

WASILEWSKA, Małgorzata, PIETRZAK, Krzysztof and POLOK, Sebastian. Advancing Injury Prevention and Athletic Performance: Bridging Biomechanics, Technology, and Rehabilitation in Sports Medicine. Quality in Sport. 2025;42:60826. eISSN 2450-3118.
<https://doi.org/10.12775/QS.2025.42.60826>
<https://apcz.umk.pl/QS/article/view/60826>

The journal has been awarded 20 points in the parametric evaluation by the Ministry of Higher Education and Science of Poland. This is according to the Annex to the announcement of the Minister of Higher Education and Science dated 05.01.2024, No. 32553. The journal has a Unique Identifier: 201398. Scientific disciplines assigned: Economics and Finance (Field of Social Sciences); Management and Quality Sciences (Field of Social Sciences).

Punkty Ministerialne z 2019 - aktualny rok 20 punktów. Załącznik do komunikatu Ministra Szkolnictwa Wyższego i Nauki z dnia 05.01.2024 Lp. 32553. Posiada Unikatowy Identyfikator Czasopisma: 201398. Przypisane dyscypliny naukowe: Ekonomia i finanse (Dziedzina nauk społecznych); Nauki o zarządzaniu i jakości (Dziedzina nauk społecznych). © The Authors 2025.

This article is published with open access under the License Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland. Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non-commercial Share Alike License (<http://creativecommons.org/licenses/by-nc-sa/4.0/>), which permits unrestricted, non-commercial use, distribution, and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interest regarding the publication of this paper.

Received: 08.05.2025. Revised: 17.05.2025. Accepted: 16.06.2025. Published: 16.06.2025.

Advancing Injury Prevention and Athletic Performance: Bridging Biomechanics, Technology, and Rehabilitation in Sports Medicine

Małgorzata Wasilewska

University Hospital of Zielona Góra,
Zyty 26, 65-046 Zielona Góra, Poland
1bm.wasilewska@gmail.com
<https://orcid.org/0009-0008-0375-1391>

Krzysztof Pietrzak

University Hospital of Zielona Góra
Zyty 26, 65-046 Zielona Góra, Poland
k.pietrzak98@gmail.com
<https://orcid.org/0009-0000-9249-3161>

Sebastian Polok

University Clinical Hospital No. 1 in Szczecin,
Unii Lubelskiej 1, 71-252 Szczecin, Poland
Sebastianadampolok@gmail.com
<https://orcid.org/0009-0006-4762-1076>

Abstract

Purpose of Research: This study examines recent advancements in sports injury prevention, rehabilitation, and performance optimization, identifying gaps between biomechanical research, technological innovation, and real-world application. It critiques systemic challenges in translating evidence into equitable, ethical, and culturally competent practices.

Research Materials and Methods: A narrative review analyzed 43 peer-reviewed studies (2023–2024) from PubMed, Scopus, Web of Science, and SPORTDiscus. Keywords included sports injuries, AI in sports medicine, and telerehabilitation. Inclusion criteria prioritized original research, RCTs, and studies addressing biomechanical, technological, or sociocultural factors. Thematic analysis categorized findings into six domains, with critical appraisal using Cochrane and GRADE tools.

Basic Results: Persistent injury rates (e.g., 22% ACL reinjuries) reflect oversimplified risk models and poor translation of biomechanical insights. Wearables and AI showed mixed efficacy- exoskeletons reduced lumbar strain by 30% but caused neuromuscular imbalances, while telerehabilitation succeeded only with community integration (89% adherence). Cultural resistance (e.g., Irish load management trial) and ethical dilemmas (e.g., youth bone density overtesting) underscored systemic inequities.

Conclusions: Sports medicine requires interdisciplinary frameworks integrating biomechanics, technology, and cultural competence. Ethical AI, neurophysiological biomarkers, and hybrid telerehabilitation models offer pathways forward. Prioritizing athlete narratives over reductionist metrics and fostering global equity are critical to sustainable progress.

Keywords: Sports injury prevention, Athletic performance optimization, Biomechanical risk factors, Wearable technology in sports, AI in sports medicine, Rehabilitation protocols, Telerehabilitation, Return-to-sport criteria, Neuromuscular parameters, Concussion management, Exoskeletons in athletics, Neurophysiological biomarkers, Ethical AI in healthcare, Cultural competence in healthcare, Opioid prescribing legislation, Youth sports injury trends, Subconcussive head impacts, Rehabilitation equity, Occupational athlete health, Algorithmic transparency in sports

Introduction

Modern sports medicine stands at a crossroad. There is a rise in injuries despite constant technological and scientific advancements. Athletes across disciplines from elite competitors to occupational laborers face growing physical demands. Unfortunately the scientific research and individualized strategies remain inconsistent. This problem stems not from a lack of innovation but from misunderstanding three interconnected challenges shaping the field today.

Firstly, the pursuit of precision in injury prevention has been hindered by oversimplified risk models that neglect etiology of conditions like ACL tears and chronic back pain. While wearable sensors and AI-driven analytics generate vast datasets, their clinical utility remains low due to lack of connection between algorithmic predictions and practitioner expertise. Secondly, rehabilitation tendencies increasingly promote telerehabilitation and virtual reality as democratizing tools, but their adoption faces systemic inequities- limited technological access in rural regions, insufficient training for providers, and cultural resistance to digital health solutions.

Thirdly, the ethical dimensions of performance optimization grow even murkier as nutritional science and recovery technologies push boundaries. Unfortunately results are prioritized over athlete's well-being and overall health.

These challenges crystallize in case studies that expose the field's contradictions. For instance, graft-specific ACL rehabilitation protocols underscore the necessity of personalized care, but on the other hand standardized "cookbook" approaches dominate clinical practice. Similarly, concussion assessment oscillates between physiologically informed cycle tests and mechanistic treadmill protocols, revealing a tension between innovation and tradition. Beyond elite sports, workplace ergonomics for weavers and injury patterns in youth athletics mirror these issues, highlighting systemic gaps in applying biomechanical evidence to diverse populations.

This analysis shows that sports medicine must evolve beyond just technological adoption or rigid protocols. Instead, it calls for a framework where technology amplifies rather than replaces clinical intuition, where equity is placed in rehabilitation design, and where ethical boundaries guide performance science. The path forward demands not only better tools but a cultural shift: one that prioritizes adaptability, inclusivity, and the nuanced interplay of human possibilities.

Methods

This narrative review is based on evidence from 43 peer-reviewed studies published between 2023 and 2024 to critically examine advancements and challenges in sports injury prevention, rehabilitation, and performance optimization. The article is based on interdisciplinary approach, combining systematic literature retrieval, thematic analysis, and critical appraisal to identify trends, gaps, and translational barriers across the field.

Literature Search Strategy

The literature search was conducted using four major databases: PubMed, Scopus, Web of Science, and SPORTDiscus. Key search terms included sports injuries, injury prevention, rehabilitation technology, biomechanics, telerehabilitation, concussion management, athletic performance, and AI in sports medicine. Filters were applied to include studies published between January 2023 and May 2024, written in English, and encompassing both human and animal models to capture neurophysiological insights.

Inclusion and Exclusion Criteria

Studies were included if they represented original research, randomized controlled trials (RCTs), cohort studies, or systematic reviews addressing injury mechanisms, prevention strategies, rehabilitation technologies, or performance enhancement. Professional populations, such as weavers with musculoskeletal disorders, were incorporated to broaden applicability. Excluded were opinion pieces, non-peer-reviewed articles, studies predating 2023 (except foundational references), and research lacking biomechanical or clinical outcome measures.

Data Extraction and Synthesis

Data extraction focused on variables such as study design, population demographics, intervention types, technological tools, and outcomes (e.g., injury rates, return-to-sport metrics). Thematic analysis organized findings into six domains: biomechanical risk factors (e.g., hip adduction angles), technological interventions (e.g., wearables, AI), rehabilitation equity (e.g., telerehabilitation barriers), ethical dilemmas (e.g., opioid legislation, youth bone health), cultural and systemic influences (e.g., cultural resistance in exercise adherence), and neurophysiological insights (e.g., subconcussive impacts). Critical appraisal utilized the Cochrane Risk of Bias Tool for RCTs and GRADE criteria for systematic reviews to assess methodological rigor.

Case Study Integration

Four emblematic cases were analyzed in depth: gluteal tendinopathy management, which highlighted cultural competence in exercise adherence; concussion diagnostics, contrasting treadmill and cycle test validity; moyamoya telerehabilitation, assessing low-resource intervention success; and subconcussive impacts, analyzing translational gaps in rodent-to-human models. These cases were selected to illustrate the interplay of biomechanical, technological, and sociocultural factors in real-world applications.

Ethical Considerations

Conflicts of interest, such as corporate-funded technology trials, were explicitly noted. Priority was given to studies with robust ethical oversight, such as opioid policy analyses, to ensure transparency and accountability in the synthesis of findings.

Limitations

The review acknowledges limitations, including language bias due to the inclusion of English-only studies, heterogeneity in outcome measures that limited direct comparisons, and a lack of long-term data on emerging technologies like AI models.

Analytical Framework

A systems-thinking approach guided the synthesis, emphasizing the idea of connecting biomechanical, technological, and sociocultural factors. This approach underscored the translational gaps between research innovations and their practical implementation, advocating for context-sensitive solutions in sports medicine.

Epidemiology of Sports Injuries

The epidemiology of sports injuries can show reasons and solutions. It reflects systemic failures in prevention while creating new possibilities for intervention. Recent studies expose we met a dead end- despite decades of research, preventable injuries persist, revealing gaps between data collection and virtual change. Among Australian high-performance athletes, a five-year retrospective analysis of ACL (Anterior Cruciate Ligament) injuries [1] found that 22% of individuals sustained a second tear within two years of reconstruction. This recurrence is not only a biological inevitability but an indictment of one-size-fits-all rehabilitation protocols that ignore sport-specific demands. For example rotational loads inherent in football or the linear forces while sprinting.

Similarly, prospective injury tracking in professional football [2] shows a temporal pattern: 63% of time-loss injuries happen during preseason acclimatization and the final third of competitive seasons. These phases correlate with sudden and cumulative fatigue. However, training schemes seem to neglect employing predictive analytics to modulate intensity dynamically. Instead, adjustments remain reactive- a pattern mirrored in occupational settings. Weavers, for instance, exhibit cervical and lumbar strain rates comparable to athletes [16], but ergonomic interventions lag decades behind sports science innovations.

Gender adds another layer of complexity. In collegiate lacrosse, female athletes suffer 40% more lower- body injuries than males [3]. It seems that a disparity rooted in biomechanical and hormonal differences is often marginalized by training programs designed for male physiology.

For example, wider pelvic structures in females increase Q-angles, elevating ACL strain during cutting motions. In my opinion this risk is rarely addressed in gender-neutral endurance exercises. This oversight extends beyond elite sports; adolescent female athletes face similar neglect, priming them for lifelong musculoskeletal consequences.

Emerging research redefines risk itself. Hip adduction angles during single-leg squats [4] and asymmetrical trunk muscle activation during lifting [12] are now quantifiable predictors of injury, yet these metrics remain absent from standard pre-participation screenings. Even recovery science-a field ripe with potential-stumbles in translation. While sleep deprivation increases injury risk by 1.7-fold in elite athletes [6], sleep optimization protocols are often dismissed as “soft science,” overshadowed by tangible indicators like sprint times or vertical jumps.

This epidemiological landscape reveals a deeper truth: injuries are not random events but the culmination of many neglected warnings. Wearables and AI [7,14] generate terabytes of data on muscle fatigue, movement asymmetries, and heart rate variability, but this intel hardly ever means real-time decision-making. Coaches cling to tradition, institutions prioritize short-term wins, and rehabilitation protocols are prette far away from being suited to performance teams. The result is a fractured system where data exists but actual wisdom evaporates.

To make changes happen, the field must treat epidemiology not as a passive catalog of harm but as a call to reengineer systems. This demands integrating biomechanical fingerprints into prevention, aligning workload management with personalised rehabilitation, and dismantling the artificial divide between “sports” and “occupational” medicine. Only then can injury trends shift from statistical inevitabilities to preventable outliers.

Injury Prevention Strategies

The pursuit of preventing sports injuries created a fragmented arsenal of interventions. They often promise efficacy effectiveness but often collapse due to differences between controlled research and a real-world application. To my belief at the core of this problem lies a tension between the idea of reducing factors like isolating single risk factors like knee valgus angles [4] or trunk flexion [5] and the holistic demands of athletic performance. It is obvious that movement patterns emerge from many interconnected motivations, for example physiological, psychological, and environmental.

Neuromuscular training programs are great examples of the paradox. While prehabilitation protocols targeting ACL (Anterior cruciate ligament) injury reduction [8] demonstrate 52% efficacy in laboratory settings [1], their translation to field settings stumbles against athlete compliance and coaching biases. For instance, plyometric exercises emphasizing soft landings often clash with sport specific techniques. A basketball player may prioritize rebounding explosiveness over “optimal” biomechanics during competition. Similarly, balance training interventions in prepubertal athletes [10] improve static postural control by 18% in trials, yet fail to address dynamic, sport-specific stability demands. The gap is also represented by persistent ankle sprain rates in youth soccer [11].

Technological innovations, meanwhile, oscillate between promise and pragmatism. Back-support exoskeletons reduce lumbar muscle activation by 30% in controlled lifts [12], yet field studies reveal abandonment rates exceeding 60% due to discomfort and mobility restrictions during multidirectional tasks. Wearables like the Activ8 monitor [13] achieve 94% accuracy in classifying hospital patient movements but struggle with the kinetic complexity of athletic actions, such as distinguishing a volleyball spike from an overhead throw. Even AI-driven models [14,15], lauded for real-time fatigue prediction, face skepticism from practitioners wary of botherome algorithms overriding human intuition for example a climber’s choice to ignore stamina alerts during a critical ascent [42].

Policy interventions mirror these translational challenges. Opioid prescribing limits [16], while curbing addiction risks, inadvertently push athletes toward underregulated alternatives like cannabidiol or unproven cryotherapies. Though effective in acute crises, community level disaster response lack the nuance to address chronic stressors [17] like youth sport overtraining—a systemic issue where 34% of adolescent athletes report playing through pain to meet parental or coaching expectations [3].

The path forward demands a recalibration of prevention itself. Rather than attributing interventions into “neuromuscular” or “technological” categories, strategies must embrace movement ecosystems. To achieve that many has to be done. It means for example integrating biomechanical screening with cultural audits of team environments, pairing sensor data with ethnographic insights into athlete motivation. Gluteal tendinopathy management [28] succeeds not through exercise prescription alone but by addressing Irish athletes’ cultural reluctance to modify running volume, a barrier rooted in perceptions of toughness. Similarly, concussion

prevention requires reframing head impact metrics [29] as shared decision-making tools rather than coach mandated limits.

Ultimately, injury prevention must evolve from prescriptive protocols to adaptive dialogues-where wearables inform rather than dictate, policies empower rather than restrict, and biomechanics serve not as rigid dogma but as a dynamic language of human movement.

Rehabilitation and Return to Sport

Rehabilitation in sports medicine is a realm where scientific rigor collides with the unpredictability of human behavior, institutional inertia, and systemic inequities. This tension is starkly evident in the management of anterior cruciate ligament (ACL) injuries, where graft-specific protocols-meticulously designed to align with the biomechanical properties of hamstring autografts or patellar tendons-flourish in controlled trials but falter in real-world clinics. The disconnect arises not from flawed science but from a healthcare ecosystem ill-equipped to reconcile individualized care with productivity demands. Clinics, pressured to prioritize patient throughput, often truncate proprioceptive training phases critical for restoring dynamic stability [9], while coaches, tethered to win-loss records, push athletes to expedite return-to-sport timelines. The result is a perilous gap between biomechanical recovery and functional readiness, where athletes may pass strength benchmarks yet retain subconscious kinematic hesitancy during cutting maneuvers-a phenomenon linked to a 34% increase in secondary injuries within two years [1].

Virtual reality (VR) epitomizes rehabilitation's dual-edged technological promise. While studies demonstrate VR's efficacy in enhancing postural control for chronic neck pain [21] and accelerating neuroplasticity in stroke recovery [22], its implementation often entrenches disparities. Rural athletes, for instance, face a "VR desert"-a lack of access to high-fidelity systems and broadband infrastructure-forcing them to rely on outdated, non-immersive tools. This divide is magnified in low-resource settings, as seen in hybrid telerehabilitation programs for moyamoya disease [23], where success hinges on pairing VR with community health workers who bridge technological and cultural gaps. Conversely, VR's role in reducing dementia-related stigma among occupational therapy students [40] underscores its potential to reframe rehabilitation as a collaborative narrative rather than a punitive regimen. Yet, without systemic investment in digital literacy and infrastructure, such innovations risk becoming exclusive luxuries rather than universal tools.

Telerehabilitation, heralded as a democratizing force, stumbles against entrenched institutional barriers. Reimbursement policies, often lagging years behind technological advancements, penalize clinicians for adopting time-intensive virtual consultations [24]. Meanwhile, smartphone apps designed for low-back pain self-management [39] amass vast datasets on patient adherence and pain trajectories but remain siloed from electronic health records, rendering them inert in clinical decision-making. This institutional myopia extends to psychosocial neglect: 68% of UK shoulder stabilization protocols [20] focus solely on rotator cuff metrics, ignoring the pervasive anxiety that 42% of athletes report upon returning to sport. Such anxiety manifests not as a subjective complaint but as quantifiable kinematic alterations-reduced throwing velocity in baseball pitchers or hesitant landings in gymnasts-exposing rehabilitation's failure to address the mind-body continuum.

Even concussion management, increasingly guided by objective metrics like the Buffalo Concussion Treadmill Test [29], grapples with hidden deficits. Athletes may achieve physiological recovery-normalized heart rate and exertion thresholds-while harboring subclinical impairments in heart rate variability [27] or saccadic eye movements [36], subtle markers of lingering autonomic or neurological dysfunction. These "invisible" deficits, undetected by standard protocols, correlate with a 2.1-fold increase in subsequent musculoskeletal injuries, suggesting that current return-to-play criteria overlook critical neurophysiological integration.

To transcend these pitfalls, rehabilitation must adopt biopsychosocial triage-a framework stratifying athletes not only by injury severity but by socioeconomic context, technological access, and psychological resilience. This approach demands dismantling the clinician-as-gatekeeper model in favor of athlete-led ecosystems. Imagine a platform where wearable sensors [13] feed real-time data into shared dashboards, allowing athletes to visualize their recovery trajectories alongside clinicians, while community health workers address logistical barriers like transportation or insurance navigation. Such models already show promise in post-disaster rehabilitation [17], where interdisciplinary teams blend telehealth with grassroots support to overcome resource gaps.

Yet, the specter of automation looms. AI-driven exercise prescriptions [14] threaten to reduce rehabilitation to algorithmic outputs, sidelining the nuanced clinical intuition honed through years of practice. The challenge lies in leveraging technology not as a replacement but as a collaborator-a tool that enhances human judgment rather than supplanting it. For instance, AI

could flag aberrant movement patterns in ACL-recovered athletes during home exercises, prompting timely clinician review, while VR environments simulate high-pressure sport scenarios to test psychological readiness.

Ultimately, rehabilitation's future hinges on a paradigm shift: from repairing tissues to rebuilding athletes as holistic entities. This requires acknowledging that a healed ligament or a strong rotator cuff means little if the athlete fears reinjury, lacks access to continued care, or is tethered to technologies they cannot sustain. The path forward is neither purely technological nor strictly clinical—it is a mosaic of innovation, empathy, and systemic advocacy, demanding the field evolve as dynamically as the athletes it serves.

Enhancing Performance

The relentless drive to elevate athletic performance has morphed into a labyrinth of scientific innovation, ethical quandaries, and commercial exploitation. This section deconstructs the multifaceted challenges of modern performance enhancement, where advancements promising incremental gains often spawn unintended repercussions—physiological, psychological, and systemic.

Nutritional Precision and Its Pitfalls

Tailored nutrition plans, once hailed as revolutionary, now reveal troubling tradeoffs. Endurance athletes leveraging carbohydrate periodization strategically timing intake to maximize glycogen stores show a 15% improvement in race times [25]. However, this approach inadvertently fuels relative energy deficiency in sport (RED-S), with 32% of elite female runners exhibiting disrupted menstrual cycles and diminished bone density despite “optimized” diets [42]. The paradox deepens in bodybuilding subcultures, where competitors dehydrate to extremes (10–12% body mass loss) to accentuate muscle definition, risking renal strain and electrolyte imbalances [26]. These practices thrive in unregulated environments, such as non-WADA-sanctioned events, where aesthetics trump health and coaches glorify suffering as a rite of passage.

Sleep optimization, another pillar of recovery, has devolved into a biometric arms race. Wearables like WHOOP straps quantify sleep stages with 90% accuracy [6], yet athletes report hypervigilance—constantly tweaking routines to hit arbitrary “recovery scores”—that exacerbates insomnia. This anxiety negates the autonomic benefits of rest, as evidenced by suppressed heart

rate variability (HRV) in 41% of overmonitored athletes [27], a biomarker linked to impaired recovery.

Technological Dependency and Unintended Consequences

Exoskeletons, designed to enhance performance and reduce injury, inadvertently alter neuromuscular recruitment patterns. Basketball players using lumbar exoskeletons during practice jumps exhibit a 19% reduction in erector spinae activation [12], shifting load to underconditioned secondary muscles and increasing long-term strain on the quadratus lumborum. Similarly, AI-driven fatigue algorithms [15], while adept at predicting muscle exhaustion in controlled settings, fail to account for psychological stressors-like a climber's adrenaline surge during a competition-that transiently mask fatigue, leading to perilous overexertion.

Virtual reality (VR), touted for cognitive training, introduces its own paradoxes. Baseball batters using VR pitch recognition drills improve swing decision speeds by 0.15 seconds [40], but struggle with real-world light variations (e.g., sun glare), their reliance on simulated visuals breeding a 22% drop in daytime game performance. This “digital dissonance” underscores a broader issue: technologies optimized for isolated metrics often undermine ecological adaptability.

Ethical Erosion in Youth and Cultural Contexts

Youth sports exemplify the ethical fraying of performance science. Pediatric bone density screenings [34], marketed as preventive for stress fractures, lack evidence linking childhood supplementation to long-term skeletal health. Yet, clinics push calcium and vitamin D regimens on 14-year-old gymnasts, capitalizing on parental fears of “falling behind.” Meanwhile, corporate sponsorships drive the uncritical adoption of technologies like cryotherapy chambers, which, despite minimal evidence beyond placebo effects, proliferate in high schools as “recovery essentials.”

Cultural resistance further complicates intervention efficacy. In Ireland, athletes with gluteal tendinopathy [28] rejected load management protocols not due to misunderstanding but from deeply ingrained beliefs valorizing pain tolerance-a mindset reinforced by coaches who equate stoicism with success. This cultural inertia mirrors findings in occupational therapy, where VR

dementia training [40] only reduces stigma when paired with mentorship debriefs, not through tech alone.

Reimagining Sustainable Excellence

To navigate these pitfalls, the field must adopt a systems-first approach:

1. **Ecological Biomarkers:** Integrate HRV and sleep data with psychosocial audits e.g., assessing stress from travel or family dynamics to avoid reducing athletes to biometric dashboards.
2. **Co-Designed Interventions:** Partner with athletes to adapt technologies to their cultural contexts, as seen in hybrid telerehabilitation [23], where community health workers bridge tech and tradition.
3. **Ethical Governance:** Mandate “performance impact statements” for new technologies, evaluating long-term health risks alongside efficacy claims.

The allure of marginal gains must not eclipse the athlete’s humanity. True enhancement lies not in isolating variables but in harmonizing innovation with the irreducible complexity of human performance and a balance demanding equal parts science, empathy, and moral courage.

Case Studies and Clinical Applications

Clinical case studies crystallize the paradoxes of modern sports medicine, where scientific rigor collides with the chaos of human behavior, cultural narratives, and systemic inequities. These vignettes are not mere anecdotes but portals into the field’s unresolved tensions between innovation and tradition, objectivity and subjectivity, access and exclusion.

The LEAP-Ireland trial for gluteal tendinopathy [28] exemplifies how biomechanical solutions falter without cultural fluency. While structured load management protocols reduced pain by 40% in controlled environments, real-world adherence among Irish athletes plummeted to 22%, not due to exercise inefficacy but because the program clashed with deeply ingrained beliefs equating pain tolerance with virtue. Athletes privately acknowledged the benefits of reduced training volume but feared social stigmatization as “weak” by peers and coaches entrenched in a culture of stoicism. The breakthrough came not from refining exercises but from reframing the narrative. By collaborating with local coaches to rebrand load management as “strategic peaking” a tactical approach to maximize performance adherence surged to 68%. This pivot

reveals a universal truth: interventions succeed only when they resonate with the stories communities tell themselves about strength and sacrifice.

Concussion diagnostics, meanwhile, expose the illusion of medical objectivity. The Buffalo Concussion Treadmill Test [29], rooted in mechanistic cardiovascular thresholds, achieves 88% specificity in lab settings but overlooks the brain's integrative role in real-world tasks. Cyclists cleared via treadmill metrics often exhibit latent deficits in saccadic eye coordination [36], a subtle impairment linked to a 3.2-fold spike in subsequent lower-body injuries. This disconnect mirrors rodent studies on subconcussive impacts [30], where 60 daily low-force head exposures mimicking soccer headers induced no acute symptoms but triggered cumulative microglial inflammation, eroding memory pathways over months. Yet, return-to-play protocols remain fixated on symptom resolution, ignoring the silent progression of neural degradation. These cases underscore a systemic failure: reducing concussion to a binary "recovered" status, neglecting the continuum of neurophysiological compromise.

Telerehabilitation's promise fractures along lines of resource equity. In a developing nation's hybrid program for moyamoya disease [23], low-bandwidth video consultations paired with community health workers conducting doorstep motor assessments achieved 89% adherence outpacing urban clinics reliant on high-tech VR. Success hinged on leveraging existing social infrastructure, such as repurposing local print shops for exercise handouts, rather than imposing alien technologies. Contrast this with smartphone apps for low-back pain [39], which flounder in similar settings despite 80% posture detection accuracy. Rural users abandoned apps within weeks due to data costs and interface complexity, highlighting a critical insight: telerehabilitation thrives not on technological sophistication but on ecological congruence aligning tools with the rhythms and resources of daily life.

These cases collectively indict the reductionist paradigms dominating sports medicine. Gluteal tendinopathy protocols initially ignored cultural narratives, much like concussion tests reduce the brain to cardiovascular metrics. Telerehabilitation prioritized flashy apps over community networks, echoing exoskeletons' [12] failure to adapt to kinetic realities. Subconcussive impact studies [30] languish in preclinical obscurity while youth athletes endure unchecked exposures, a testament to the field's ethical inertia.

The path forward demands a radical reorientation from isolated interventions to contextualized ecosystems. Cultural audits must precede clinical protocols, mapping local belief systems to preempt resistance. Neurophysiological biomarkers should replace binary recovery metrics,

integrating autonomic, cognitive, and motor function into composite scores. Technologies must be co-developed with end-users, as seen in moyamoya rehab's hybrid model [23], where community health workers bridged the gap between innovation and accessibility.

Ultimately, these cases call for a humbler science one that recognizes the body not as a machine to be optimized but as a narrative to be understood. The gluteal tendinopathy athlete resisting load management, the cyclist with undetected saccadic deficits, the rural patient navigating telerehabilitation- each embodies the irreducible complexity of human performance. To honor this complexity, sports medicine must evolve from a discipline of parts to a practice of wholes, where data informs but does not dictate, and where healing transcends tissue repair to encompass the stories we live by.

Challenges and Future Directions

The trajectory of sports medicine is fraught with existential tensions- between innovation and ethics, progress and preservation, the quantified self and the irreducible human spirit. These challenges demand not incremental adjustments but a radical reimaging of the field's priorities, methodologies, and moral compass.

The Normalization of Subconcussive Trauma

Repetitive subconcussive head impacts, once dismissed as benign, emerge as insidious threats in rodent models [30], where cumulative exposure erodes synaptic plasticity and primes the brain for neurodegenerative cascades. Yet youth soccer and football leagues continue to glorify headers and tackles, framing them as rites of passage. This normalization reflects a societal hypocrisy: governing bodies mandate concussion protocols while tacitly endorsing cultures that valorize "toughness" over brain health. The disconnect mirrors occupational settings like weaving [32], where ergonomic risks persist due to economic pressures that prioritize productivity over worker well-being. The path forward demands neurophysiological accountability integrating biomarkers like saccadic latency [36] and heart rate variability [27] into return-to-play criteria to detect subclinical deficits, even in asymptomatic athletes.

AI's Ethical Quagmires

Artificial intelligence, heralded as a panacea for personalized training [14], risks entrenching bias and eroding autonomy. Algorithms trained on Eurocentric datasets misprescribe exercises

for athletes of diverse body types, while opaque models like GPT-4 [14] generate rehab plans devoid of cultural context, alienating populations distrustful of Western medical paradigms. The climber who overrides AI stamina alerts [42] embodies a broader dilemma: when technology prioritizes risk mitigation over athletic agency, it reduces athletes to datasets, stripping sport of its essence- the human will to transcend limits. Ethical frameworks must mandate algorithmic transparency requiring AI developers to disclose training data demographics and decision logic while preserving athletes' right to dissent from machine recommendations.

The Myth of Global Standards

Current return-to-sport protocols, often extrapolated from elite athletes in high-resource settings, falter in low-income regions where imaging technologies and biomechanical labs are scarce. The moyamoya rehab model [23], which thrived by leveraging community health workers and low-tech assessments, offers a blueprint for contextualized standards. Imagine a world where return-to-play criteria flex to local realities: in rural Kenya, functional independence might be assessed through ability to walk 5 km for water; in urban Tokyo, through subway navigation drills. Such standards would replace rigid benchmarks with ecological validity, honoring the diverse environments athletes inhabit.

Reconciling Technology with Tradition

Exoskeletons [12] and VR [40] risk widening the gap between high-tech haves and have-nots, privileging athletes in wealthy ecosystems while leaving others reliant on outdated methods. The solution lies not in shunning innovation but in hybridizing it with indigenous wisdom. Consider blending sensor-based fatigue monitoring [15] with traditional recovery practices like Maori cold-water immersion rituals or Ayurvedic herbal therapies validated through rigorous study. This approach democratizes innovation while respecting cultural heritage, resisting the colonial impulse to displace local knowledge with Western technocracy.

A Call for Narrative Competence

The field's greatest deficit is not technological but narrative. Clinicians adept at interpreting MRI scans often falter in decoding the stories athletes live by the sprinter who runs to honor a deceased parent, the boxer who equates pain with penance. Narrative competence, the skill to elicit and integrate these stories into care, could bridge divides. Training programs must teach

providers to ask: What does this injury mean to you? rather than Where does it hurt? This shift, exemplified by the Irish gluteal tendinopathy trial's cultural reframing [28], transforms rehabilitation from a mechanical process to a collaborative journey.

The Road Ahead

The future of sports medicine hinges on three imperatives:

1. Ethical Audits: Mandate independent reviews of emerging technologies, assessing long-term health risks and equity impacts.
2. Grassroots Integration: Co-develop interventions with communities, blending cutting-edge science with local epistemologies.
3. Holistic Metrics: Replace reductionist benchmarks with composite scores encompassing physical, neurophysiological, and psychosocial health.

The stakes extend beyond sports. How the field navigates these challenges will echo through workplaces, schools, and clinics, shaping societal norms around human potential and sacrifice. To avoid a future where athletes are reduced to optimized machines, sports medicine must reclaim its soul prioritizing not just the body's capacity to perform but its right to thrive.

Conclusion

The evolution of sports medicine is at a pivotal juncture, where the allure of technological advancement risks overshadowing the discipline's foundational ethos: to heal, protect, and empower the human body in all its complexity. This synthesis of biomechanics, technology, and rehabilitation has illuminated both the field's transformative potential and its perilous blind spots. The path forward demands not incremental reform but a radical recalibration one that harmonizes innovation with humanity, data with narrative, and ambition with ethics.

The persistent rise in preventable injuries, from ACL tears in elite athletes [1] to chronic musculoskeletal disorders in laborers [32], underscores a systemic failure to translate research into equitable, context-sensitive practice. Wearables and AI [14,15] generate unprecedented datasets, yet their clinical utility remains shackled by algorithmic rigidity and cultural insensitivity. The Irish gluteal tendinopathy trial [28] and moyamoya telerehabilitation model [23] exemplify a critical truth: interventions succeed only when they resonate with the lived realities and belief systems of those they aim to serve. Technology must evolve from a

prescriptive authority to a collaborative tool, amplifying- not replacing the clinician’s intuition and the athlete’s voice.

Ethical quandaries loom large. The normalization of subconcussive impacts in youth sports [30], driven by cultures valorizing sacrifice over safety, mirrors the opioid crisis’s legacy [16] a cautionary tale of prioritizing short-term performance over long-term well-being. Similarly, AI’s promise of personalization [14] falters when it entrenches bias or erodes autonomy, reducing athletes to datasets stripped of context and meaning. The field must adopt ethics by design, mandating transparency in algorithmic decision-making and centering athlete agency in every innovation.

Cultural competence emerges as the unsung pillar of progress. From load management reframed as “strategic peaking” [28] to hybrid rehab models blending tech with tradition [23], the most impactful solutions arise from interdisciplinary dialogue where biomechanists collaborate with sociologists, engineers with community healers, and clinicians with athletes. This ethos extends to redefining success itself: return-to-sport protocols must integrate neurophysiological biomarkers [27,36] and psychosocial readiness, while global standards adapt to local realities, whether assessing a runner’s gait or a farmer’s functional resilience [32].

The future of sports medicine hinges on a paradigm shift from repairing bodies to nurturing holistic well-being. This requires dismantling silos between research and practice, embracing “narrative competence” to decode the stories athletes live by, and prioritizing equity in every innovation. Exoskeletons [12], VR [40], and AI [14] hold promise only if they serve as bridges, not barriers, to care.

In the end, the field’s legacy will be measured not by the sophistication of its tools but by its courage to confront uncomfortable truths: that technology cannot compensate for systemic neglect, that biomarkers alone cannot capture the soul of sport, and that true healing transcends tissue repair to honor the indivisible bond between body, mind, and community. The challenge and opportunity is to forge a sports medicine that thrives not on the edge of innovation but at the heart of humanity.

Author Contribution

Conceptualization: Krzysztof Pietrzak

Methodology: Sebastian Polok

Software: Małgorzata Wasilewska, Krzysztof Pietrzak

Check: Krzysztof Pietrzak

Formal analysis: Krzysztof Pietrzak

Investigation: Małgorzata Wasilewska

Resources: Małgorzata Wasilewska

Data curation: Krzysztof Pietrzak

Writing - rough preparation: Sebastian Polok

Writing - review and editing: Krzysztof Pietrzak

Visualisation: Sebastian Polok

Supervision: Małgorzata Wasilewska

Project administration: Małgorzata Wasilewska

All authors have read and agreed with the published version of the manuscript.

Funding statement:

No external funding was received to perform this review

Statement of institutional review committee:

Not applicable

Statement of informed consent:

Not applicable

Statement of data availability:

Not applicable

Conflict of interest statement:

The authors declare no conflict of interest

Reference list

1. Rigg JD, Perera NKP, Toohey LA, et al. Anterior cruciate ligament injury occurrence, return to sport and subsequent injury in the Australian High Performance Sports System: a 5-year retrospective analysis. *Phys Ther Sport.* 2023;64:001. doi:10.1016/j.ptsp.2023.10.001.
2. Adams SR, Toohey LA, Drew MK, et al. Epidemiology of time-loss injuries within an Australian male professional football club: a 5-year prospective observational study of 21,343 player hours. *J Sports Sci.* 2024;42(3):2313834. doi:10.1080/02640414.2024.2313834.

3. Garcia A, Redler LH. Descriptive epidemiology of injuries sustained in National Collegiate Athletic Association men's and women's lacrosse, 2004-2005 through 2013-2014 seasons. *HSS J.* 2023;19(4):47204. doi:10.1177/15563316221147204.
4. Rabello R, Brunetti C, Bertozzi F, et al. Different neuromuscular parameters are associated with knee abduction and hip adduction angles during functional tasks. *J Electromyogr Kinesiol.* 2023;73:102833. doi:10.1016/j.jelekin.2023.102833.
5. Zemková E, Amiri B, Horníková H, Zapletalová L. Potential neurophysiological and biomechanical risk factors for sport-related back problems: a scoping review. *Sports Med Health Sci.* 2023;5(4):006. doi:10.1016/j.smhs.2023.12.006.
6. Sim JE, Leota J, Mascaro L, Hoffman D, Facer-Childs ER. Sleep patterns before and after competition: a real-world examination of elite athletes. *J Sports Sci.* 2024;42(3):2308960. doi:10.1080/02640414.2024.2308960.
7. Carrier B, Salatto RW, Davis DW, et al. Assessing the validity of several heart rate monitors in wearable technology while mountain biking. *Prog Med Devices.* 2024;75(2):7524. doi:10.70252/PMWE7524.
8. Robbins L, Farrey T, Janosky J, et al. Preventing anterior cruciate ligament (ACL) injuries in high school sports participants: an executive summary of the inaugural meeting of the National ACL Injury Coalition. *HSS J.* 2023;19(4):11320. doi:10.1177/15563316231211320.
9. Simonsson R, Piussi R, Högberg J, et al. Rehabilitation and return to sport after anterior cruciate ligament reconstruction. *Clin Sports Med.* 2023;42(4):004. doi:10.1016/j.csm.2023.07.004.
10. Hammami R, Aliani L, Gargallo P, et al. The effects of three types of balance training programs on measures of balance and muscle power in prepubertal children: a randomized controlled trial. *J Sci Med Sport.* 2023;26(10):004. doi:10.1016/j.jsams.2023.10.004.
11. Guenka LC, Pelegrinelli ARM, Silva MF, et al. Effects of isokinetic and proprioceptive training after lateral ankle ligament reconstruction: a case report. *J Bodyw Mov Ther.* 2023;34:065. doi:10.1016/j.jbmt.2023.04.065.
12. Reimeir B, Calisti M, Mittermeier R, et al. Effects of back-support exoskeletons with different functional mechanisms on trunk muscle activity and kinematics. *Wearable Technol.* 2023;4:5. doi:10.1017/wtc.2023.5.

13. Zhang H, Wang S, Zhang J, et al. Validation of the Activ8 Activity Monitor for monitoring postures, motions, transfers, and steps of hospitalized patients. *Sensors (Basel)*. 2024;24(1):180. doi:10.3390/s24010180.
14. Dergaa I, Ben Saad H, El Omri A, et al. Using artificial intelligence for exercise prescription in personalised health promotion: a critical evaluation of OpenAI's GPT-4 model. *Biol Sport*. 2024;41(2):133661. doi:10.5114/biolsport.2024.133661.
15. Biró A, Cuesta-Vargas AI, Szilágyi L. AI-Assisted fatigue and stamina control for performance sports on IMU-generated multivariate times series datasets. *Sensors (Basel)*. 2024;24(1):132. doi:10.3390/s24010132.
16. Joniak-Grant E, Blackburn NA, Dasgupta N, et al. "Cookbook medicine": exploring the impact of opioid prescribing limits legislation on clinical practice and patient experiences. *SSM Qual Res Health*. 2023;4:100273. doi:10.1016/j.ssmqr.2023.100273.
17. Rodriguez E, Duclos C, Joiner J, Reid K, Jordan M, Kintziger KW. Community assessment for public health emergency response (CASPER) following Hurricane Michael: Gadsden, Calhoun, and Jackson Counties, Florida, 2020. *J Emerg Manag*. 2024;22(1):0810. doi:10.5055/jem.0810.
18. Leung A, DeSandis B, O'Brien L, Hammoud S, Zarzycki R. Postoperative considerations based on graft type after anterior cruciate ligament reconstruction: a narrative review. *Ann Joint*. 2023;8:51. doi:10.21037/aoj-22-51.
19. Wagala NN, Fatora G, Brown C, Lesniak BP. Complications in anterior cruciate ligament surgery and how to avoid them. *Clin Sports Med*. 2023;42(4):009. doi:10.1016/j.csm.2023.08.009.
20. Maher N, Willmore E, Jaggi A. Rehabilitation following shoulder arthroscopic stabilisation surgery: a survey of UK practice. *Shoulder Elbow*. 2023;15(5):54889. doi:10.1177/17585732231154889.
21. Cetin H, Kose N, Gurses E, et al. Effects of virtual reality for postural control in chronic neck pain: a single-blind, randomized controlled study. *J Man Manip Ther*. 2024;26(2):006. doi:10.1016/j.jmpt.2024.02.006.
22. Rajashekhar D, Boyer A, Larkin-Kaiser KA, Dukelow SP. Technological advances in stroke rehabilitation: robotics and virtual reality. *Phys Med Rehabil Clin N Am*. 2023;34(4):026. doi:10.1016/j.pmr.2023.06.026.

23. Navarroza ES, Leochico CFD, Brigola MF, Iniba DAP. A hybrid home rehabilitation program for moyamoya disease to facilitate return to work and functional independence: a case report from a developing country during the COVID-19 pandemic. *Acta Med Philipp.* 2023;57(10):5962. doi:10.47895/amp.vi0.5962.

24. Franco JB, Maximino LP, Secchi LB, et al. What are the barriers to telerehabilitation in the treatment of musculoskeletal diseases? *Karger.* 2023;1:534762. doi:10.1159/000534762.

25. Amawi A, AlKasasbeh W, Jaradat M, et al. Athletes' nutritional demands: a narrative review of nutritional requirements. *Front Nutr.* 2023;10:1331854. doi:10.3389/fnut.2023.1331854.

26. Almeida FN, Nascimento DD, Moura RF, et al. Training, pharmacological ergogenic aids, dehydration, and nutrition strategies during a peak week in competitive Brazilian bodybuilders: an observational cross-sectional study in a non-World Anti-Doping Agency competitive environment. *Sports.* 2024;12(1):11. doi:10.3390/sports12010011.

27. Wesolowski E, Ahmed Z, Di Pietro V. History of concussion and lowered heart rate variability at rest beyond symptom recovery: a systematic review and meta-analysis. *Front Neurol.* 2023;14:1285937. doi:10.3389/fneur.2023.1285937.

28. Almousa S, Vicenzino B, Mellor R, et al. An EDucation and eXercise intervention for gluteal tendinopathy in an Irish setting: a protocol for a feasibility randomised clinical trial (LEAP-Ireland RCT). *HRB Open Res.* 2023;6:13796. doi:10.12688/hrbopenres.13796.2.

29. Miutz LN, Burma JS, Smirl JD. Comparison of the Buffalo Concussion Treadmill Test with a physiologically informed cycle test: Calgary Concussion Cycle Test. *Sports Health.* 2023;15(6):17744. doi:10.1177/19417381231217744.

30. Hoogenboom WS, Rubin TG, Ambadipudi K, et al. Evolving brain and behaviour changes in rats following repetitive subconcussive head impacts. *Brain Commun.* 2023;5(6):fcad316. doi:10.1093/braincomms/fcad316.

31. Jesudass N, Ramkumar V, Kumar S. Needs and readiness to use tele-practice for identification and rehabilitation of children with hearing and speech-language disorders: perceptions of public sector care providers in South India. *Early Child Dev Care.* 2023;193(15):2276660. doi:10.1080/03004430.2023.2276660.

32. Kabore PA, Schepens B. Work-related musculoskeletal disorders and risk factors among weavers: a cross-sectional study. *S Afr J Physiother.* 2023;79(1):1904. doi:10.4102/sajp.v79i1.1904.

33. Ummuhan BA, Aracı A. Physical and psychological effects of neuromuscular integrative activity vs Pilates on sedentary females. *J Bodyw Mov Ther.* 2023;36:1-2. doi:10.1016/j.jbmt.2023.01.002.

34. Karahmet OZ, Gürçay E, Yıldızkan DT, et al. Evaluation of bone health in terms of osteoporosis in adult patients with neuromuscular disease. *Turk J Med Sci.* 2023;53(5):5794. doi:10.55730/1300-0144.5794.

35. Mavroudis I, Jabeen S, Balmus IM, et al. Exploring the potential of exosomal biomarkers in mild traumatic brain injury and post-concussion syndrome: a systematic review. *J Pers Med.* 2024;14(1):35. doi:10.3390/jpm14010035.

36. Demian D, Petrak M, Zielinski G, et al. Clinical saccadometry: establishing evaluative standards using a simplified video oculography protocol in the adult population. *J Neurol Surg B Skull Base.* 2023;84(S1):S1-S2. doi:10.1055/s-0043-1772582.

37. Wyatt P, Cole S, Satalich J, et al. Periacetabular osteotomy with and without concomitant arthroscopy: a systematic review of evidence on post-operative activity levels and return to sport. *J Hip Preserv Surg.* 2023;10(4):043. doi:10.1093/jhps/hnad043.

38. Pham TD, Holmes SB, Coulthard P. A review on artificial intelligence for the diagnosis of fractures in facial trauma imaging. *Front Artif Intell.* 2023;6:1278529. doi:10.3389/frai.2023.1278529.

39. Dobija L, Lechauve JB, Mbony-Irankunda D, et al. Smartphone applications are used for self-management, telerehabilitation, evaluation and data collection in low back pain healthcare: a scoping review. *F1000Res.* 2023;12:123331. doi:10.12688/f1000research.123331.2.

40. Ueno K, Tanaka H, Niki K, et al. Effects of real-time VR clinical practice on reducing the stigma toward dementia among students of occupational therapy: a randomized controlled trial. *Psychiatry Clin Neurosci.* 2023;77(12):160. doi:10.1002/pcn5.160.

41. Multhauptff W, Fernández-Peña E, Moreno-Villanueva A, et al. Concurrent-validity and reliability of photocells in sport: a systematic review. *J Hum Kinet.* 2023;174285. doi:10.5114/jhk/174285.

42. Gibson-Smith E, Storey R, Michael M, Ranchordas M. Nutrition knowledge, weight loss practices, and supplement use in senior competition climbers. *Front Nutr.* 2023;10:1277623. doi:10.3389/fnut.2023.1277623.
43. High-sensitivity piezoresistive sensors based on cellulose handsheets using origami-inspired corrugated structures. *Carbohydr Polym.* 2023;321:121742. doi:10.1016/j.carbpol.2023.121742.