Svensson P, Wang K, Sessle BJ, Arendt-Nielsen L. Associations between pain and neuromuscular activity in the human jaw and neck muscles. *Pain.* 2004 Jun;109(3):225-232. doi: 10.1016/j.pain.2003.12.031. PMID: 15157682.

[19] Schmidt-Hansen PT, Svensson P, Jensen TS, Graven-Nielsen T, Bach FW. Patterns of experimentally induced pain in pericranial muscles. *Cephalgia.* 2006 May;26(5):568-77. doi: 10.1111/j.1468-2982.2006.01078.x. PMID: 16674766.

[20] Van Oosterwijck J, Nijs J, Meeus M, Paul L. Evidence for central sensitization in chronic whiplash: a systematic literature review. *Eur J Pain.* 2013 Mar;17(3):299-312. doi: 10.1002/j.1532-2149.2012.00193.x. Epub 2012 Sep 25. PMID: 23008191.

[21] Corsalini M, Capodiferro S, dell'Olio F, Albanese G, Quaranta N, Solarino B, Catapano S, Di Venere D. Crano-Mandibular Disorders after Whiplash Injury: A Mono-Institutional Clinical Study on 31 Patients. *Int J Environ Res Public Health.* 2022 Jan 14;19(2):901. doi: 10.3390/ijerph19020901. PMID: 35055722; PMCID: PMC8776128.

[22] Walton DM, Macdermid JC, Giorgianni AA, Mascarenhas JC, West SC, Zammit CA. Risk factors for persistent problems following acute whiplash injury: update of a systematic review and meta-analysis. *J Orthop Sports Phys Ther.* 2013 Feb;43(2):31-43. doi: 10.2519/jospt.2013.4507. Epub 2013 Jan 14. PMID: 23322093.

[23] Häggman-Henrikson B, Lampa E, Marklund S, Wänman A. Pain and Disability in the Jaw and Neck Region following Whiplash Trauma. *J Dent Res.* 2016 Sep;95(10):1155-60. doi: 10.1177/0022034516653598. Epub 2016 Jun 15. PMID: 27307051.

[24] Sharma S, Ohrbach R, Fillingim RB, Greenspan JD, Slade G. Pain Sensitivity Modifies Risk of Injury-Related Temporomandibular Disorder. *J Dent Res.* 2020 May;99(5):530-536. doi: 10.1177/0022034520913247. Epub 2020 Mar 20. PMID: 32197057; PMCID: PMC7174801.

[25] Salé H, Isberg A. Delayed temporomandibular joint pain and dysfunction induced by whiplash trauma: a controlled prospective study. *J Am Dent Assoc.* 2007 Aug;138(8):1084-91. doi: 10.14219/jada.archive.2007.0320. Erratum in: *J Am Dent Assoc.* 2007 Nov;138(11):1426. PMID: 17670875.

[26] Salé H, Bryndahl F, Isberg A. A 15-year follow-up of temporomandibular joint symptoms and magnetic resonance imaging findings in whiplash patients: a prospective, controlled study. *Oral Surg Oral Med Oral Pathol Oral Radiol.* 2014 Apr;117(4):522-32. doi: 10.1016/j.oooo.2014.01.020. Epub 2014 Jan 20. PMID: 24630163.