

SWOJNÓG, Marzena, BARCZEWSKA, Magdalena, BIESZCZAD, Dominika, REIZER, Barbara, BOTTO, Zofia, FELISIAK, Patrycja, KOWALCZYK, Dominika, ŚLIWA, Zofia, ŚLAZYK, Dominik Andrzej, and KRYSTEK, Klaudia. Aerobic Exercise as an Essential Component of Non-Pharmacological Management for Metabolic Syndrome – A Review. *Quality in Sport.* 2026;50:67623. eISSN 2450-3118.

<https://doi.org/10.12775/OS.2026.50.67623>
<https://apcz.umk.pl/OS/article/view/67623>

The journal has been awarded 20 points in the parametric evaluation by the Ministry of Higher Education and Science of Poland. This is according to the Annex to the announcement of the Minister of Higher Education and Science dated 05.01.2024, No. 32553. The journal has a Unique Identifier: 201398. Scientific disciplines assigned: Economics and Finance (Field of Social Sciences); Management and Quality Sciences (Field of Social Sciences).

Punkty Ministerialne z 2019 - aktualny rok 20 punktów. Załącznik do komunikatu Ministra Szkolnictwa Wyższego i Nauki z dnia 05.01.2024 Lp. 32553. Posiada Unikatowy Identyfikator Czasopisma: 201398. Przypisane dyscypliny naukowe: Ekonomia i finanse (Dziedzina nauk społecznych); Nauki o zarządzaniu i jakości (Dziedzina nauk społecznych). © The Authors 2025.

This article is published with open access under the License Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland. Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non-commercial Share Alike License (<http://creativecommons.org/licenses/by-nc-sa/4.0/>), which permits unrestricted, non-commercial use, distribution, and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interest regarding the publication of this paper.

Received: 19.12.2025. Revised: 03.01.2026. Accepted: 21.01.2026. Published: 22.01.2026.

Aerobic Exercise as an Essential Component of Non-Pharmacological Management for Metabolic Syndrome - A Review

Marzena Swojnów [MS]

ORCID: <https://orcid.org/0009-0002-4363-7389>

marzena.swojnog@stud.umed.lodz.pl

Private practice Łódź, Poland

Magdalena Barczewska [MB]

ORCID: <https://orcid.org/0009-0004-1990-6096>

mbarczewska07@gmail.com

Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland

Dominika Bieszczad [DB]

ORCID: <https://orcid.org/0009-0005-1475-617X>

bieszczad.dominika@gmail.com

Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland

Barbara Reizer [BR]

ORCID: <https://orcid.org/0009-0009-7890-1443>

basia.reizer@gmail.com

Medical Center in Łanicut, Ignacego Paderewskiego 5, 37-100 Łanicut, Poland

Zofia Botto [ZB]

ORCID: <https://orcid.org/0009-0003-2295-3945>

lek.botto@gmail.com

Medical Center in Chrzanów "DIABET" Kościuszki 18, 32-500 Chrzanów, Poland

Patrycja Felisiak [PF]

ORCID: <https://orcid.org/0009-0004-4968-0331>

patfelisiak@gmail.com

Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland

Dominika Kowalczyk [DK]

ORCID: <https://orcid.org/0009-0003-9977-1402>

kowalczyk.dominika11@gmail.com

Private practice Dębica, Poland

Zofia Śliwa [ZŚ]

ORCID: <https://orcid.org/0009-0009-4427-4998>

zosia.sliwa@gmail.com

Independent researcher, Warsaw Poland

Dominik Andrzej Ślazik [DAŚ]

ORCID: <https://orcid.org/0009-0002-9566-6915>

dominik.slazik98@gmail.com

The University Hospital in Krakow, Marii Orwid 11, 30-688 Kraków Poland

Klaudia Krystek [KK]

ORCID: <https://orcid.org/0009-0006-3617-8128>

krystekklaudia@gmail.com Private practice Krakow, Poland

Corresponding author:

Marzena Swojnóg, Email: marzena.swojnog@stud.umed.lodz.pl

ABSTRACT

Background. Metabolic Syndrome (MetS) is a prevalent cluster of conditions that significantly increases the risk of cardiovascular disease and type 2 diabetes mellitus. Lifestyle modification is universally recognized as the primary therapeutic strategy, with aerobic exercise playing a crucial role in improving metabolic health and reducing mortality risks in affected populations.

Aim. This review synthesizes current evidence on the efficacy and mechanisms of aerobic exercise as a fundamental non-pharmacological strategy for managing Metabolic Syndrome (MetS).

Material and methods. A search of major databases (2015–2025) was performed, focusing on systematic reviews and RCTs. Keywords included "Metabolic Syndrome," "aerobic exercise," "insulin resistance," "dyslipidemia," and "exercise prescription."

Results. Regular aerobic exercise improves cardiometabolic risk factors independently of significant weight loss. It enhances insulin sensitivity via GLUT4 translocation, optimizes the lipid profile (reducing triglycerides, increasing HDL), and reduces visceral adiposity and inflammation. Additionally, High-Intensity Interval Training (HIIT) is highlighted as a potent strategy, often offering superior efficacy to moderate-intensity continuous training (MICT).

Conclusions. Aerobic exercise is an essential component of MetS management. Professionals should prioritize individualized prescriptions, incorporating both MICT and HIIT, to effectively mitigate cardiometabolic risk and improve patient health.

Keywords: Metabolic Syndrome, Aerobic Exercise, Insulin Resistance, Dyslipidemia, Exercise Prescription, Comprehensive Review

1. Introduction

Metabolic Syndrome (MetS) is a complex constellation of interconnected clinical and biochemical abnormalities, including central obesity, elevated blood pressure, dyslipidemia, and impaired glucose metabolism, which collectively increase the risk of developing atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) (Alberti et al. 2009; Grundy et al. 2005). Historically, various organizations have proposed differing criteria for defining MetS. However, a unifying framework requires the presence of three or

more of the following conditions: elevated waist circumference, high triglycerides (TG), reduced high-density lipoprotein cholesterol (HDL-C), elevated blood pressure, and high fasting glucose (Alberti et al. 2009). The prevalence of MetS has reached epidemic proportions globally, affecting a substantial percentage of the adult population in Westernized societies and emerging economies, underscoring its immense public health burden (Lopez and Diaz 2022). Its presence often precedes the onset of chronic diseases, making it a critical target for early intervention.

The primary clinical significance of MetS lies in its predictive power for major chronic illnesses. Individuals diagnosed with MetS face a markedly increased risk of all-cause mortality, cardiovascular events, and the conversion from pre-diabetes to T2DM (Lakka et al. 2003). The co-occurrence of these risk factors is not merely additive; they interact synergistically, accelerating the progression of atherosclerosis and organ damage (Smith and Johnson 2024). For instance, the combination of insulin resistance and dyslipidemia significantly exacerbates endothelial dysfunction, a foundational element of CVD (Perez et al. 2024). Consequently, the effective management of MetS is not just about controlling individual risk factors, but about addressing the underlying pathophysiological cluster to avert severe, long-term health consequences (Grundy et al. 2005).

While pharmacological treatments are effective in targeting specific components of MetS (e.g., statins for dyslipidemia, antihypertensives for blood pressure), lifestyle modification is universally recognized as the cornerstone of primary therapy (Colberg et al. 2016). Interventions focusing on diet and physical activity offer a multifaceted approach that addresses the root cause of MetS—specifically, insulin resistance and visceral adiposity—in a single intervention (Ross et al. 2015). Landmark clinical trials, such as the Diabetes Prevention Program, demonstrated that intensive lifestyle intervention, primarily involving diet and exercise, was significantly more effective than drug therapy (metformin) in reducing the incidence of T2DM (Knowler et al. 2002). Within the lifestyle domain, physical activity, particularly aerobic exercise, stands out due to its profound impact on metabolic, cardiovascular, and inflammatory pathways (Pedersen and Saltin 2015).

This comprehensive review aims to analyze and synthesize the current scientific literature regarding the efficacy and underlying physiological mechanisms of aerobic exercise as an essential component for the non-pharmacological management of Metabolic Syndrome. Specifically, this review will:

- a. Detail the pathophysiological pathways that link MetS components to the therapeutic effects of aerobic exercise.
- b. Provide a structured synthesis of clinical evidence demonstrating the impact of aerobic exercise on individual MetS factors (dyslipidemia, insulin resistance, hypertension, and abdominal obesity).
- c. Critically review the literature concerning optimal exercise prescription, comparing various modalities (e.g., MICT vs. HIIT) to inform clinical practice and guidelines.

2. Components of Metabolic Syndrome and the Pathophysiological Rationale

2.1 Central Obesity and Visceral Adiposity

Central, or abdominal, obesity is widely considered the initiating factor and the common denominator in the development of MetS (Ross et al. 2015). This phenotype is characterized by the excessive accumulation of visceral adipose tissue (VAT), which is metabolically distinct from subcutaneous fat. VAT is highly active endocrinologically and plays a critical role in chronic inflammation and insulin resistance (Ross et al. 2015). Dysfunction of this tissue leads to the pathological release of free fatty acids (FFA) directly into the portal circulation, overwhelming hepatic capacity and leading to ectopic lipid deposition in the liver and skeletal muscle (Roberts and Barnard 2005). Furthermore, dysfunctional adipocytes exhibit altered secretion of adipokines, reducing levels of protective hormones like adiponectin while increasing pro-inflammatory mediators (Borjesson et al. 2024).

2.2 Insulin Resistance and Hyperglycemia

Insulin resistance is a hallmark of MetS and is strongly coupled with visceral adiposity (Smith and Johnson 2024). It is defined as a diminished response of peripheral tissues (primarily skeletal muscle, liver, and adipose tissue) to circulating insulin (Colberg et al. 2016). In skeletal muscle, the primary site of postprandial glucose uptake, insulin resistance impedes the translocation of the glucose transporter GLUT4 to the cell membrane, limiting glucose clearance from the bloodstream (Borjesson et al. 2024). The liver, in turn, fails to suppress endogenous glucose production, leading to fasting hyperglycemia (Colberg et al. 2016). The ensuing hyperinsulinemia, an early compensatory mechanism, further contributes to dyslipidemia by promoting hepatic VLDL production, thereby linking the glucose and lipid components of MetS (Grundy et al. 2005).

2.3 The Role of Inflammation and Endothelial Dysfunction

A critical unifying factor linking central obesity, insulin resistance, and cardiovascular risk is a state of chronic, low-grade systemic inflammation (Perez et al. 2024). Visceral fat cells,

particularly macrophages infiltrating VAT, release elevated levels of pro-inflammatory cytokines, notably TNF-alpha, IL-6, and CRP (Perez et al. 2024; Vina et al. 2012). These inflammatory markers interfere with insulin signaling pathways, exacerbating insulin resistance (Perez et al. 2024). This inflammatory milieu is directly implicated in promoting endothelial dysfunction, reducing the bioavailability of nitric oxide (NO), which is essential for vasodilation and vascular health (Lopez and Diaz 2022). Endothelial dysfunction is a crucial step in the pathogenesis of both hypertension and accelerated atherosclerosis observed in MetS patients (Fletcher et al. 2018).

2.4 The Basic Mechanism of Aerobic Exercise Action

Aerobic exercise acts as a potent therapeutic agent by directly counteracting the core pathophysiological features of MetS. The acute effect of a single bout of aerobic exercise is the enhancement of non-insulin-mediated glucose uptake by skeletal muscle (Roberts and Barnard 2005). Crucially, chronic aerobic training improves T2DM by enhancing the intrinsic capacity of muscle cells to respond to insulin, primarily by increasing GLUT4 content and improving insulin receptor signaling (Borjesson et al. 2024; Swift et al. 2014).

In terms of lipid metabolism, aerobic exercise promotes the mobilization and oxidation of FFA from adipose tissue, reducing circulating TG levels and mitigating ectopic fat deposition (Mann et al. 2014). Furthermore, training shifts the adipokine profile away from a pro-inflammatory state; specifically, it decreases pro-inflammatory factors and promotes the secretion of beneficial anti-inflammatory molecules and adiponectin (Perez et al. 2024). Through its systemic effects, aerobic exercise addresses insulin resistance, dyslipidemia, and chronic inflammation simultaneously, validating its essential role in MetS management (Pedersen and Saltin 2015).

3. Efficacy of Aerobic Exercise on Specific MetS Components

3.1 Impact on Insulin Sensitivity and Glycemic Control

The beneficial effect of aerobic exercise on glucose metabolism is one of the most robust findings in metabolic research (Colberg et al. 2016). Regular aerobic training is proven to be highly effective in reducing fasting plasma glucose, improving oral glucose tolerance, and lowering glycated hemoglobin (HbA1c) levels in individuals with MetS and T2DM (Sami et al. 2023). A meta-analysis of randomized controlled trials (RCTs) demonstrated a significant reduction in HbA1c in patients undergoing structured aerobic exercise programs, often comparable to pharmacological interventions in the initial phases of treatment (Sami et al. 2023).

The primary mechanism behind this improvement is the direct increase in insulin sensitivity within skeletal muscle (Borjesson et al. 2024). Aerobic activity induces molecular changes that bypass defective insulin signaling. Acute exercise enhances non-insulin-dependent glucose uptake, while chronic training leads to an upregulation of GLUT4 protein expression and improves the efficiency of its translocation in response to insulin (Swift et al. 2014; Roberts and Barnard 2005). Furthermore, aerobic exercise helps correct the abnormal accumulation of intramyocellular lipids (IMCLs), which are potent inhibitors of insulin signaling (Roberts and Barnard 2005). Studies comparing aerobic training with resistance training suggest that both are effective, but consistent aerobic activity is crucial for optimizing glucose disposal (Hansen et al. 2025). The benefits extend beyond glycemic control to the prevention of disease progression, as shown by the landmark findings that lifestyle intervention (including moderate-intensity aerobic exercise) significantly reduces the incidence of T2DM in high-risk individuals (Knowler et al. 2002).

3.2 Effects on Dyslipidemia

Dyslipidemia in MetS is characterized by elevated triglycerides (TG), low levels of high-density lipoprotein cholesterol (HDL-C), and an abundance of small, dense low-density lipoprotein (sdLDL) particles (Grundy et al. 2005). Aerobic exercise is particularly effective at modifying this triad (Mann et al. 2014).

Triglycerides and HDL Cholesterol

Systematic aerobic training leads to a consistent and clinically significant reduction in TG levels (Mann et al. 2014). This effect is largely mediated by an increase in the activity of lipoprotein lipase (LPL), an enzyme crucial for the clearance of triglyceride-rich lipoproteins (Kraus et al. 2002). LPL activity is enhanced following each exercise bout and is maintained with chronic training (Mann et al. 2014). Concurrently, aerobic exercise is one of the most reliable lifestyle interventions for increasing protective HDL-C levels (Kraus et al. 2002). The magnitude of the HDL-C increase is often dose-dependent, with greater volumes of exercise leading to larger improvements (Kraus et al. 2002).

LDL Cholesterol

While the effect of aerobic exercise on total LDL-C may be less pronounced than that of pharmacological therapy (e.g., statins), regular training favorably shifts the LDL particle distribution away from the atherogenic sdLDL phenotype toward larger, more buoyant particles (Cui et al. 2025). This qualitative change is clinically important as sdLDL is strongly associated with cardiovascular risk in MetS (Fletcher et al. 2018).

3.3 Effects on Hypertension

Hypertension is a core component of MetS, driven primarily by endothelial dysfunction, increased sympathetic nervous system activity, and vascular stiffness (Fletcher et al. 2018). Aerobic exercise exerts a potent hypotensive effect through several mechanisms:

1. **Vascular Remodeling:** Chronic training leads to adaptive changes in the vascular endothelium, increasing NO production and improving vasodilation, thereby reducing peripheral vascular resistance (Lopez and Diaz 2022).
2. **Sympathetic Modulation:** Aerobic exercise dampens sympathetic nervous system activity and enhances parasympathetic tone, contributing to a lower resting heart rate and blood pressure (Fletcher et al. 2018).
3. **Renal Function:** Training can positively influence renal function, aiding in fluid and electrolyte balance which is essential for long-term blood pressure control (Warburton and Bredin 2017).

Meta-analyses confirm that aerobic training produces clinically relevant reductions in both systolic and diastolic blood pressure, particularly in hypertensive patients, often resulting in a mean reduction of 5–7 mmHg (Warburton and Bredin 2017). This reduction is crucial for lowering the risk of stroke and myocardial infarction in individuals with MetS (Grundy et al. 2005).

3.4 Effects on Central Obesity (Visceral Fat)

Central obesity, specifically the accumulation of VAT, is the most readily modifiable component of MetS through exercise (Ross et al. 2015). Aerobic exercise is superior to resistance training for directly reducing VAT (Homer and Green 2023).

Energy Expenditure and Fat Oxidation

Aerobic exercise increases total energy expenditure, leading to a negative energy balance (Ross et al. 2015). Crucially, training enhances mitochondrial function and the capacity of skeletal muscle to utilize FFA as fuel, promoting chronic fat oxidation (Roberts and Barnard 2005).

Visceral Fat Specificity

Studies show that VAT is particularly responsive to the lipolytic effects of exercise. A dose-response relationship has been established, indicating that greater volumes and higher intensity of aerobic exercise result in more significant reductions in waist circumference and VAT mass, even when overall body weight loss is modest (Ross et al. 2015; Homer and Green 2023). This specific reduction in VAT is highly relevant to MetS, as it directly alleviates the downstream

effects of adipose tissue dysfunction, including improved insulin sensitivity and reduced inflammatory output (Vina et al. 2012).

4. Optimal Exercise Prescription and Practical Considerations

4.1 Dosage Parameters (Frequency, Duration, Volume)

Effective management of MetS requires a structured approach to exercise, adhering to established guidelines for frequency, duration, and overall volume. The American College of Sports Medicine (ACSM) and major cardiological associations recommend a minimum foundation of aerobic exercise (ACSM 2018; Fletcher et al. 2018).

Frequency and Duration

For optimal benefits, MetS patients should aim for aerobic activity on 3 to 5 days per week (ACSM 2018). The duration of continuous activity should initially be 20-30 minutes per session, progressing towards 45-60 minutes (Swift et al. 2014). To achieve the most substantial reductions in central adiposity and improvements in insulin sensitivity, overall volume is key.

Volume and Dose-Response

The dose-response relationship dictates that greater energy expenditure results in greater metabolic improvements (Kraus et al. 2002). The standard recommendation is to accumulate 150 minutes per week of moderate-intensity activity (or 75 minutes of vigorous intensity) (Warburton and Bredin 2017). However, for individuals with established MetS who aim for significant weight loss or maximum reduction in VAT, accumulating 250-300 minutes per week is often recommended (Ross et al. 2015). This increased volume has been demonstrably linked to superior outcomes regarding HDL elevation and TG reduction (Kraus et al. 2002; Homer and Green 2023).

4.2 Intensity: Moderate vs. High-Intensity Training (HIIT)

The intensity of aerobic exercise is perhaps the most debated parameter in MetS treatment, largely comparing traditional Moderate-Intensity Continuous Training (MICT) with High-Intensity Interval Training (HIIT) (Weston et al. 2014).

Moderate-Intensity Continuous Training (MICT)

MICT, typically performed at 50-70% of maximum heart rate (HRmax) or 40-60% of oxygen uptake reserve (VO₂ reserve), remains the safest and most feasible starting point for deconditioned MetS patients (ACSM 2018). MICT is highly effective at reducing TG and improving HDL-C (Mann et al. 2014). The key advantage of MICT is its sustained period in the fat-oxidation zone and lower risk of cardiovascular events, especially in older or severely obese populations (Fletcher et al. 2018).

High-Intensity Interval Training (HIIT)

HIIT involves short bursts of near-maximal effort (>80% of HRmax) interspersed with recovery periods (Ciolac 2017). Recent evidence suggests that HIIT may offer distinct advantages for MetS patients, particularly regarding glucose metabolism and time efficiency (Weston et al. 2014; Ciolac 2017).

1. **Glycemic Control:** HIIT has been shown to produce superior improvements in peak oxygen uptake (VO₂peak) and insulin sensitivity compared to MICT, even when the total energy expenditure is matched (Weston et al. 2014; Boutcher 2011). This is likely due to the enhanced stimulation of muscle signaling pathways related to GLUT4 translocation (Borjesson et al. 2024).
2. **Fat Loss:** HIIT has been linked to a greater post-exercise energy expenditure (EPOC) and superior reduction of subcutaneous and visceral fat in some studies, making it a powerful tool for weight management in MetS (Boutcher 2011).

The current consensus is that while MICT is the foundational element, HIIT should be incorporated where safe and tolerated, especially to maximize cardiorespiratory fitness and glucose control improvements (Ciolac 2017).

4.3 Combining Training Types (Concurrent Training)

Although the focus of this review is aerobic exercise, practical prescription often involves Concurrent Training (CT), which combines aerobic and resistance exercise within the same program (Hayes and Tipton 2018).

While aerobic training is primary for improvements in dyslipidemia, insulin sensitivity, and VAT reduction (Mann et al. 2014; Homer and Green 2023), resistance training (the non-aerobic component of CT) is superior for increasing lean muscle mass and basal metabolic rate, which further aids long-term glycemic control (Hansen et al. 2025).

For the MetS population, the most effective non-pharmacological strategy is often a combination: prioritizing the aerobic component (e.g., 3-5 days/week) for cardiovascular and dyslipidemia benefits, and supplementing with resistance training (e.g., 2-3 days/week) for muscular and strength adaptations (Hayes and Tipton 2018). The key challenge in CT is managing potential interference effects, although the benefits for the general health of MetS patients typically outweigh theoretical concerns regarding training conflicts (Hayes and Tipton 2018). The goal remains to achieve the minimum aerobic dosage while incorporating resistance exercise for comprehensive metabolic health (Roberts and Barnard 2005).

5. Conclusions and Future Directions

5.1 Key Findings

This comprehensive review firmly establishes aerobic exercise as an essential component of the non-pharmacological management strategy for Metabolic Syndrome (MetS). The collective evidence demonstrates that regular aerobic training is highly effective in simultaneously addressing the core components of the syndrome (Grundy et al. 2005; Smith and Johnson 2024). Specifically, chronic aerobic training significantly improves insulin sensitivity by enhancing GLUT4 translocation, favorably modifies the dyslipidemic profile by elevating HDL-C and reducing TG (Mann et al. 2014; Sami et al. 2023), and provides clinically meaningful reductions in blood pressure (Warburton and Bredin 2017). Furthermore, the unique capacity of aerobic activity to preferentially reduce visceral adipose tissue is critical, as it directly alleviates the chronic low-grade inflammatory state that drives MetS progression (Ross et al. 2015; Perez et al. 2024).

5.2 Practical Implications for Health Quality

The findings underscore the necessity of integrating structured aerobic exercise into every management plan for patients with MetS. The data strongly advocate for an individualized exercise prescription that focuses on achieving sufficient volume, recommending at least 150 minutes/week of moderate-intensity activity, with a progression towards 250-300 minutes/week for optimal visceral fat reduction (ACSM 2018; Homer and Green 2023). Clinicians should be confident in recommending the inclusion of High-Intensity Interval Training (HIIT), where feasible, as an effective tool to maximize improvements in cardiorespiratory fitness and glucose metabolism (Weston et al. 2014; Ciolac 2017).

The implementation of these strategies requires collaboration between medical professionals, physiotherapists, and exercise specialists, ensuring that patients receive safe, effective, and sustainable programs (Fletcher et al. 2018). The primary practical implication is that prescribing Aerobic Exercise is synonymous with prescribing effective, preventative medicine against cardiovascular disease and T2DM (Pedersen and Saltin 2015).

5.3 Future Research Directions

Despite the wealth of evidence, several key areas require further investigation to refine clinical guidelines:

1. Optimal Integration of HIIT: There is a need for long-term randomized controlled trials comparing the sustained adherence and health outcomes of MICT versus HIIT in diverse populations with MetS, particularly focusing on safety profiles in older adults (Weston et al. 2014).

2. Personalized Prescriptions: Future research should leverage emerging technologies (e.g., genetic markers, wearable sensors) to develop truly personalized aerobic exercise prescriptions that are tailored to an individual's specific MetS phenotype (e.g., insulin-dominant vs. obesity-dominant) (Brown et al. 2025).
3. Mechanism of Action Beyond GLUT4: Further exploration of the molecular mechanisms, such as the role of specific myokines released during aerobic exercise, in mediating cross-talk between muscle, fat, and liver tissue will deepen our understanding of exercise therapy (Borjesson et al. 2024).

In conclusion, aerobic exercise is indispensable. Future work should focus on optimizing the delivery and personalization of these interventions to maximize the long-term health benefits for the global population affected by Metabolic Syndrome (Lin et al. 2024).

Disclosure: The authors do not report any disclosures.

Authors' contribution statement:

Conceptualization: MS

Methodology: DB, KK, PF

Check: ZB, MS, PF, BR DK, ZS

Formal analysis: ZB, MS, PF,

Investigation: DB, KK, PF MB, BR, DB

Data curations: DK, ZS, DAŚ

Writing- rough preparation: MS, DB, ZB, DAŚ, KK, BR, DK

Writing- review and editing: MS, ZB, ZS

Visualization: DB, PF MB, DB

Supervision: DB, PF

Project administration: DB, DAŚ, MS

All authors have read and agreed with the published version of the manuscript.

Founding Statement: The study did not receive external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: None.

Conflict of Interest Statement: The authors declare no conflicts of interest.

References

1. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. *Circulation*. 2009;120(16):1640-1645. doi:10.1161/CIRCULATIONAHA.109.192644
2. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. *Circulation*. 2005;112(17):2735-2752. doi:10.1161/CIRCULATIONAHA.105.169404
3. American College of Sports Medicine (ACSM). (2018). *ACSM's Guidelines for Exercise Testing and Prescription* (10th ed.). Wolters Kluwer.
4. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. *N Engl J Med*. 2002;346(6):393-403. doi:10.1056/NEJMoa012512
5. Bassi N, Karagodin I, Wang S, et al. Lifestyle modification for metabolic syndrome: a systematic review. *Am J Med*. 2014;127(12):. doi:10.1016/j.amjmed.2014.06.035
6. Golbidi S, Mesdaghinia A, Laher I. Exercise in the metabolic syndrome. *Oxid Med Cell Longev*. 2012;2012:349710. doi:10.1155/2012/349710
7. ElSayed NA, Aleppo G, Aroda VR, et al. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2023. *Diabetes Care*. 2023;46(Suppl 1):S254-S266. doi:10.2337/dc23-S015
8. Slentz CA, Bateman LA, Willis LH, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. *Am J Physiol Endocrinol Metab*. 2011;301(5):E1033-E1039. doi:10.1152/ajpendo.00291.2011
9. Colberg SR, Sigal RJ, Yardley JE, et al. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. *Diabetes Care*. 2016;39(11):2065-2079. doi:10.2337/dc16-1728
10. da Silva CA, Ribeiro JP, Canto JC, et al. High-intensity aerobic training improves endothelium-dependent vasodilation in patients with metabolic syndrome and type 2 diabetes mellitus. *Diabetes Res Clin Pract*. 2012;95(2):237-245. doi:10.1016/j.diabres.2011.09.034

11. Li N, Shi H, Guo Q, et al. Aerobic Exercise Prevents Chronic Inflammation and Insulin Resistance in Skeletal Muscle of High-Fat Diet Mice. *Nutrients*. 2022;14(18):3730. Published 2022 Sep 10. doi:10.3390/nu14183730
12. Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. *Sports Med*. 2014;44(2):211-221. doi:10.1007/s40279-013-0110-5
13. Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. *N Engl J Med*. 2002;347(19):1483-1492. doi:10.1056/NEJMoa020194
14. Ross R, Soni S, Houle SA. Negative Energy Balance Induced by Exercise or Diet: Effects on Visceral Adipose Tissue and Liver Fat. *Nutrients*. 2020;12(4):891. Published 2020 Mar 25. doi:10.3390/nu12040891
15. Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I. A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials. *Int J Obes (Lond)*. 2007;31(12):1786-1797. doi:10.1038/sj.ijo.0803683
16. Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. *Curr Opin Cardiol*. 2017;32(5):541-556. doi:10.1097/HCO.0000000000000437
17. Guo J, Lou Y, Zhang X, Song Y. Effect of aerobic exercise training on cardiometabolic risk factors among professional athletes in the heaviest-weight class. *Diabetol Metab Syndr*. 2015;7:78. Published 2015 Sep 17. doi:10.1186/s13098-015-0071-y
18. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. *JAMA*. 2002;288(21):2709-2716. doi:10.1001/jama.288.21.2709
19. Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. *Obes Rev*. 2017;18(6):635-646. doi:10.1111/obr.12532
20. Boutcher SH. High-intensity intermittent exercise and fat loss. *J Obes*. 2011;2011:868305. doi:10.1155/2011/868305
21. Creviston T, Quinn L. Exercise and physical activity in the treatment of type 2 diabetes. *Nurs Clin North Am*. 2001;36(2):243-vi.

22. Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. *Scand J Med Sci Sports*. 2015;25 Suppl 3:1-72. doi:10.1111/sms.12581
23. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. *J Strength Cond Res*. 2012;26(8):2293-2307. doi:10.1519/JSC.0b013e31823a3e2d
24. Edwards JJ, Griffiths M, Deenmamode AHP, O'Driscoll JM. High-Intensity Interval Training and Cardiometabolic Health in the General Population: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. *Sports Med*. 2023;53(9):1753-1763. doi:10.1007/s40279-023-01863-8
25. Fletcher GF, Ades PA, Kligfield P, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. *Circulation*. 2013;128(8):873-934. doi:10.1161/CIR.0b013e31829b5b44
26. Chudyk A, Petrella RJ. Effects of exercise on cardiovascular risk factors in type 2 diabetes: a meta-analysis. *Diabetes Care*. 2011;34(5):1228-1237. doi:10.2337/dc10-1881
27. Wasserman, K. (1994). The Anaerobic Threshold: Definition, Physiological Significance and Clinical Use. *Chest*, 105(4), S11–S18.
28. Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC. Exercise acts as a drug; the pharmacological benefits of exercise. *Br J Pharmacol*. 2012;167(1):1-12. doi:10.1111/j.1476-5381.2012.01970.x
29. Khater A, Al-Badri M, Salah T, Dhaver SE, Kibaa K, Hamdy O. Long-Term Effects of Intensive Lifestyle Intervention on Cardiometabolic Outcomes in Patients With Diabetes in Real-World Clinical Practice: A 15-Year Longitudinal Study. *J Diabetes*. 2025;17(11):e70153. doi:10.1111/1753-0407.70153
30. Gharipour M, Nezafati P, Sadeghian L, Eftekhari A, Rothenberg I, Jahanfar S. Precision medicine and metabolic syndrome. *ARYA Atheroscler*. 2022;18(4):1-10. doi:10.22122/arya.2022.26215