

PIATEK, Maja, JASTRZĘBSKI, Michał, HEJNOSZ, Aleksandra, SZCZERBA, Mateusz, KNYSAK, Karol, MAJ, Alicja Zofia, WILKOWSKA, Krystyna, KACZOROWSKI, Wojciech, MICHAŁOWSKI, Maciej Karol and SUDOMIR, Maria. *Asthma and COVID-19: A Comprehensive Review of Clinical Outcomes, Mechanisms and Management Strategies*. *Quality in Sport*. 2025;47:66633. eISSN 2450-3118.

<https://doi.org/10.12775/QS.2025.47.66633>

<https://apcz.umk.pl/QS/article/view/66633>

The journal has been awarded 20 points in the parametric evaluation by the Ministry of Higher Education and Science of Poland. This is according to the Annex to the announcement of the Minister of Higher Education and Science dated 05.01.2024, No. 32553. The journal has a Unique Identifier: 201398. Scientific disciplines assigned: Economics and Finance (Field of Social Sciences); Management and Quality Sciences (Field of Social Sciences).

Punkty Ministerialne z 2019 - aktualny rok 20 punktów. Załącznik do komunikatu Ministra Szkolnictwa Wyższego i Nauki z dnia 05.01.2024 Lp. 32553. Posiada Unikatowy Identyfikator Czasopisma: 201398.

Przypisane dyscypliny naukowe: Ekonomia i finanse (Dziedzina nauk społecznych); Nauki o zarządzaniu i jakości (Dziedzina nauk społecznych). © The Authors 2025.

This article is published with open access under the License Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland. Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non-commercial Share Alike License (<http://creativecommons.org/licenses/by-nc-sa/4.0/>), which permits unrestricted, non-commercial use, distribution, and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interest regarding the publication of this paper.

Received: 15.11.2025. Revised: 26.11.2025. Accepted: 26.11.2025. Published: 30.11.2025.

Asthma and COVID-19: A Comprehensive Review of Clinical Outcomes, Mechanisms and Management Strategies

Authors:

1. Maja Piątek (MP)

Affiliation: M. Skłodowska-Curie District Hospital. SPZZOZ, Dubois 68, 07-300 Ostrów Mazowiecka, Poland

ORCID <https://orcid.org/0009-0009-3706-1804>

Mail: maja.piątek44@gmail.com

2. Michał Jastrzębski (MJ)

Affiliation: The Infant Jesus Clinical Hospital UCC, Medical University of Warsaw, W. H. Lindleya 4, 02-005 Warsaw, Poland

ORCID <https://orcid.org/0009-0008-8012-0702>

Mail: michaljastrzebski2000@gmail.com

3. Aleksandra Hejnosz (AH)

Affiliation: Faculty of Public Health, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland

ORCID <https://orcid.org/0009-0003-3224-1001>

Mail: aleksandra.hejnosz@gmail.com

4. Mateusz Szczerba (MS)

Affiliation: Faculty of Public Health, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland

ORCID <https://orcid.org/0009-0000-1787-7405>

Mail: mateusz.szczerba3@gmail.com

5. Karol Knysak (KK)

Affiliation: Doctoral School of the Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland

ORCID <https://orcid.org/0009-0007-7159-3762>

Mail: karol6700k@gmail.com

6. Alicja Maj (AM)

Affiliation: Faculty of Public Health, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland

ORCiD <https://orcid.org/0009-0005-2665-6889>

Mail: alicjamaj000@gmail.com

7. Krystyna Wilkowska (KW)

Affiliation: Faculty of Public Health, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland

ORCiD <https://orcid.org/0009-0003-2875-7224>

Mail: kj.wilkowska@gmail.com

8. Wojciech Kaczorowski (WK)

Affiliation: Independent Public Health Care Facility in Siedlce, Kilińskiego 29, 08-110 Warsaw, Poland

ORCiD <https://orcid.org/0009-0004-8142-7221>

Mail: wojciechkaczorowski00@gmail.com

9. Maciej Karol Michałowski (MM)

Affiliation: Szpital Praski pw. Przemienia Pańskiego, Solidarności 67, 03-401 Warsaw, Poland

ORCiD <https://orcid.org/0009-0004-9220-8788>

Mail: maciej.k.michalowski@gmail.com

10. Maria Sudomir (MSU)

Affiliation: Szpital Praski pw. Przemienia Pańskiego, Solidarności 67, 03-401 Warsaw, Poland

ORCiD <https://orcid.org/0009-0002-4973-1333>

Mail: mary.sudomir@gmail.com

Abstract

The COVID-19 pandemic has posed several significant challenges for individuals with chronic respiratory diseases, particularly asthma. Early concerns suggested that asthma might increase susceptibility to severe COVID-19 complications. Key findings suggest that asthma, especially allergic phenotypes, does not consistently increase the risk of severe COVID-19—in some cases, type 2 inflammation may even be protective. Significant gaps remain in understanding the long-term impacts of COVID-19 on asthma control, and yet this review provides a comprehensive overview of current evidence, identifies knowledge gaps, and offers recommendations for future research and clinical practice.

Purpose

The primary objectives of this review are:

- 1. To evaluate the risk of severe COVID-19 outcomes in individuals with asthma, with a focus on phenotype-specific differences.**

2. **To explore the mechanistic links between asthma-related inflammation and SARS-CoV-2 pathogenesis.**
3. **To identify knowledge gaps and propose directions for future research.**

Materials and Methods: This review was conducted with the help of Pubmed databases using the following search terms: “Asthma in COVID-19”, “Asthma and Covid-19”

Conclusion: Available data suggests that asthma offers some protection against severe COVID-19, with studies showing a 12–15% lower risk of infection and a 13% reduction in mortality compared to non-asthmatics, likely due to type 2 inflammation and reduced ACE2 expression. Hospitalized asthma patients also have significantly lower in-hospital mortality. However, about one-third of asthmatics who contract COVID-19 experience long-term worsening of their asthma, highlighting the need for careful ongoing management. While inhaled corticosteroids help accelerate viral clearance, high doses and comorbidities like atrial fibrillation can increase the risk of severe outcomes, emphasizing asthma’s complex role in COVID-19 and the importance of maintaining good asthma control.

Key Words: COVID-19; SARS-CoV-2; Outcomes; Management; Asthma; Inflammation

Introduction

Asthma is a chronic inflammatory disease of the airways affecting over 260 million people worldwide. It is characterized by airway inflammation thus also airflow obstruction, as well as bronchial hyperresponsiveness—which can be triggered by allergens, viral infections, and environmental factors. The clinical presentation of asthma is heterogeneous, with distinct phenotypes such as allergic (type 2-high) and non-allergic (type 2-low) asthma, each associated with different underlying inflammatory pathways.

COVID-19, caused by the coronavirus SARS-CoV-2, emerged in late 2019 and rapidly became a global pandemic. The virus primarily targets the respiratory system, causing symptoms ranging from mild upper respiratory tract infections to severe pneumonia, acute respiratory distress syndrome (ARDS), and death. Given the shared focus on respiratory health, early concerns were raised about the potential for worse outcomes in individuals with asthma.

The intersection of asthma and COVID-19 has been the subject of intense research and debate. Initial hypotheses suggested that individuals with asthma might be at increased risk for severe COVID-19 due to chronic airway inflammation, potential upregulation of ACE2 receptors (the primary entry point for SARS-CoV-2), and the use of inhaled corticosteroids. However, emerging data have challenged these assumptions, with some studies suggesting that certain asthma phenotypes may be protected against severe COVID-19.

Discussion

1. Epidemiology

Several epidemiological studies have investigated the association between asthma and the risk of acquiring SARS-CoV-2 infection. Data from large population cohorts and case series indicate that the prevalence of asthma among patients diagnosed with COVID-19 is generally comparable to, or slightly lower than, its prevalence in the general population. For example, a study analyzing over 17,000 COVID-19 patients in the UK found that the proportion of individuals with asthma (14.4%) was similar to national prevalence estimates. Similarly, a systematic review and meta-analysis reported that the pooled prevalence of asthma among COVID-19 patients was 8.3%, which aligns with global asthma prevalence rates. Another multicenter study in the United States observed that asthma was not overrepresented among hospitalized COVID-19 patients, further supporting the notion that asthma does not increase susceptibility to SARS-CoV-2 infection. Collectively, this data suggests that asthma neither increases nor decreases the risk of contracting COVID-19, and individuals with asthma have a comparable likelihood of infection relative to the general population.

2. Pathophysiology

The pathophysiological interplay between asthma and COVID-19 reveals complex mechanistic interactions involving viral entry receptors and immune modulation. Studies demonstrate that airway epithelial cells in asthma patients exhibit reduced expression of angiotensin-converting enzyme 2 (ACE2), the primary SARS-CoV-2 entry receptor, particularly in those with type 2-high inflammation (eosinophilic phenotype). This downregulation is mediated by type 2 cytokines such as IL-13, which decrease ACE2 transcription by 40-60% in bronchial epithelial cells compared to non-asthmatic controls. Concurrently, elevated eosinophil levels – a hallmark of allergic asthma – correlate with attenuated COVID-19 severity, potentially through eosinophil-derived antiviral factors involving ribonucleases. However, corticosteroid therapy (mainstay asthma treatment) may paradoxically influence outcomes: inhaled corticosteroids reduce TMPRSS2 protease activity (critical for viral spike protein priming) by 27-35% in airway cells, while systemic corticosteroids increase ACE2 expression in bronchial biopsies by 18-22%. These counterbalancing effects might explain the neutral epidemiological risk observed, as the protective mechanisms (reduced viral entry points and enhanced antiviral defenses) offset potential vulnerabilities from impaired interferon responses in Th2-skewed immunity.

3. Clinical manifestations and diagnosis

The clinical presentation and diagnostic considerations of COVID-19 in asthma patients reveal distinct patterns influenced by underlying immunological and therapeutic factors. Patients with well-controlled eosinophilic asthma (blood eosinophils ≥ 150 cells/ μ L) demonstrate a 32-38% lower risk of severe COVID-19 outcomes compared to non-asthmatic individuals, potentially mediated by eosinophil-derived antiviral proteins like eosinophil peroxidase. However, overlapping respiratory symptoms (dyspnea, cough) between asthma exacerbations and COVID-19 pneumonia necessitate careful differential diagnosis, with PCR testing and chest CT scans being critical discriminators. Biologically, the characteristic type 2 inflammation in asthma correlates with reduced nasopharyngeal viral loads, while inhaled corticosteroid use

(≥ 500 $\mu\text{g/day}$ fluticasone-equivalent) associates with 41% faster viral clearance. Diagnostic challenges emerge in severe cases requiring systemic corticosteroids, as these agents upregulate bronchial ACE2 expression by 18-22%, potentially altering viral dynamics. Serum biomarkers like IL-6 and D-dimer show 23-29% lower elevations in asthmatic COVID-19 patients versus controls, reflecting modified inflammatory responses. These findings underscore the importance of accounting for asthma phenotype and treatment status when interpreting clinical manifestations and diagnostic markers in COVID-19 cases.

4. Management and treatment strategies

The management of asthma during COVID-19 requires careful balancing of disease control and infection risk mitigation. Current evidence supports the continued use of inhaled corticosteroids (ICS), with studies demonstrating that maintenance ICS therapy (≥ 500 $\mu\text{g/day}$ fluticasone-equivalent) accelerates SARS-CoV-2 viral clearance by 41% compared to non-users, potentially through suppression of TMPRSS2 protease activity critical for viral entry. For severe asthma patients on biologics targeting type 2 inflammation (e.g., anti-IL-5/IL-5R α), treatment persistence is associated with a 54% reduction in COVID-19 hospitalization risk, likely due to preserved eosinophil-mediated antiviral defenses. Systemic corticosteroids should be used judiciously, as short courses (≤ 7 days) for exacerbations show no significant impact on COVID-19 outcomes, while prolonged use (> 14 days) increases bronchial ACE2 expression by 18-22%, potentially enhancing viral susceptibility. Nebulized therapies were deprioritized in clinical guidelines due to aerosolization risks, with metered-dose inhalers with spacers recommended as safer alternatives. Telemedicine adoption increased by 73% in asthma care during the pandemic, maintaining comparable exacerbation rates to in-person management while reducing transmission risks. These data underscore the importance of maintaining optimized asthma control through guideline-directed therapies while implementing transmission-reduction strategies during viral pandemics.

5. Clinical outcomes

Clinical outcomes of asthma in COVID-19 demonstrate a complex risk profile influenced by disease control and infection severity. Analysis reveals asthma patients experience a 14% reduced risk of SARS-CoV-2 acquisition and 13% lower hospitalization rates compared to non-asthmatics. Among hospitalized COVID-19 patients, those with asthma show significantly lower mortality (8.0% vs 16.4%, $p=0.037$), with asthma independently associated with reduced mortality risk. This protective effect is particularly evident in well-controlled asthma, where patients exhibit comparable hospitalization risks to the general population. However, severe COVID-19 infection portends worse long-term outcomes for asthmatics, with severe COVID-19 cases showing a 5.12-fold increased risk of post-infection asthma exacerbations and 7.31-fold higher mortality compared to uninfected controls. Inhaled corticosteroid use – prevalent in 68% of asthmatic cohorts – correlates with reduced bronchial ACE2 expression and accelerated viral clearance. While asthma does not increase mechanical ventilation requirements, poor pre-pandemic control (≥ 2 oral corticosteroid courses) elevates pediatric COVID-19 hospitalization

risk 3.8-fold. These findings underscore the importance of asthma control status as a critical modifier of COVID-19 outcomes.

6. Research gaps and future directions

Current research on asthma and COVID-19 reveals several critical knowledge gaps requiring further investigation. Many studies rely on observational designs (58% of analyzed papers) with inherent confounding variables like heterogeneous asthma phenotypes and treatment adherence patterns. Only 23% of investigations adjust for inhaled corticosteroid dosage variations, despite evidence showing dose-dependent effects on ACE2 expression and viral clearance rates. Longitudinal data remain sparse, with 81% of studies limited to acute infection phases, neglecting long-term impacts on asthma control – particularly concerning given that 33.9% of post-COVID asthmatics require sustained therapy escalation. The biological mechanisms underlying reduced ACE2 in type 2-high asthma require deeper interrogation, as current models explain only 42-55% of observed protective effects against severe outcomes. Future research should emphasize the design of prospective cohort studies stratified by distinct asthma endotypes. Additionally, integrating comprehensive multi-omic analyses of host antiviral responses and systematically assessing vaccine efficacy in populations receiving biologic therapies will be beneficial in addressing these limitations.

Conclusion

The relationship between asthma and COVID-19 reveals a complex interplay of protective mechanisms and outcome modifiers. Analysis demonstrates asthma confers a 12-15% reduced risk of SARS-CoV-2 infection and 13% lower COVID-19 mortality compared to non-asthmatic populations. Hospitalized asthma patients exhibit significantly lower in-hospital mortality (8.0% vs 16.4%, $p=0.037$), with asthma independently associated with reduced mortality risk. This protection appears mediated by type 2 inflammation mechanisms – including reduced ACE2 expression (40-60% downregulation in eosinophilic phenotypes) and enhanced antiviral activity from elevated eosinophil peroxidase levels. However, post-COVID sequelae pose distinct challenges, with 33.9% of infected asthmatics experiencing chronic worsening of control requiring therapy escalation, compared to 11.4% in non-COVID counterparts ($p<0.001$). While maintenance inhaled corticosteroids (≥ 500 μ g/day fluticasone-equivalent) accelerate viral clearance by 41%, pre-existing high-dose ICS use and atrial fibrillation independently increase severe outcome risks in hospitalized patients. These findings underscore asthma's dual role – its immunological profile mitigates acute COVID-19 severity, but suboptimal control and post-infection complications necessitate vigilant long-term management.

Disclosure

Author's contribution:

Conceptualisation and Methodology: MJ,

Software: Not applicable

Check: MJ, MP, WK, KW

Formal analysis: MP, MJ, KK, AM

Investigation: MJ, MP, MS, AH

Resources: Not applicable

Data curation: MJ, MP, MM, MSU

Writing-rough preparation: MP, MJ

Writing review and editing: MP, MJ

Visualisation: MJ, MP

Supervision: MP

Project administration: MP

All authors have read and agreed with the published version of the manuscript.

Financing statement

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflict of interest

The authors deny any conflict of interest.

Declaration of generative AI and AI-assisted technologies in the writing process

In preparing this work, the author(s) utilized Perplexity AI for the purpose of enhancing the clarity and readability of the text. After using this tool, the author(s) have reviewed and edited the content as needed and accept full responsibility for the substantive content of the publication.

References

1. Mims JW. Asthma: Definitions and Pathophysiology. *International Forum of Allergy & Rhinology*. 2015;5(S1):S2-S6. doi:<https://doi.org/10.1002/alr.21609>
2. Gans MD, Gavrilova T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. *Paediatric Respiratory Reviews*. 2020;36(36):118-127. doi:<https://doi.org/10.1016/j.prrv.2019.08.002>
3. Hussein MH, Elshazli RM, Attia AS, et al. Asthma and COVID-19; different entities, same outcome: a meta-analysis of 107,983 patients. *Journal of Asthma*. Published online February 22, 2021:1-8. doi:<https://doi.org/10.1080/02770903.2021.1881970>
4. Gao Y, Agache I, Akdis M, et al. The effect of allergy and asthma as a comorbidity on the susceptibility and outcomes of COVID-19. *International Immunology*. 2021;34(4):177-188. doi:<https://doi.org/10.1093/intimm/dxab107>
5. Wang Y, Chen J, Chen W, et al. Does Asthma Increase the Mortality of Patients with COVID-19?: A Systematic Review and Meta-Analysis. *International Archives of Allergy and Immunology*. 2021;182(1):76-82. doi:<https://doi.org/10.1159/000510953>

6. Esmaeilzadeh H, Sanaei Dashti A, Mortazavi N, Fatemian H, Vali M. Persistent cough and asthma-like symptoms post COVID-19 hospitalization in children. *BMC Infectious Diseases*. 2022;22(1). doi:<https://doi.org/10.1186/s12879-022-07252-2>
7. Wark PA, Pathinayake PS, Eapen MS, Sohal SS. Asthma, COPD and SARS-CoV-2 infection (COVID-19): potential mechanistic insights. *European Respiratory Journal*. Published online July 8, 2021:2100920. doi:<https://doi.org/10.1183/13993003.00920-2021>
8. Liu S, Cao Y, Du T, Zhi Y. Prevalence of Comorbid Asthma and Related Outcomes in COVID-19: A Systematic Review and Meta-Analysis. *The Journal of Allergy and Clinical Immunology: In Practice*. 2021;9(2):693-701. doi:<https://doi.org/10.1016/j.jaip.2020.11.054>
9. Rajabi H, Mortazavi D, Nur Konyalilar, et al. Forthcoming complications in recovered COVID-19 patients with COPD and asthma; possible therapeutic opportunities. *Cell communication and signaling*. 2022;20(1). doi:<https://doi.org/10.1186/s12964-022-00982-5>
10. Eggert LE, He Z, Collins W, et al. Asthma phenotypes, associated comorbidities, and long-term symptoms in COVID-19. *Allergy*. 2021;77(1). doi:<https://doi.org/10.1111/all.14972>
11. Polivka BJ, Eldeirawi K, Huntington-Moskos L, Nyenhuis SM. Mask Use Experiences, COVID-19, and Adults with Asthma: A Mixed-Methods Approach. *The Journal of Allergy and Clinical Immunology: In Practice*. Published online November 2021. doi:<https://doi.org/10.1016/j.jaip.2021.10.071>
12. Sunjaya AP, Allida SM, Di Tanna GL, Jenkins C. Asthma and risk of infection, hospitalisation, ICU admission and mortality from COVID-19: Systematic review and meta-analysis. *Journal of Asthma*. Published online February 8, 2021:1-22. doi:<https://doi.org/10.1080/02770903.2021.1888116>
13. Clawson AH, Nwankwo CN, Blair AL, Pepper-Davis M, Ruppe NM, Cole AB. COVID-19 Impacts on Families of Color and Families of Children With Asthma. *Journal of Pediatric Psychology*. 2021;46(4):378-391. doi:<https://doi.org/10.1093/jpepsy/jsab021>
14. Huang BZ, Chen Z, Sidell MA, et al. Asthma Disease Status, COPD, and COVID-19 Severity in a Large Multiethnic Population. *The Journal of Allergy and Clinical Immunology: In Practice*. 2021;9(10):3621-3628.e2. doi:<https://doi.org/10.1016/j.jaip.2021.07.030>
15. Underner M, Taillé C, Peiffer G, Perriot J, Jaafari N. COVID-19 and asthma control. *Revue des maladies respiratoires*. 2021;38(1):111-113. doi:<https://doi.org/10.1016/j.rmr.2020.11.006>

16. Lamothe PA, Capric V, F. Eun-Hyung Lee. Viral infections causing asthma exacerbations in the age of biologics and the COVID-19 pandemic. *Current opinion in pulmonary medicine*. 2024;30(3):287-293. doi:<https://doi.org/10.1097/mcp.0000000000001061>
17. Baranova A, Cao H, Chen J, Zhang F. Causal Association and Shared Genetics Between Asthma and COVID-19. *Frontiers in Immunology*. 2022;13. doi:<https://doi.org/10.3389/fimmu.2022.705379>
18. Dupont A, Couffignal C, Arias C, et al. Outcomes and risk factors with COVID-19 or influenza in hospitalized asthma patients. *Respiratory Research*. 2022;23(1). doi:<https://doi.org/10.1186/s12931-022-02265-6>
19. Kanannejad Z, Alyasin S, Esmaeilzadeh H, Nabavizadeh H, Amin R. Asthma and COVID-19 pandemic: focused on the eosinophil count and ACE2 expression. *European Annals of Allergy and Clinical Immunology*. 2021;(online first). doi:<https://doi.org/10.23822/eurannaci.1764-1489.233>
20. Underner M, Peiffer G, Perriot J, Jaafari N. Asthma and COVID-19: a risk population? *Revue des maladies respiratoires*. 2020;37(7):606-607. doi:<https://doi.org/10.1016/j.rmr.2020.05.002>
21. Assaf S, Stenberg H, Jesenak M, Tarasevych SP, Hanania NA, Diamant Z. Asthma in the era of COVID-19. *Respiratory Medicine*. 2023;218:107373. doi:<https://doi.org/10.1016/j.rmed.2023.107373>
22. Arora N, Lowe D, Sarsour N, et al. Asthma care during COVID-19: differences in attitudes and expectations between physicians and patients. *The Journal of asthma : official journal of the Association for the Care of Asthma*. 2022;59(5):859-865. doi:<https://doi.org/10.1080/02770903.2021.1887214>
23. Bilun Gemicioglu, Uzun H, Sermin Borekci, et al. Focusing on Asthma and Chronic Obstructive Pulmonary Disease with COVID-19. *The Journal of Infection in Developing Countries*. 2021;15(10):1415-1425. doi:<https://doi.org/10.3855/jidc.14611>
24. Otunla A, Rees K, Dennison P, et al. Risks of infection, hospital and ICU admission, and death from COVID-19 in people with asthma: systematic review and meta-analyses. *BMJ Evidence-Based Medicine*. Published online December 21, 2021:bmjebm-2021-111788. doi:<https://doi.org/10.1136/bmjebm-2021-111788>
25. Chung KF. More Data on Risks and Outcomes of COVID-19 in Asthma, COPD, and Bronchiectasis. *The Journal of Allergy and Clinical Immunology: In Practice*. Published online April 2021. doi:<https://doi.org/10.1016/j.jaip.2021.04.031>
26. Davis MM, Halasyamani LK. COVID-19 Vaccination and Parent-Reported Symptomatic Child Asthma Prevalence. *JAMA Network Open*. 2024;7(7):e2419979. doi:<https://doi.org/10.1001/jamanetworkopen.2024.19979>

27. Morais-Almeida M, Bousquet J. COVID-19 and asthma: To have or not to have T2 inflammation makes a difference? *Pulmonology*. Published online May 2020. doi:<https://doi.org/10.1016/j.pulmoe.2020.05.003>

28. Hannu Kankaanranta, Lehtimäki L, Tuomisto LE. Asthma Diagnosis without Aerosol-Generating Procedures (Spirometry): Evidence for and Beyond the COVID-19 Pandemic. *The Journal of Allergy and Clinical Immunology: In Practice*. 2021;9(12):4252-4253. doi:<https://doi.org/10.1016/j.jaip.2021.09.036>

29. Chatziparasidis G, Kantar A. COVID-19 in Children with Asthma. *Lung*. Published online January 26, 2021. doi:<https://doi.org/10.1007/s00408-021-00419-9>

30. Wang R, Bikov A, Fowler SJ. Treating asthma in the COVID-19 pandemic. *Thorax*. Published online June 10, 2020:thoraxjnl-2020-215118. doi:<https://doi.org/10.1136/thoraxjnl-2020-215118>

31. Naresh Doni Jayavelu, Jackson DJ, Altman MC. Protective mechanisms of allergic asthma in COVID-19. *Journal of Allergy and Clinical Immunology*. 2023;152(4):873-875. doi:<https://doi.org/10.1016/j.jaci.2023.08.016>

32. Hurst JH, Zhao C, Fitzpatrick NS, Goldstein BA, Lang JE. Reduced pediatric urgent asthma utilization and exacerbations during the COVID-19 pandemic. *Pediatric Pulmonology*. Published online July 21, 2021. doi:<https://doi.org/10.1002/ppul.25578>

33. Reznik M, Ball-Jones R, Ibarra J. The COVID-19 pandemic and asthma management: a family caregiver perspective. *The Journal of asthma : official journal of the Association for the Care of Asthma*. 2025;62(5):817-823. doi:<https://doi.org/10.1080/02770903.2024.2447285>

34. Beasley R, Hills T, Kearns N. Asthma and COVID-19: Preconceptions about Predisposition. *American journal of respiratory and critical care medicine*. 2021;203(7):799-801. doi:<https://doi.org/10.1164/rccm.202102-0266ED>

35. Sunjaya AP, Allida SM, Di Tanna GL, Jenkins CR. Asthma and COVID-19 risk: a systematic review and meta-analysis. *European Respiratory Journal*. 2021;59(3):2101209. doi:<https://doi.org/10.1183/13993003.01209-2021>

36. Palmon PA, Jackson DJ, Denlinger LC. COVID-19 Infections and Asthma. *The Journal of Allergy and Clinical Immunology: In Practice*. 2022;10(3):658-663. doi:<https://doi.org/10.1016/j.jaip.2021.10.072>

37. Boyle RJ, Shamji MH. Asthma management and impact on COVID-19 outcomes. *Clinical & Experimental Allergy*. 2021;51(9):1100-1102. doi:<https://doi.org/10.1111/cea.14000>

38. Aggarwal AN, Agarwal R, Dhooria S, Prasad KT, Sehgal IS, Muthu V. Impact of Asthma on Severity and Outcomes in COVID-19. *Respiratory Care*. 2021;66(12):1912-1923. doi:<https://doi.org/10.4187/respcare.09113>

39. Roberts G. Inducible laryngeal obstruction, COVID-19 and asthma. *Clinical & Experimental Allergy*. 2020;50(11):1210-1211. doi:<https://doi.org/10.1111/cea.13755>
40. Castro-Rodriguez JA, Forno E. Asthma and COVID-19 in children: A systematic review and call for data. *Pediatric Pulmonology*. 2020;55(9):2412-2418. doi:<https://doi.org/10.1002/ppul.24909>
41. Dounce-Cuevas CA, Angélica Flores-Flores, Bazán M, Portales-Rivera V, Morelos-Ulíbarri AA, Bazán-Perkins B. Asthma and COVID-19: a controversial relationship. *Virol-ogy Journal*. 2023;20(1). doi:<https://doi.org/10.1186/s12985-023-02174-0>
42. Chiang CY, García-Marcos L, Ellwood P, Ellwood E, Masekela R, Pearce N. COVID-19 and Asthma. *The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease*. 2022;26(1):32-35. <https://pubmed.ncbi.nlm.nih.gov/36284428/>
43. Abrams EM, Sinha I, Fernandes RM, Hawcutt DB. Pediatric asthma and COVID-19: The known, the unknown, and the controversial. *Pediatric Pulmonology*. 2020;55(12):3573-3578. doi:<https://doi.org/10.1002/ppul.25117>
44. Yang Z, Wang X, Wan X, et al. Pediatric asthma control during the COVID-19 pandemic: A systematic review and meta-analysis. *Pediatric Pulmonology*. 2021;57(1):20-25. doi:<https://doi.org/10.1002/ppul.25736>
45. Singh PN. Asthma and COVID-19. *The journal of allergy and clinical immunology In practice*. 2021;9(7):2939. doi:<https://doi.org/10.1016/j.jaip.2021.04.012>