KANIA-BONICKA, Zofia, WOJTACH, Klaudia, DZIECHCIARZ, Oriana, KAŁWAK, Oliwia, GŁOWACKA, Barbara and MRUZEK, Hanna. Effects of High-Intensity Interval Training (HIIT) on Metabolic Health among Individuals with Insulin Resistance. Quality in Sport. 2025;45:66460. eISSN 2450-3118.

https://doi.org/10.12775/QS.2025.45.66460 https://apcz.umk.pl/QS/article/view/66460

The journal has been awarded 20 points in the parametric evaluation by the Ministry of Higher Education and Science of Poland. This is according to the Annex to the announcement of the Minister of Higher Education and Science dated 05.01.2024, No. 32553. The journal has a Unique Identifier: 201398. Scientific disciplines assigned: Economics and Finance (Field of Social Sciences); Management and Quality Sciences

Field of Social Sciences).
Punkty Ministerialne z 2019 - aktualny rok 20 punktów. Zalącznik do komunikatu Ministra Szkolnictwa Wyższego i Nauki z dnia 05.01.2024 Lp. 32553. Posiada Unikatowy Identyfikator Czasopisma: 201398. Przypisane dyscypliny naukowe: Ekonomia i finanse (Dziedzina nauk społecznych); Nauki o zarządzaniu i jakości (Dziedzina nauk społecznych). © The Authors 2025.
This article is published with open access under the License Open Journal Systems of Nicolaus Copernicus University in Torun, Poland. Open Access: This article is distributed under the terms of the Creative Company of the Authors 2025.

This article is published with open access under the License Open Journal Systems of Nicolaus Copernicus University in Torun, Poland. Open Access: This article is distributed under the terms of the Creative Company of the Authors 2025. Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non-commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits unrestricted, non-commercial use,

and the inclusion may be a confined when the control of the control of the confined when the confined when the confined when the confined of the work is properly cited. The authors declare that there is no conflict of interest regarding the publication of this paper. Received: 06.11.2025. Revised: 06.11.2025. Accepted: 06.11.2025. Published: 11.11.2025.

# Effects of High-Intensity Interval Training (HIIT) on Metabolic Health among **Individuals with Insulin Resistance**

#### **AUTHORS**

Zofia Kania-Bonicka, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland

https://orcid.org/0009-0007-5511-133X

zofiakania98@gmail.com

Klaudia Wojtach, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland https://orcid.org/0009-0007-2220-0088

klaudiaw2000@o2.pl

Oriana Dziechciarz, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland

https://orcid.org/0009-0004-9065-1954

oridzi@icloud.com

Oliwia Kałwak, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland https://orcid.org/0009-0009-3753-0500

oliwia.kalwak@gmail.com

Barbara Głowacka, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland

https://orcid.org/0009-0004-3354-1046

barbara.glowacka01@gmail.com

Hanna Mruzek, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland https://orcid.org/0009-0000-5716-8996

hanna.mruzek@gmail.com

#### **ABSTRACT**

#### Introduction

Insulin resistance (IR) is a key mechanism underlying metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. Its prevalence is rising worldwide, including in Poland, with many cases undiagnosed. Lifestyle strategies, especially physical activity, are essential. High-Intensity Interval Training (HIIT) has recently drawn attention as a time-efficient method with strong potential to improve metabolic health.

### Aim

This study aims to evaluate the effects of HIIT on metabolic health in individuals with insulin resistance. The focus is on insulin sensitivity, glycemic control, lipid profile, blood pressure, and hepatic function, and compares HIIT with moderate-intensity continuous training (MICT).

## State of Knowledge

HIIT involves repeated bouts of vigorous activity with recovery periods, usually at 80–100% of maximal heart rate. Evidence shows that it enhances glucose uptake, reduces HOMA-IR, lowers HbA1c, and improves lipid balance by decreasing LDL and raising HDL cholesterol. HIIT also reduces systolic blood pressure and improves liver parameters in non-alcoholic fatty liver disease. Benefits are often greater than or comparable to MICT, despite shorter training duration. The strongest effects occur when combined with weight reduction and dietary changes.

## **Summary (Conclusions)**

HIIT is an effective non-pharmacological strategy for managing insulin resistance and related disorders. It improves glycemic control, lipid and blood pressure regulation, and markedly enhances insulin sensitivity. Thanks to its time efficiency and ease of integration into daily life, HIIT is a valuable therapeutic option that may significantly support prevention and treatment of insulin resistance in both clinical and public health contexts.

**Keywords:** high-intensity interval training, insulin resistance, metabolic health, glycemic control, lipid profile, blood pressure

#### INTRODUCTION

#### **Definitions**

## **HIIT (High-Intensity Interval Training)**

High-Intensity Interval Training (HIIT) is a form of physical exercise characterized by repeated, short bursts of activity reaching high or very high levels of various intensity parameters. HIIT protocols have been widely implemented not only in professional and amateur sports but also in the prevention and treatment of cardiovascular diseases. Despite its longstanding application and broad range of uses, HIIT lacks a uniform definition [1]. Currently, four exercise intensity models are described in the literature. Works by Seiler, Casado, and Jamnick contributed to one of the most commonly used classification systems, which divides effort into six zones based on the Rating of Perceived Exertion (RPE) [2-4]. Zones 5 and 6 correspond to intensities achieved during HIIT sessions (RPE 17-19/20). Another widely used model is the three-zone division based on power output or physiological indicators. These include the moderate, high, and submaximal/very high-intensity zones, delineated by threshold values such as LT1 (first lactate threshold) and GET (gas exchange threshold), and in the case of HIIT, LT2 (second lactate threshold) and MLSS (maximal lactate steady state) [5-7].

The 2020 WHO guidelines, which offer a universal classification of aerobic exercise intensity, also describe three levels of effort: light, moderate, and vigorous, defined according to the metabolic equivalent of task (METs) and RPE values [8]. Activities exceeding 6 METs or an RPE of 7/10 are categorized as vigorous and consistent with HIIT. The American College of Sports Medicine, in its 11th edition of exercise guidelines, identifies five intensity zones: very light, light, moderate, vigorous, and near-maximal to maximal. Entering the last two zones corresponds to achieving 77-95% HRmax or >95% HRmax, 60-89% HRR or >90% HRR, 64%-90% VO2max or >91% VO2max, and an RPE of 14-17/20 or >18/20. Reaching these parameters also qualifies as HIIT. Weston, in turn, defined HIIT as exercise performed at 80% to 100% of peak heart rate [9].

#### **Insulin Resistance**

Insulin resistance (IR) is defined as a pathological condition in which peripheral tissues – primarily skeletal muscle, liver, and adipose tissue – show impaired responsiveness to insulin

despite normal or elevated circulating insulin levels. This dysfunction leads to reduced peripheral glucose uptake and its inefficient utilization, resulting in compensatory hyperinsulinemia [10, 11]. Mechanisms contributing to insulin resistance may involve defects in the insulin receptor itself or elements of its intracellular signaling cascade, ultimately disturbing glucose metabolism, lipid regulation, and inflammatory processes [11, 12].

Insulin resistance is a key component of multiple pathologies, including metabolic syndrome, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases [11, 13]. Furthermore, it may develop asymptomatically over several years and precede clinically overt disturbances in glucose homeostasis, making it a critical target for early prevention and intervention strategies [10, 13].

## **Epidemiology**

Insulin resistance represents a central pathophysiological mechanism in the development of metabolic syndrome and T2DM. Its global prevalence has risen alarmingly in recent decades. According to the World Health Organization (WHO), the number of individuals living with diabetes has quadrupled since 1990, reaching 830 million by 2022 [14]. Notably, 59% of those affected remain untreated, corresponding to more than 445 million adults over the age of 30. T2DM, which accounts for approximately 95% of all diabetes cases, arises due to chronic insulin resistance that is often undiagnosed for extended periods [14, 15].

Although not synonymous with insulin resistance, metabolic syndrome is frequently used as a practical marker of IR in epidemiological studies. Its prevalence varies by geographic region, ranging from approximately 10% to 30% [16]. In Poland, large-scale population-based studies such as WOBASZ and NATPOL have shown a significant increase in metabolic syndrome prevalence in recent years. In the WOBASZ II study (2013-2014), conducted among 19,751 Polish adults aged 20–74, metabolic syndrome prevalence reached 32.8% in women and 39.0% in men – a notable increase compared to the 2003–2005 WOBASZ survey (26.6% in women and 30.7% in men). The most marked rise was seen in carbohydrate metabolism disorders: in WOBASZ II, 47% of men and 35% of women met criteria for impaired fasting glucose or diabetes [17]. For comparison, in the NATPOL 2002 study using ATP III criteria, metabolic syndrome was found in 22.6% of women and 18.0% of men, confirming a growing trend in Poland [18].

Given the increasing prevalence of IR and its low recognition and treatment rates, there is an urgent need to implement integrated preventive and therapeutic strategies at both the individual and systemic levels.

## **Pathophysiology**

Insulin resistance is characterized by the failure of normal insulin concentrations to elicit the expected biological response in target tissues. Both genetic and environmental factors contribute to this condition. Approximately half of IR cases are genetically determined, while the remainder are acquired, often resulting from obesity or physical inactivity [19].

From a pathophysiological standpoint, the core mechanism involves disruptions in intracellular signaling following insulin binding to the insulin receptor (IR). This includes impaired phosphorylation of the insulin receptor and its substrates (IRS), leading to insufficient activation of PI3K and AKT signaling pathways, which are essential for GLUT4 translocation to the cell membranę [20]. Consequently, glucose transport into muscle cells is compromised, resulting in hyperglycemia and compensatory insulin secretion [20, 21].

In skeletal muscle cells – the primary site of glucose uptake – IR manifests as decreased GLUT4 transcription, impaired glucose transport and phosphorylation, reduced glucose oxidation, and impaired glycogen synthesis. Mitochondrial dysfunction plays a central role, leading to reduced oxidative phosphorylation and intracellular lipid accumulation, particularly ceramides and diacylglycerols [21].

A key mechanism in the development of IR is chronic low-grade inflammation, particularly associated with visceral obesity. Enlarged adipose tissue (hypertrophy) produces proinflammatory cytokines such as TNF- $\alpha$  and IL-6. These cytokines exert both local and systemic effects, disrupting insulin signaling in multiple organs. At the cellular level, they activate stress kinases (e.g., JNK, IKK $\beta$ ), which aberrantly phosphorylate IRS proteins on serine residues, thereby impairing signal transduction from the insulin receptor [22].

Emerging research emphasizes the role of insulin receptor endocytosis in IR pathogenesis. Upon activation, the receptor undergoes clathrin-mediated internalization, which modulates signal intensity and duration. Disruptions in this process, for example through AP2 complex dysfunction, may lead to excessive receptor degradation or impaired recycling, further exacerbating signal deficits [23].

The hormonal system also contributes to IR development. Activation of the mineralocorticoid receptor by aldosterone increases oxidative stress, reduces insulin receptor expression, and promotes IRS degradation, collectively impairing insulin signaling. Individuals with primary

hyperaldosteronism exhibit higher IR indices, which improve following mineralocorticoid receptor antagonist therapy [24].

In the liver, impaired glucose uptake is compounded by unrestrained gluconeogenesis, even in the presence of high insulin levels. Disturbances in lipid oxidation lead to triglyceride accumulation in hepatocytes, resulting in NAFLD, and in advanced stages, fibrosis and cirrhosis [22].

To compensate for insulin resistance, pancreatic  $\beta$ -cells increase insulin secretion, temporarily maintaining euglycemia. However, chronic hyperinsulinemia ultimately exhausts  $\beta$ -cell function, leading to T2DM onset [19, 20, 25].

The insulin resistance syndrome is not confined to glucose metabolism. It is frequently accompanied by dyslipidemia (elevated triglycerides, reduced HDL), hypertension, and increased cardiovascular disease risk [25, 26]. IR also plays a key role in the pathogenesis of polycystic ovary syndrome (PCOS) and NAFLD [25].

Thus, the pathophysiology of IR is multifactorial, encompassing interactions between hormonal signaling, energy metabolism, inflammation, and mitochondrial dysfunction. Understanding these mechanisms is crucial for developing effective therapeutic and preventive strategies.

#### **CURRENT TREATMENT METHODS (LIFESTYLE VS. MEDICATION)**

### Diet and lifestyle interventions

The primary therapeutic approach to insulin resistance—especially in its early stages—should involve non-pharmacological methods based on lifestyle modifications. According to current literature, dietary adjustments play a crucial role, including caloric restriction (in cases of overweight or obesity), improving the quality of consumed products, and limiting carbohydrates with a high glycemic index and load. These measures should be complemented by regular physical activity, which enhances muscle sensitivity to insulin [27].

Both diet and physical activity play a pivotal role in the treatment of insulin resistance. Reducing intake of high-glycemic-index carbohydrates, increasing dietary fiber intake, and engaging in regular exercise - both aerobic and resistance training - improve tissue sensitivity to insulin. The greatest metabolic benefits are observed when weight loss is combined with physical activity and dietary habit changes [28].

According to recent data, high-intensity interval training (HIIT) significantly improves metabolic parameters, including increased insulin sensitivity and reduced HOMA-IR levels. Studies have shown that a 12-week HIIT intervention can reduce insulin resistance, especially when combined with spirulina supplementation, as evidenced by changes in levels of apolipoproteins A, B, and J [29].

The mechanisms underlying insulin resistance are complex and include chronic inflammation, oxidative stress, mitochondrial dysfunction, and gut dysbiosis. These elements play a crucial role in the development and progression of metabolic disorders [30]. Therefore, therapeutic strategies should target not only weight control but also aim to mitigate these pathological processes.

The qualitative composition of the diet directly influences insulin sensitivity. A diet rich in fiber, polyunsaturated fatty acids, and with a low glycemic load contributes to improved glucose metabolism. In particular, low-carbohydrate and Mediterranean dietary patterns have shown beneficial effects [31, 32].

Bioactive compounds found in vegetables and plant-based foods, such as sulforaphane, may enhance insulin signaling by regulating ceramide metabolism - lipid molecules involved in the pathogenesis of insulin resistance [33]. Incorporating such components into the diet may therefore provide additional therapeutic benefits, regardless of weight loss.

#### Pharmacological treatment

In more advanced cases, treatment of insulin resistance may require pharmacological intervention. Metformin, the first-line drug, improves glucose uptake in skeletal muscles by increasing the translocation of the GLUT4 transporter to the cell membrane. Moreover, it has been shown to positively affect gut microbiota composition and reduce hepatic glucose production, collectively enhancing tissue insulin sensitivity [34].

## **Hight-Intensity Interval Training**

Table 1 summarizes selected studies evaluating the effects of high-intensity interval training (HIIT) on metabolic and clinical outcomes in individuals with insulin resistance. The table presents the type of intervention, assessed parameters, and reported results, providing a comparative overview of the current evidence.

Table 1. Impact of HIIT Protocols on Metabolic and Clinical Parameters in Insulin Resistance

| PARAMETERS         | TYPE OF INTERVENTION            | OUTCOME              | COMMENT                |
|--------------------|---------------------------------|----------------------|------------------------|
| Lipid Profile [35] | • Phase 1: 30' continuous at    | Reduction in LDL and | Lipid profile          |
|                    | 50% VO2peak (Weeks 1–2)         | total cholesterol    | improvement observed   |
|                    | • Phase 2: 4×(1' at 80% + 4' at | Increase in HDL      | especially in patients |
|                    | 50%) (Weeks 3–6)                |                      | with type 2 diabetes   |
|                    | • Phase 3: 6×(1' at 85% + 4' at |                      |                        |
|                    | 60%) (Weeks 7–12)               |                      |                        |
| NAS [36]           | • 4×4 min intervals at 90–95%   | NAS decreased by 2-3 | Participants had       |
|                    | HR max                          | points               | baseline NAS > 4/8     |

|                     | • Active recovery: 3 min at 50% HRmax                                                                                                 |                                                                                                      |                                                                                                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                     | • Frequency: 3×/week                                                                                                                  |                                                                                                      |                                                                                                                  |
| Blood Pressure [37] | <ul> <li>HIIT: 4×4 min at 90–95% HR max, 3×/week, 12 weeks</li> <li>Other protocols: 10×1' or 4–6×1', 3×/week for 12 weeks</li> </ul> | S                                                                                                    | Effectiveness depends<br>on interval duration;<br>HIIT more effective<br>than MICT, especially<br>for SBP        |
| HbA1c [35]          | <ul> <li>HIIT: 4×4 min at 85–95% HR max + 3 min active recovery</li> <li>3×/week for 12 weeks</li> </ul>                              | HbA1c reduction by 0.5% (from 7.7% to 7.2%; p<0.01)                                                  | HIIT more effective than MICT for glycemic control; significant HbA1c reduction in patients with type 2 diabetes |
| HOMA-IR [38]        | • Low-volume HIIT with reduced intensity and extended interval duration                                                               | Moderate improvement in HOMA-IR, particularly with concurrent weight loss +1 interval = -2.2 HOMA-IR | on peripheral than<br>hepatic insulin<br>resistance; better                                                      |

Abbreviations: HIIT – High-Intensity Interval Training; MICT – Moderate-Intensity Continuous Training; LDL – Low-Density Lipoprotein cholesterol; SBP – Systolic Blood Pressure; DBP – Diastolic Blood Pressure; HR – Heart Rate; NAS – NAFLD Activity Score; NAFLD – Non-Alcoholic Fatty Liver Disease; HbA1c – Glycated Hemoglobin; HOMA-IR – Homeostatic Model Assessment of Insulin Resistance.

## **CONCLUSIONS**

The analysis conducted demonstrates that high-intensity interval training (HIIT) represents an effective non-pharmacological intervention for the treatment and prevention of insulin

resistance and associated metabolic disorders. The studies included in this work confirmed the beneficial effects of HIIT on glycemic control, reduction of the HOMA-IR index, lowering of HbA1c levels, normalization of systolic blood pressure, and improvement in lipid profile. It was observed that the efficacy of HIIT protocols may be comparable to—or even exceed—that of moderate-intensity continuous training (MICT), while requiring significantly less time commitment. The most pronounced metabolic improvements were noted in interventions accompanied by weight loss, indicating a synergistic effect of physical activity and body weight management. HIIT demonstrated a particularly strong impact on peripheral insulin sensitivity, which is of key importance in the pathophysiology of insulin resistance and its complications. Considering the increasing prevalence of carbohydrate metabolism disorders and the limited effectiveness of current preventive strategies, the integration of HIIT into comprehensive therapeutic approaches may constitute a critical step toward more effective management of insulin resistance at both the individual and population levels.

### **Disclosure**

### **Author's contribution**

Conceptualization: Z. Kania-Bonicka; methodology: O. Dziechciarz; software: K.Wojtach; check: B. Głowacka; formal analysis: H. Mruzek; investigation: O. Kałwak; resources: K. Wojtach; data curation: Z. Kania-Bonicka; writing-rough preparation: O. Dziechciarz; writing – review and editing: B. Głowacka; visualization: H. Mruzek; supervision: O. Kałwak; project administration: Z. Kania-Bonicka

All authors have read and agreed with the published version of the manuscript.

## **Financing statement**

This research received no external funding.

### **Institutional Review Board Statement**

Not applicable.

#### **Informed Consent Statement**

Not applicable.

## **Data Availability Statement**

Not applicable.

### **Conflict of interest**

The authors deny any conflict of interest.

### References

1.Coates AM, Joyner MJ, Little JP, Jones AM, Gibala MJ. A Perspective on High-Intensity Interval Training for Performance and Health. Sports Med. 2023;53(Suppl 1):85-96.

## https://doi.org/10.1007/s40279-023-01938-6

2.Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276-291.

## https://doi.org/10.1123/ijspp.5.3.276

3.Casado A, Foster C, Bakken M, Tjelta LI. Does Lactate-Guided Threshold Interval Training within a High-Volume Low-Intensity Approach Represent the "Next Step" in the Evolution of Distance Running Training? Int J Environ Res Public Health. 2023;20(5).

## https://doi.org/10.3390/ijerph20053782

4.Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An Examination and Critique of Current Methods to Determine Exercise Intensity. Sports Med. 2020;50(10):1729-1756.

## https://doi.org/10.1007/s40279-020-01322-8

5. Jones AMaD, J. H. Limitations to submaximal exercise performance. In: Eston RaR, T., editor. Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data. London: Taylor & Francis Group (Imprint: Routledge); 2001. p. 235–262.

6.Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of V'O2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):1876-90.

## https://doi.org/10.1249/MSS.0b013e3181d9cf7f

7.Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical Power: An Important Fatigue Threshold in Exercise Physiology. Med Sci Sports Exerc. 2016;48(11):2320-34. https://doi.org/10.1249/mss.00000000000000939

8.Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, van der Ploeg HP, Wari V, Willumsen JF. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-62.

https://doi.org/10.1136/bjsports-2020-102955

9. Weston K.S WU, Coombes J.S. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227-34.

https://doi.org/10.1136/bjsports-2013-092576

10.Lebovitz HE. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109 Suppl 2:S135-48.

https://doi.org/10.1055/s-2001-18576

11.Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415-28.

https://doi.org/10.1016/s0140-6736(05)66378-7

12.Freeman AM, Acevedo LA, Pennings N. Insulin Resistance. StatPearls. Treasure Island (FL):

StatPearls

Publishing

Copyright © 2025, StatPearls Publishing LLC.; 2025.

13. Sinaiko AR, Caprio S. Insulin resistance. J Pediatr. 2012;161(1):11-5.

https://doi.org/10.1016/j.jpeds.2012.01.012

14.Organization WH. Diabetes 2024 [Available from:

https://www.who.int/news-room/fact-sheets/detail/diabetes.

15. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet. 2024;404(10467):2077-93

.https://doi.org/10.1016/s0140-6736(24)02317-1

16.Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20(2):12.

https://doi.org/10.1007/s11906-018-0812-z

17.Rajca A, Wojciechowska A, Śmigielski W, Drygas W, Piwońska A, Pająk A, Tykarski A, Kozakiewicz K, Kwaśniewska M, Zdrojewski T. Increase in the prevalence of metabolic syndrome in Poland: comparison of the results of the WOBASZ (2003-2005) and WOBASZ II (2013-2014) studies. Pol Arch Intern Med. 2021;131(6):520-6.

https://doi.org/10.20452/pamw.15975

18.Zdrojewski T, Bandosz P, Szpakowski Piw, Konarski R, Manikowski A, Wołkiewicz E, Jakubowski Z, Łysiak-Szydłowska W, Bautembach S, Wyrzykowski B. Prevalence of main

cardiovascular risk factors in Poland: results of the NATPOL PLUS study [in Polish]. Kardiol Pol. 2004;61(Suppl 4):1-26.

19.Muntoni S, Muntoni S. Insulin resistance: pathophysiology and rationale for treatment. Ann Nutr Metab. 2011;58(1):25-36.

## https://doi.org/10.1159/000323395

20.Matthaei S, Stumvoll M, Kellerer M, Häring HU. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev. 2000;21(6):585-618.

## https://doi.org/10.1210/edrv.21.6.0413

21. Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279.

## https://doi.org/10.1155/2010/476279

22. Yazıcı D, Sezer H. Insulin Resistance, Obesity and Lipotoxicity. Adv Exp Med Biol. 2017;960:277-304.

## https://doi.org/10.1007/978-3-319-48382-5 12

23.Hall C, Yu H, Choi E. Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp Mol Med. 2020;52(6):911-20.

## https://doi.org/10.1038/s12276-020-0456-3

24.Garg R, Adler GK. Role of mineralocorticoid receptor in insulin resistance. Curr Opin Endocrinol Diabetes Obes. 2012;19(3):168-75.

## https://doi.org/10.1097/MED.0b013e3283533955

25.Fletcher B, Lamendola C. Insulin resistance syndrome. J Cardiovasc Nurs. 2004;19(5):339-45.

## https://doi.org/10.1097/00005082-200409000-00009

26.Müller-Wieland D, Kotzka J, Knebel B, Krone W. Metabolic syndrome and hypertension: pathophysiology and molecular basis of insulin resistance. Basic Res Cardiol. 1998;93 Suppl 2:131-4.

### https://doi.org/10.1007/s003950050238

27.Banaszak M, Górna I, Przysławski J. Non-Pharmacological Treatments for Insulin Resistance: Effective Intervention of Plant-Based Diets-A Critical Review. Nutrients. 2022;14(7).

## https://doi.org/10.3390/nu14071400

28.Papakonstantinou E, Oikonomou C, Nychas G, Dimitriadis GD. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients. 2022;14(4).

## https://doi.org/10.3390/nu14040823

29. Tayebi SM, Bagherian P, Bassami M, Basereh A, Ahmadabadi S. Impact of a 12-week High-Intensity Interval Training With Spirulina Supplementation on Insulin Resistance-Mediated by Apo-A,-B, and-J in Men With Obesity. European Journal of Sport Science. 2025;25(4):e12285 30.Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022;7(1):216.

## https://doi.org/10.1038/s41392-022-01073-0

31.Martins FO, Conde SV. Impact of Diet Composition on Insulin Resistance. Nutrients. 2022;14(18).

## https://doi.org/10.3390/nu14183716

32.Dayi T, Ozgoren M. Effects of the Mediterranean diet on the components of metabolic syndrome. J Prev Med Hyg. 2022;63(2 Suppl 3):E56-e64.

## https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2747

33.Mirabelli M, Russo D, Brunetti A. The Role of Diet on Insulin Sensitivity. Nutrients. 2020;12(10).

### https://doi.org/10.3390/nu12103042

34.Herman R, Kravos NA, Jensterle M, Janež A, Dolžan V. Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. Int J Mol Sci. 2022;23(3).

## https://doi.org/10.3390/ijms23031264

35.Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports. 2014;24(2):e69-76.

## https://doi.org/10.1111/sms.12112

36.Mucinski JM, Salvador AF, Moore MP, Fordham TM, Anderson JM, Shryack G, Cunningham RP, Lastra G, Gaballah AH, Diaz-Arias A, Ibdah JA, Rector RS, Parks EJ. Histological improvements following energy restriction and exercise: The role of insulin resistance in resolution of MASH. J Hepatol. 2024;81(5):781-93.

## https://doi.org/10.1016/j.jhep.2024.06.017

37.Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45(5):679-92.

## https://doi.org/10.1007/s40279-015-0321-z

38.Lu Y, Baker JS, Ying S, Lu Y. Effects of practical models of low-volume high-intensity interval training on glycemic control and insulin resistance in adults: a systematic review and meta-analysis of randomized controlled studies. Front Endocrinol (Lausanne). 2025;16:1481200. https://doi.org/10.3389/fendo.2025.1481200