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Abstract

Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins responsible for the metabolism of
numerous important compounds. In humans, they are responsible for nearly 80% of oxidative reactions and
approximately 50% of total drug elimination, mainly within the CYP1-CYP3 families. The CYP3A4 isoenzyme,
involved in the metabolism of around 50% of drugs used in clinical practice, along with the highly polymorphic
CYP2C9 and CYP2C8 genes, are key members of the cytochrome P450 subfamily. Their genetic variability, which
may result in abolished, quantitatively or qualitatively altered or enhanced metabolism, varies among populations
and geographical regions. This review presents the frequency and diversity of CYP2C8, CYP2C9 and CYP3A4
alleles across European countries.
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1.Introduction

Pharmacogenetics is a field of genetics and pharmacology that investigates the influence of individual
genes or their variants on the body's response to the administration of specific drugs [1]. This sphere of knowledge
is mainly associated with cytochrome P450 enzymes, which are involved in the metabolism of many endogenous
compounds and clinically important xenobiotics, including statins, sulphonamides, glinides and glitazones [2, 3].

The evolution of functionally significant polymorphisms in CYP genes has been strongly shaped by
environmental factors and dietary habits. These genetic variations include copy number variations (CNVSs),
alterations to amino acid composition, premature stop codons, mutations that result in alternative splicing, and
mutations that lead to either enhanced or reduced gene expression level [4]. Genetic variation in cytochrome P450
is an important predictor of the effectiveness and safety of various commonly prescribed drugs [3].

In particular, the isoenzyme CYP3A4 most often participates in drug metabolism and plays an important
role in the metabolism of approximately 50% of the drugs used in clinical practice [6].

The CYP2C subfamily of cytochrome P450 consists of four isoenzymes: CYP2C8, CYP2C9, CYP2C18,
and CYP2C19. Among these, CYP2C9 is the most prevalent in the liver, metabolizing about 20% of commonly
used drugs, while CYP2C8 metabolizes approximately 5% of prescribed medications [7, 8]. The most frequently
and extensively studied variants of these genes include CYP2C8*2, CYP2C8*3, CYP2C9*2, and CYP2C9*3.
Notably, the CYP2C8 gene exhibits significant polymorphism, with over 700 variants identified. Genetic
variability in these cytochromes may be an important source of interindividual differences in drug response and
toxicity [7, 9].

Cytochrome polymorphism varies in different countries. Expanding knowledge in this area can provide
valuable insights that will allow for therapy to be better tailored to the individual patient's needs, as well as the
development of more personalized therapeutic strategies [10].

The aim of this review is to present the diversity of CYP2C8, CYP2C9 and CYP3A4 alleles in various
European countries.

2. Materials and methods
Search strategy and data sources

This review focuses on the genetic variability of three important cytochrome P450 enzymes: CYP2C8, CYP2C9,
and CYP3A across different European populations. These enzymes are important for drug metabolism, and their
variations can influence individual responses to medications.

The analysis was based on data from the PubMed and Scopus databases. Additionally, publishing platforms like
Springer, Frontiers, Elsevier, and the Multidisciplinary Digital Publishing Institute were explored to enhance the
comprehensiveness of this review.

The following MeSH terms and keywords were used in the search: “Cytochrome P450”, “genetic polymorphism”,
“allele frequency”, “pharmacogenetics”, “CYP2CS8”, “CYP2C9”, “CYP3A4”, “gene variants”, “personalised
medicine”.



Inclusion and exclusion criteria

A total of 38 articles published between 2004 and 2024 were included. No strict time limit was set, but the selected
range includes both older and newer studies. The aim was to give a full and clear picture of the available research
by including important studies in Europe from the past as well as recent findings.

Only studies conducted on humans were considered. Studies and reviews published in English were included.
Research focusing on cytochrome distribution outside of Europe was excluded.

Study selection and screening

At first, 55 publications were found, but after some were excluded due to irrelevant focus or animal models, 38
studies were used in the review.

Identification

Records identified via PubMed, Scopus and publishing platforms (Springer, Frontiers, Elsevier, MDPI)
(n=55)

Screening

Records after title/abstract screening and applying exclusion criteria
(n=38)

Excluded

1 article (language barrier - Italian only)

16 articles (animal models or unrelated cytochromes)

(n=17)

Eligibility

Full-text articles assessed for eligibility

(n=138)

Included

Final studies analyzed

(n = 38)

The studies were selected through a systematic, multi-step procedure in accordance with a structured framework
based on PRISMA methodology.



3.The landscape of CYP2C8, CYP2C9 and CYP3A4 variability in individual European countries

3.1 Alleles of cytochrome CYP2C8, CYP2C9, CYP3A4 and their functional consequences.

Response to medications can vary significantly between patients; studies show that up to 50% of people
undergoing pharmacotherapy experience low treatment effectiveness or side effects [11, 12]. Cytochromes possess
different gene variants (alleles) with distinct nucleotide sequences in their DNA, which can influence the enzyme's
activity and drug metabolism capacity. Depending on the specific allele, a cytochrome may exhibit varying levels
of functionality ranging from enhanced activity to reduced efficiency or complete inactivity [5].

In line with the subject of this review, three cytochromes were included in the study - CYP2C9, CYP2C8
and CYP3A4 - due to their role in the metabolism of drugs used to treat metabolic diseases such as diabetes,
hypercholesterolemia and hypertriglyceridemia. The subject of the analysis is the distribution of functionally
important alleles of these cytochromes in Europe.

Table 1. Alleles of cytochrome CYP2C8, CYP2C9, CYP3A4 and their functional consequences [11].

Enzyme Function Variants
CYP2C8 Normal CYP2C8*1
Decreased CYP2C8*2, CYP2C8*4

Controversial CYP2C8*3

Inactive CYP2C8*5, CYP2C8*7, CYP2C8*11
CYP2C9 Normal CYP2C9*1, CYP2C9*9
Decreased CYP2C9*2, CYP2C9*5, CYP2C9*8, CYP2C9*11l, CYP2C9*12,

CYP2C9*14, CYP2C9*16, CYP2C9*29, CYP2C9*31

Inactive CYP2C9*3, CYP2C9*6, CYP2C9*13
CYP3A4 Normal CYP3A4*1
Decreased CYP3A4*8, CYP3A4*16, CYP3A4*18, CYP3A4*22



In some previously published articles, research results indicate slight differences in the functional
consequences of alleles. In their paper [13], [14] as well as in CYP’s Allele Nomenclature Database the enzyme
activity of the CYP2C8*3, CYP2C9*3, CYP2C9*13 coding genes were described as decreased. Additionally, it
should be noted that the functional consequences of the presence of the CYP3A4*11 and CYP3A4*13 genes are
manifested as reduced activity, while CYP3A4*6 [15], CYP3A4*20 and CYP3A4*26 even demonstrate enzymatic
inactivity. The characteristics of cytochromes continue to be the subject of verification in various studies — some
confirm them, while others reveal distinct activities. For many alleles, the function still remains unknown, as is
observed in the case of *CYP3A4* *2* *CYP3A4* *3* *CYP3A4* *4* and *CYP3A4* *15*, where the
function is undetermined [11].

3.2 The distribution of CYP2C8, CYP2C9 and CYP3A4 in Europe in comparison to other continents
according to published data [11, 13, 14, 16, 17, 18, 19, 20].

Table 2. The distribution of CYP2C8 in Europe in comparison to other continents.

Allele Variant number Europe (%) Africa (%) East South America(%)
acc. to dbSNP Asia Asia(%)
database (lit.) (%)
CYP2C8
*1 None 82.8 80.8 98.7 92.6 90.1
*2 rs11572103 0 15.9 0 1.9 0.9
*3 rs10509681, 11.2 2.1 <0.1 4 6.7
rs11572080
*4 rs1058930 6.0 1.1 0 15 2.3
*5 rs72558196 0 0 0.2 0 0
*6 rs142886225 0 0 0.5 0 0
*7 rs72558195 0 <0.1 <0.1 <0.1 0
*11 rs78637571 0 0 0.4 0 <0.1
*12 rs3832694 0 0 <0.1 0 0
*14 rs188934928 0 0 0.1 <0.1 0



As shown in Table 2, the most common allele - CYP2C8*1 - is outstandingly frequent in Asian
populations, where it reaches almost 100% frequency. A high level of the CYP2C8 *2 allele has been found within
African population, unlike other continents, especially Europe and East Asia, where this allele is virtually absent.
In the case of CYP2C8 *3 and CYP2C8 *4, alleles that are less common, their frequency varies by region, being
most common in Europe. The remaining alleles appear with far lower frequency or are even absent in particular
populations.

Table 3. The distribution of CYP2C9 in Europe in comparison to other continents.

Allele Variant number = Europe (%) @ Africa (%) @ East South Asia = America (%)
acc. to dbSNP Asia (%)
database (lit.) (%)
CYP2C9
*1 None 81.8 78.4 95.7 81.3 88.9
*2 rs1799853 11.7 2.4 <0.1 4.6 6.6
*3 rs1057910 5.6 1.3 3.4 11.3 3.6
*4 rs56165452 0 <0.1 0 0 0
*5 rs28371686 0 1.3 0 0 <0.1
*6 rs9332131 0 1 0 0 <0.1
*7 rs67807361 0 0 0 0.3 0
*8 rs7900194 0 5.6 <0.1 <0.1 0.2
*9 rs2256871 0 7.5 <0.1 <0.1 0.2
*11 rs28371685 0.5 2.1 <0.1 0.2 0.2
*12 rs9332239 0.2 <0.1 0 <0.1 0.1
*13 rs72558187 0 0 0.2 0 0



*14 rs72558189 0 <0.1 <0.1 2.0 <0.1

*15 rs72558190 0 0 <0.1 0 0
*16 rs72558192 0 0 0.3 0 0
*29 rs182132442 0.1 0 0.2 <0.1 <0.1
*30 rs781583846 <0.1 <0.1 <0.1 <0.1 <0.1
*31 rs57505750 0 0.2 0 0 0
*33 rs200183364 0 <0.1 0 <0.1 0
*36 rs114071557 0 0.2 <0.1 <0.1 <0.1
*42 rs12414460 <0.1 <0.1 <0.1 0 <0.1
*44 rs200965026 0 0 <0.1 0 <0.1
*45 rs199523631 <0.1 <0.1 0 <01 <0.1

Meanwhile, CYP2C9 has the largest number of alleles identified so far. The most common allele in each
of the populations is the ancestral CYP2C9*1, with its highest frequency in East Asia (95.7%) and a relatively low
frequency within African the population (78.4%). A CYP2C9*2 variant with reduced enzymatic activity and an
inactive CYP2C9*3 variant are common in Europe, where the CYP2C9*2 allele constitutes 11.7% and CYP2C9*3
5.6% of the populational frequency. Both of these alleles are also present in American populations, although they
are observed with lower frequencies, at 6.6% for CYP2C9*2 and 3.6% for CYP2C9*3 respectively. Interestingly,
in southern Asia, the presence of the CYP2C9*3 allele is particularly pronounced, appearing there with a frequency
of 11.3%.

In the African population, several rare alleles can be seen that are virtually absent in other regions. For example,
CYP2C9*8 and CYP2C9*9 alleles occur at relatively high frequencies of 5.6% and 7.5% respectively, while in
other populations their presence is marginal.

Other CYP2C9 alleles, such as CYP2C9*4, CYP2C9*5 and CYP2C9*6, are extremely rare, occurring mainly at
or below the level of 0.1% or even being completely absent.



Table 4. The distribution of CYP3A4 in Europe in comparison to other continents.

Allele

CYP3A4

*1

*2

*3

*4

*5

*6

*7

*8

*9

*10

*11

*12

Variant

Europe

number acc. to  (%o)

dbSNP

database (lit.)

None

rs55785340

rs4986910

rs55951658

rs55901263

rs4646438

rs56324128

rs72552799

rs72552798

rs4986908

rs67784355

rs12721629

91.5

1.1

2.1

0.1

0.1

<0.1

Africa

(%)

96.6

0.1

0.2

<0.1

0.3

East
Asia

(%)

97

0.6

<0.1

0.2

<0.1

<0.1

South

Asia (%)

99.1

<0.1

<0.1

<0.1

0.1

<0.1

<0.1

America

(%)

96.9

0.2

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1



*13 rs4986909 0 0 0 0 <0.1

*15 rs4986907 0 2.5 0 <0.1 0.2
*16 rs12721627 0 0 0.1 0 0
*18 rs28371759 0 0.2 1.9 0 <0.1
*19 rs4986913 0 0 0 <0.1 0
*20 rs67666821 0 <0.1 0 0 <0.1
*22 rs35599367 5.0 <0.1 0 0.6 2.6
*26 rs138105638 0 <0.1 0 <0.1 <0.1

Within CYP3A4, the most common allele in all the investigated populations is CYP3A4*1, which reaches very
high values, from 91.5% in Europe to as much as 99.1% in southern Asia.

According to published data, the distinctive CYP3A4*22 variant is relatively common in Europe (5.0%) and in
America (2.6%), while it appears only very rarely or not at all in other regions. By contrast, the CYP3A4*15
variant is relatively common in the African population (2.5%), and is also present in the American population
(0.2%), but is virtually absent in other regions.

Other rare CYP3A4 variants, such as CYP3A4*3 and CYP3A4*4, occur only sporadically, mainly in Europe,
Africa and East Asia, but their overall frequency is low (approximately of 0.1-2.1%). The remaining alleles, i.e.
CYP3A4*7, CYP3A4*9, CYP3A4*13 and CYP3A4*16, occur very rarely in populations, usually with a
frequency below 0.1% or are not detectable at the populational level.



3.3 Numerous papers have focused on European populations in the context of CYP allele frequencies. These
encompass, for example, the distribution of CYP2C8, CYP2C9 and CYP3A4 in individual regions of Europe:
[11, 13, 21, 22]

Table 5. The distribution of CYP2C8 in individual regions of Europe.

Allele Variant Overall Southern Northwestern  Europe @ Finland (%0)
number acc. to Europe (%) (%)
dbSNP

database (lit.)

CYP2C8

*1 None 82.9 81 82.6 83.1

*2 rs11572103 0.3 0.6 0.2 <0.1

*3 rs10509681, 11.3 13.2 11.8 111
rs11572080

*4 rs1058930 5.4 5.2 5.3 5.8

*5 rs72558196 0 0 0 0

=7 rs72558195 <0.1 <0.1 <0.1 <0.1

*11 rs78637571 0 0 0 0

Based on the available data, distinct cohorts have been observed within European societies according to the
frequencies of particular CYP polymorphisms. This shows that the most common allele is CYP2C8*1, which
dominates in all the groups analysed, reaching the highest frequency in Finland (83.1%). The CYP2C8*3 and
CYP2C8*4 variants are also noticeably present in European populations. In the case of CYP2C8*3, the highest
frequency is reached in southern Europe (13.2%), which is of special importance due to the controversial activity
observed for the enzyme coded by this allele. In turn, the CYP2C8%*4 allele, associated with reduced enzymatic
activity, is most common in Finland, where its frequency is 5.8%. In contrast to the alleles mentioned above, the
CYP2C8*2 allele occurs relatively rarely within Europeans, with the highest frequency of 0.6% in southern Europe,
while in Finland it is practically absent (<0.1%). The remaining analysed variants are rare or practically absent in
the analysed regions.
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Table 6. The distribution of CYP2C9 in individual regions of Europe.

Allele

CYP2C9

*1

*2

*3

*5

*6

*8

*9

*11

*12

*13

*14

*16

Variant

number acc.

to dbSNP

database

(lit.)

None

rs1799853

rs1057910

rs28371686

rs9332131

rs7900194

rs2256871

rs28371685

rs9332239

rs72558187

rs72558189

rs72558192

Overall

79.9

12.6

<0.1

<0.1

<0.1

<0.1

0.3

0.3

<0.1

<0.1

Southern

Europe (%)

76.7

14.2

8.5

<0.1

<0.1

<0.1

<0.1

0.2

0.3

<0.1

Northwestern

Europe (%)

79.7

13.1

6.5

<0.1

<0.1

<0.1

<0.1

0.3

0.2

<0.1

Finland

(%)

81.5

114

6.3

0.6

0.2



*29

*31

rs182132442 <0.1

rs57505750 0

<0.1

<0.1

<0.1

For CYP2C9, the most common alleles in the European population are CYP2C9*1 and CYP2C9*2, with the
highest frequencies noted in Finland (81.5%) and in southern Europe (14.2%) respectively. A clinically important,
inactive variant, albeit with a noticeable frequency, is CYP2C9*3 characterised by the highest presence in southern
Europe (8.5%), and the lowest among Finns (6.3%). The remaining alleles, that is CYP2C9*5, CYP2C9*6,
CYP2C9*8 and CYP2C9*9, are extremely rare or completely absent in some regions. In most cases, their
incidence does not exceed 0.1%.

Table 7. The distribution of CYP3A4 in individual regions of Europe.

Allele

CYP3A4

*1

*2

*3

*4

*8

*15

*16

*18

*22

Variant Overall

number acc. to
dbSNP

database (lit.)

None 94.7

rs55785340 <0.1

rs4986910 0.7

rs55951658 0

rs72552799 0.1

rs4986907 <0.1

rs12721627 0

rs28371759 0

rs35599367 4.4

Southern

Europe (%)

98.4

0.6

<0.1

<0.1

0.9

12

Northwestern

(%)

93.9

<0.1

0.7

<0.1

<0.1

54

Europe | Finland (%0)

934

1.8

0.2

3.6



As shown in Table 7, the most common allele in the European population is CYP3A4*1, which is unambiguously
dominant in all the studied regions, reaching its highest frequency in southern Europe (98.4%). Another variant
characterized by reduced enzymatic activity, namely CYP3A4*22, occurs with moderate frequency - its overall
frequency is 4.4%. The highest rate has been reported in northwestern Europe (5.4%) and in Finland (3.6%), while
in southern Europe it has been reported to be as rare as 0.9%. The *CYP3A4* *2* CYP3A4*3 and CYP3A4*8
alleles are very infrequent, while the remaining variants are practically absent in the analysed regions.

3.4 There are also selective studies for individual countries.

Table 8. The frequencies of CYP2CS8 alleles in various European countries [9, 21,23].

Country CYP2C8 *2 Frequency ( %) CYP2C8 *3 Frequency (%)
Portugal ~1 ~19

Spain ~2 ~15.5

Finland 0.1 ~12

Czech Republic 0.2 ~11

United Kingdom 0 ~11

Sweden ~0.5 ~10

Russia 0 ~9

Scotland N/A 15.1

Hungary N/A 8.8

CYP2C8*4 allele is common in many European countries, with the highest frequency in the United Kingdom (up
to 7.5%).

As shown in Table 8 the CYP2C8*3 allele is much more common in European countries than the CYP2C8*2
allele. The highest frequency of CYP2C8%*3 is reported in Portugal (~19%), while it is rarest in Hungary, where
its frequency reaches 8.8%. This allele also occurs with high frequency in Spain (~15.5%) and in Scotland (15.1%)
indicating its relatively high occurrence in Western European countries.

The CYP2C8*2 allele seems to be relatively rare in all the countries studied. Nevertheless its highest frequency
was observed in Spain (~2%) and in Sweden (~0.5%) while in Finnish population CYP2C8*2 occurs only at the
level of 0.1%. In the Czech Republic, this allele occurs with a frequency of 0.2%, while in Portugal it attains
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approximately 1%. This variant is virtually not present in the UK or within the Russian population, while no data
is available for Scotland and Hungary (N/A).

Table 9. The frequencies of CYP2C9 alleles in various European countries [21, 24, 25, 26, 27, 28].

Region/country CYP2C9 *2 Frequency ( %) CYP2C9 *3 Frequency (%)

Southern Europe

Bosnia and Herzegovina 9.0 -
Croatia 16.5 9.5
Greece 12.9 8.1
Italy 12.4 9.4
Portugal 13.2 8.0
Serbia 12.3 7.9
Spain 13.8 10.1
Turkey 105 9.8

Northern Europe

Denmark 12.1 5.3
Estonia 8.4 7.2
Finland 114 6.3
Norway 9.9 6.5
Sweden 11.7 6.5

14



Central and Eastern Europe

Bulgaria

Czech Republic

Germany

Hungary

North Macedonia

Poland

Romania

Russia

Slovakia

Slovenia

Western Europe

Belgium

France

Netherlands

UK

125

11.6

14.0

12.5

124

11.3

10.5

10.0

12.2

10.0

15.0

13.0

10.2

15

7.5

5.9

5.0

8.8

7.1

4.7

9.3

6.7

8.0

6.3

7.4

8.0

6.0

5.7



Figure 1. The frequencies of CYP2C9*2 alleles in various European countries.
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Figure 2. The frequencies of CYP2C9*3 alleles in various European countries.
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Overall, in the case of CYP2C9 polymorphism, the CYP2C9*2 allele is more common than the CYP2C9*3 allele
in all European countries analyzed. In southern Europe, CYP2C9*2 reaches relatively high frequencies, especially
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in Croatia (16.5%) and in Portugal (13.2%). In other countries of this region its prevalence ranges from 9.0% in
Bosnia and Herzegovina to 13.8% in Spain. The CYP2C9*3 allele is also evident in this part of Europe, reaching
the highest values in Spain (10.1%) and in Italy (9.4%).

In northern Europe the CYP2C9*2 variant occurs to a lesser extent compared to the souther region ranging from
8.4% in Estonia to 12.1% in Denmark. The frequency of CYP2C9*3 allele in this group of countries ranges from
5.3% in Denmark to 7.2% in Estonia.

Different frequencies of CYP2C9*2 and CYP2C9*3 alleles are observed in the populations of Central and Eastern
Europe. The CYP2C9*2 allele reaches the highest frequency in Germany (14.0%), and slightly lower, but still
significant values in Bulgaria and in Hungary (12 (?), 12.0% each). 5%). At the opposite extreme is Slovakia,
where this allele occurs at a level of 10.0% illustrating the range of variability in the region. In turn, the CYP2C9*3
allele is most common in Romania (9.3%) and in Hungary (8.8%) while its frequency is much lower in Germany
(5.0%) and in the Czech Republic (5.9%).

In Western European countries such as Belgium, France, the Netherlands and the United Kingdom, the CYP2C9
variant 2 is present at levels ranging from 10.0% in Belgium to 15.0% in France. CYP2C9 allele 3 is less common
here, ranging from 5.7% in the UK to 8.0% in France.

Research on the distribution of CYP3A4 is still ongoing, and detailed country-specific data is currently lacking.
Developing knowledge in this area is crucial for further progress in sciences such as pharmacogenetics and
pharmacology, enabling a better understanding of differences in drug metabolism between populations.

4. Discussion

Previous literature reviews have presented detailed maps of interethnic differences in CYP variability,
focusing on single genes or alleles [7-11,13-14,16-28]. However, it is worth noting that differences in the
genotyping strategies used between studies may influence allele frequency estimates [11]. The assessment of
genetic polymorphisms of the discussed CYP genes in European populations illustrates regional differences that
may affect drug metabolism and personalization of pharmacological therapy. The occurrence of individual alleles
is not uniform across Europe and their frequency varies both between regions and among individual countries.

CYP2C8 plays a key role in the metabolism of many clinical drugs, including chemotherapeutic agents,
thiazolidinediones, glinides and non-steroidal anti-inflammatory drugs [9, 29, 30, 31]. Moreover, CYP2C8
variants with reduced enzymatic activity are associated with slower paclitaxel clearance and increased drug
exposure, which is associated with a higher risk of drug-induced neuropathy [9,32]. The most common CYP2C8
allele in Europe is CYP2C81; however, there are noticeable differences in the frequency of CYP2C83 and
CYP2C84, which are more prevalent in Southern Europe and Finland, respectively. The high occurrence of
CYP2C83 in Portugal (~19%) and Spain (~15.5%) may have significant clinical implications. In contrast, the
CYP2C8*2 allele, which is common in African populations, is very rare in Europe, with its highest frequency
observed in Spain (~2%) while being virtually absent in Finland (<0.1%). Due to the high frequency and significant
geographical diversity of CYP2C8 alleles with controversial or reduced activity, it is important to take into account
the specific genetic characteristics of a given population to optimize regional therapeutic protocols [9].

The functionality of CYP2C9 is highly significant in pharmacotherapy used for the treatment of diabetes,
anticoagulant therapy with coumarin derivatives, as well as in the metabolism of phenytoin and many nonsteroidal
anti-inflammatory drugs (NSAIDs) [24, 33, 34, 35]. The above review noted significant differences in the genetic
variability of this cytochrome between northern, southern and central-eastern Europe. The CYP2C9*2 allele,
associated with reduced enzymatic activity, is most common in Southern Europe, especially in Croatia (16.5%)
and Portugal (13.2%). A similar variation concerns CYP2C9*3, the highest frequency of which is observed in
Spain (10.1%) and Italy (9.4%), while in Northern Europe its frequency is noticeably lower, e.g. in Denmark it is
only 5.3%. These data suggest that there may be a greater risk of altered response to drugs metabolized by CYP2C9
in southern Europe, which should be considered in clinical practice.

Analyzing the CYP3A4 gene, the CYP3A4*1 allele is the dominant variant across Europe. However, it
is worth noting that the CYP3A4*22 variant, characterized by reduced enzymatic activity, shows geographical
variations—it is most common in Northwestern Europe (5.4%) and Finland (3.6%), while in Southern Europe its
frequency is very low (0.9%). As a consequence, this may lead to altered pharmacokinetics of certain anticancer
drugs, statins, and immunosuppressive medications that are metabolized by this cytochrome. [36, 37, 38].
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Observing the genetic variability of the discussed cytochromes across different European countries, the
presence of subpopulations with distinct pharmacogenetic profiles can be noticed even within the same continent.
This highlights the need for further research in this area to tailor treatments to individual patient characteristics
and to implement personalized medicine.
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