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Abstract 

Functional data analysis, pioneered by Ramsay, former president of the Statistical Society of Canada, is 

a novel statistical method widely applied in the field of human movement analysis. This study clarifies relevant 

concepts and basic processes of functional data analysis, outlines the computational framework of functional 

principal component analysis, and focuses on exploring its applications in sports science, clinical rehabilitation, 

and motor development. Compared to traditional cross-sectional statistics, functional data analysis demonstrates 

unique advantages in human movement research and is expected to become a reliable analytical techique for 

exploring the laws of human mechanical movement in the future. 
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Human movement analysis is a cross-disciplinary field aimed at quantifying human movement characteristics 

and mechanical performance through scientific technical means. It reveals the external mechanical and physical 

movement patterns of the human body, thereby promoting improvements in athletic performance（Dariush, 2003）

. Human movement analysis has broad applications, involving various research areas such as sports science, 

clinical rehabilitation, and human-computer interaction. In recent years, with advances in data acquisition and 

storage methods, an increasing amount of functional data with high-dimensional features have been collected and 

archived, such as joint angles, ground reaction forces, joint moments, and surface electromyography. The 

underlying nature of such data represents complete continuous processes. However,traditional cross-sectional 

statistics not only overlook the sequential nature of samples but also rely on researchers' understanding of the 

movements themselves and subjective experience when selecting feature values, easily resulting in the loss of 
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potentially important information（Richter et al., 2014）. For example, in gait analysis, most studies only extract 

parameter values at a few characteristic moments (such as peak knee flexion) for analysis, missing subtle 

transitions in overall movement patterns（Dannenmaier et al., 2020）. Consequently, there is an urgent need to 

introduce statistical techniques —Functional Data Analysis (FDA)—that better align with the attributes of 

functional data and help uncover deeper insights and dynamic change patterns. 

FDA was recognized as a novel statistical method, is widely applied in the field of human movement analysis, 

such as motor development（Harrison et al., 2007）, sports injury diagnosis（Son et al., 2017a）, and 

rehabilitation effect evaluation（Baumgart et al., 2017）. The central concept of FDA is to view observed data 

functions as unified entities, rather than as discrete sequences of individual observations. Compared with 

traditional cross-sectional statistics, FDA both reflects the continuity of the system itself and satisfies the principle 

of finite energy. At the same time, as an important tool connecting continuous dynamic analysis and digital signal 

processing, it can be easily combined with regression analysis and pattern recognition technology. This paper 

reviews the application of FDA in the field of complex human movement analysis, clarifies relevant concepts and 

computational frameworks, in order to provide new statistical methods for future research in this area. 

 

1 Introduction to Functional Data Analysis 

1.1 Concept of Functional Data Analysis 

In 1982, Professor Ramsay, an honorary professor at McGill University in Canada, first published the concept 

of functional data（Ramsay, 1982）. Functional data refers to data that varies with one or more continuous sets 

(time, space, etc.) and is presented in functional form. This type of data has functional characteristics, and its 

external manifestation can be different mathematical geometric objects such as curves, planes, or three-

dimensional images. For instance, lower limb joint angles of subjects in gait analysis, ground reaction force curves, 

and electromyography signals of athletes in movement technique diagnosis—all these data with mathematical 

functional curve characteristics can be called functional data. According to the different number of individual 

observations and time interval characteristics in functional data, functional data can be divided into dense 

functional data and sparse functional data. If observations are made only at a few random irregular time points, 

such data is called sparse functional data. Longitudinal data in biology and medicine are typical sparse functional 

data. Under normal circumstances, functional data refers to dense functional data, where individual observations 

are regular and dense. 

The book "Functional Data Analysis" （Ramsay et al., 2009）, co-published by Ramsay and Silverman in 

1997, systematically introduces the basic concepts of FDA methods such as smoothing, interpolation, and 

registration, as well as examples of using common multivariate statistical methods for functional data, such as 

functional principal component analysis (FPCA), functional canonical correlation analysis (FCCA), and functional 

linear models. Unlike traditional econometric data types such as cross-sectional data, time series data, and panel 

data, FDA views the discrete, finite observation sequences in traditional data points as continuous, infinite 

functional curves, and treats them as separate data objects with the following advantages: 

First, since functions are continuous and infinite, we can consider that the sample points of FDA come from 

an infinite-dimensional space. Therefore, FDA not only enables the analysis of existing data points but also allows 

for the prediction of unobserved points through the functional patterns identified. Second, through differential, 

derivative, and other processing of functional curves, more potential information than static data can be mined, 

such as the velocity and acceleration of the research object as the independent variable changes. Finally, due to the 

widespread application and improvement of the FDA method itself and statistical software MATLAB and R 

language, more reasonable and intuitive geometric interpretations can be given to the analysis results. 
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1.2 Steps of Functional Data Analysis 

1.2.1 Functionalizing Discrete Data 

The primary task of FDA is to transform discrete data into smooth functions. To convert discrete data into 

functional form, the measured time series data must first be standardized to a uniform length, forming an equal 

number of equidistantly distributed nodes (knots). Subsequently, K basis functions, ∅k,k = 1,2, … , K, are linearly 

combined to form a functional curve that approximates the measured data curve. The larger the value of K, the 

number of basis functions, the closer the transformed functional curve is to the measured data; the smaller the 

value of K, the smoother the transformed functional curve and the larger the residual value between it and the 

measured data（Eilers et al., 1996）. The formula expression of the function formed by the linear combination of 

basis functions is as follows: 

𝑥(𝑡) = ∑ 𝑐𝑘∅𝑘(𝑡)

𝐾

𝑘=1

 

In the above formula, ∅k(t)is the k-th basis function at time t, and ckis the coefficient vector（Ramsay et al., 

2009）. Currently, there are multiple types of basis functions that can functionalize discrete data, such as Fourier 

basis, B-spline basis, polynomial basis, exponential power basis, step function basis, empirical distribution 

function basis, and piecewise linear function basis. Among these many basis functions, the Fourier basis and B-

spline basis are the most common. No specific basis function is universal for all types of data; the appropriate basis 

function needs to be chosen based on the characteristics of the data. The B-spline basis is suitable for non-periodic 

data, and due to its combination of compact support and flexibility, it, along with M-spline basis, I-spline basis, 

and truncated power basis, is an outstanding spline function. It has been applied by scholars in research on human 

movement analysis such as race walking（Dona et al., 2009）, vertical jump（Harrison et al., 2007 ; Ryan et al., 

2006）, running（Coffey et al., 2011）, and rowing（Coffey et al., 2011）. 

Spline basis functions are piecewise polynomials containing multiple independent internal observation 

values, with the boundary points at both ends of each subsegment called break points. Data nodes are usually 

placed equidistantly at break points. The order of a spline basis function equals the degree of its polynomial plus 

one; for example, if the order of a spline basis is default 4, then the degree of its polynomial is 3. In human 

movement analysis research, scholars are more concerned with the first-order derivative (velocity) and second-

order derivative (acceleration) of the measured data. The order of the basis function needs to be at least 2 orders 

higher than the order of the derivative. For example, to find the second-order derivative (acceleration) of the 

original data, the order of the basis function should be at least 4（Ramsay et al., 2009）. The number of basis 

functions K is usually the sum of the internal nodes of the measured data and the order of the basis function. 

Internal nodes refer to the nodes excluding the two ends; for example, with 100 nodes, there are 98 internal nodes. 

1.2.2 Smoothness 

In real-life measurements, data usually contains signal noise and measurement errors, which are assumed to 

follow a normal distribution. This can be expressed by the following formula: 

𝑦𝑗 = 𝑥(𝑡𝑗) + 𝜀𝑗  
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In this formula, 𝑦𝑗represents the measured data, 𝑥(𝑡𝑗)represents the true signal data, and εj represents noise 

or measurement error. After defining the basis functions∅k, to eliminate noise and measurement errors in the signal, 

the coefficient vector of the basis functions 𝑐𝑘 needs to be adjusted. Currently, there are two common methods to 

calculate the coefficient vector of basis functions: the least squares method and the penalty function. The least 

squares estimation or minimum residual sum of squares based on B-spline basis expansion, also known as 

smoothing spline regression, is suitable for solving simple linear problems. The formula is as follows: 

SSE(𝑥) = ∑[𝑦𝑗 − 𝑥(𝑡𝑗)]
2

𝑛

𝑗=1

 

Converting the function in the above formula through basis function expansion: 

SSE(𝑥) = ∑ [𝑦𝑗 − ∑ 𝑐𝑘∅𝑘(𝑡)

𝐾

𝑘=1

]

2𝑛

𝑗=1

 

The standard deviation of the total residual sum of squares, also known as root mean square error, is used to 

evaluate the difference between estimated yjand observed x(tj) values. It is expressed by the following formula: 

RMSE(𝑥) = √
∑ [𝑦𝑗 − 𝑥(𝑡𝑗)]

2𝑛
𝑗=1

𝑛
 

The roughness penalty function is a regularization approach that effectively approximates discrete data 

through functions and is usually considered a more comprehensive smoothing technique. Compared to the 

smoothing spline regression method, the roughness penalty method selects a larger K value to estimate the 

measured data. At the same time, to prevent overfitting, a penalty term is set to adjust the curvature of the estimated 

function. The formula is as follows: 

PENSSE = ∑[𝑦𝑗 − 𝑥(𝑡𝑗)]
2

𝑛

𝑗=1

+ 𝜆 × 𝑃𝐸𝑁𝑚 

                               = ∑[𝑦𝑗 − 𝑥(𝑡𝑗)]
2

𝑛

𝑗=1

+ 𝜆 × ∫[𝐷𝑚𝑥(𝑡)]2𝑑𝑡 

In the above formula, λ × PENm is the penalty term, and λ is the smoothing parameter of the penalty term 

used to balance the degree of fitting and noise. Common methods for determining the value of λ include cross-

validation (CV) and generalized cross-validation (GCV)（Craven et al., 1979）. The formula for determining the 

value of λ using cross-validation is as follows: 

CV(𝑥) = ∑ [𝑦𝑗 − 𝛼𝜆
(−𝑖)

− ∫ 𝑥𝑖(𝑡)𝛽𝜆
(−𝑖)

𝑑𝑡]
2

𝑁

𝑖=1

 

In the above formula, αλ
(−i)

  and βλ
(−i)

  represent the estimated values of α  and β  after removing the 𝔦 

observation. Generalized cross-validation is developed from cross-validation and is more computationally simple 

and reliable compared to the latter. The formula is as follows: 
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GCV(𝜆) = (
𝑛

𝑛 = 𝑑𝑓(𝜆)
) (

𝑆𝑆𝐸

𝑛 − 𝑑𝑓(𝜆)
) 

In the above formula, df(λ) is the degrees of freedom of the estimated function, and SSE is the total residual 

sum of squares. The parameter λ is usually set in the interval [10-12,–10-2]（Warmenhoven et al., 2021）. However, 

some scholars（Zin et al., 2020）have found that few human movement analysis studies using FDA methods 

make an objective choice of the smoothing parameter. Researchers usually subjectively determine an appropriate 

value but do not describe the specific method of determination. Therefore, Zin（Zin et al., 2020） compared the 

smoothing effects of CV, GCV, and subjective selection methods by collecting a dataset of lower limb hip joint 

sagittal plane angles from 20 male subjects performing American kettlebell swing movements. The study found 

that CV and GCV did not calculate the most appropriate value of λ. Zin believed that the selection of smoothing 

parameters should combine subjective selection and objective calculation methods (CV and GCV). 

1.2.3 Registration 

Before formally analyzing functional data, there is still an urgent problem to be solved, namely, the need to 

eliminate phase variation in the measured data. Usually, the measured data curves not only include amplitude 

variation but also phase variation, as shown in Figure 1. Phase variation comes from the asynchrony between the 

internal clock of the system and the sampling clock, that is, the physical time scale is not directly related to the 

internal dynamics of the system. If the phase variation between data is not eliminated, abruptly performing cross-

sectional statistics on the data will mislead researchers to make incorrect judgments. Therefore, scholars have 

introduced the Curve Registration algorithm. 

 

Figure 1. Schematic diagram of amplitude variation and phase variation（Tuddenham et al., 1954）  

Curve registration refers to an algorithm that uses a warping function to capture the phase variation in the 

original data curve, and subsequently applies monotone transformations to the sample function domain, thereby 

aligning their functional features (such as peaks and valleys) （Kneip et al., 2008）. After registration processing, 

the sample curves only show amplitude variation, highlighting the characteristics of amplitude changes in the 

curves. Common registration methods include shift registration, landmark registration, and continuous registration. 

Shift registration is a relatively simple method that achieves registration by determining shift parameters. The 

formula is as follows: 

𝑥𝑖
∗(𝑡) = 𝑥𝑖(𝑡 + 𝛿𝑖) 

Taking Ramsay's hand movement control experiment as an example（Ramsay et al., 1995）, scholars 

required subjects to pinch a sensor simultaneously with their index finger and thumb and reach a target force value 

(10N). The data results are shown in Figure 2. Since the time for each subject to pinch the sensor is not fixed, shift 



 

6 

registration is needed to align the curve landmarks. The method for determining the shift parameter is to find the 

minimum sum of squares error (SSE) between the registration function and the target function amplitude 

difference. The formula is as follows: 

REGEER = ∑ ∫ [𝑥𝑖(𝑡 + 𝛿𝑖) − �̂�(𝑡)]2 𝑑𝑠
𝒯

𝑁

𝑖=1

 

         = ∑ ∫ [𝑥𝑖
∗(𝑡) − �̂�(𝑡)]2 𝑑𝑠

𝒯

𝑁

𝑖=1

 

 

 

Figure 2. Force value curves collected from hand movement experiments（Ramsay et al., 1995） 

Landmarks refer to certain feature points of the curve, such as maximum values, minimum values, and zero-

crossing points. Usually, the same landmark points are located at the same moment of the system's internal clock, 

and landmarks can be better identified with the help of the derivative form of the curve sample. Landmark 

registration requires capturing the independent variable tif, f = 1, … , F corresponding to the landmark points of 

each curve, thereby constructing a warping function hi for each curve. The specific formula is as follows: 

𝑥∗(𝑡) = 𝑥𝑖[ℎ𝑖(𝑡)] 

Continuous registration is improved from the time-warping algorithm. The specific calculation formula is as 

follows: 

h(𝑡) = 𝐶0 + 𝐶1 ∫ 𝑒𝑥𝑝𝑊(𝑢)𝑑𝑢
𝑡

0

 

In the above formula, C0 and C1are constants, corresponding to the amplitude scaling factor and phase shift 

scaling factor, respectively. h(t)is consistent with the upper and lower limits on the interval [0, T]. When W(u) =

0, h(t) = t, the system clock is synchronized with the sampling clock; when W(u) > 0，h(t) > t, the system 

clock is slower than the sampling clock, and the warping time plays an accelerating role; when W(u) < 0，h(t) <

t , the system clock is faster than the sampling clock, and the warping time plays a decelerating role. The 

smoothness of h(t)is controlled by the roughness penalty mentioned above. The formula is as follows: 
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MINEIG𝜆(ℎ) = 𝑀𝐼𝑁𝐸𝐼𝐺(ℎ) + 𝜆 ∫{𝑊(𝑚)(𝑡)}
2

𝑑𝑡 

1.2.4 Functional Principal Component Analysis 

Functional Principal Component Analysis (fPCA), as the most common analysis technique for handling 

functional multivariate problems in human movement analysis research, plays a pioneering role in the development 

of FDA, dating back to 1982（Dauxois et al., 1982）. This algorithm explores the typical variation patterns of 

data curves by reducing the dimensions of the original dataset containing a large amount of correlated variable 

information（Ullah et al., 2013）. According to the number of analysis indicators, functional principal component 

analysis can be divided into univariate functional principal component analysis or simple functional principal 

component analysis, and multivariate functional principal component analysis. Essentially, functional principal 

component analysis converts the coordinate system of the original data, establishing a new coordinate system 

based on the direction of maximum variance. The new coordinate axes are uncorrelated and ordered, with a few 

leading coordinate axes or principal components reflecting most of the information in the original data. The 

formula is as follows: 

fi = ∫ ξxi = ∫ ξ(s)xi(s)ds 

In this formula, fi  is the principal component score, ξ(s)  is the weight function or eigenfunction, and xi(s) 

is the observed value. Substituting the observed value into the above formula, we can solve for the principal 

component score of the eigenfunction on the observed value. The process of extracting functional principal 

components is essentially finding the eigenfunction that can maximize the variance of the functional principal 

component scores ξp while satisfying unit norm regularization. The formula is as follows: 

{

max ∑ (fip)
2

i

s. t.  ∫ ξp(s)2ds = 1, ∫ ξp(s)ξm(s)ds = 0, m = 1,2, … , p − 1
 

Similar to multivariate statistics, functional principal component analysis also extracts eigenvalues ρ through 

the covariance matrix υ(s, t). The formula is as follows: 

υ(s, t) =
1

N
∑ xi(s)xi(t)

N

i=1

 

∫ υ(s, t)ξ(t)dt = ρ ξ(s) 

Applying integral transform to the left side of the above formula, we obtain the covariance operator V, 

expressed as follows: 

Vξ = ∫ ν(. , t)ξ(t)dt = ρξ 

Functional principal component analysis has achieved good results in many research areas of human 

movement analysis. Ullah（Ullah and Finch, 2013）conducted a systematic review of applied research on FDA 

published between 1995 and 2010. The authors found that 51 (69.7%) of the 84 selected studies used functional 

principal component analysis, such as gait analysis research for Parkinson's patients. Scholars usually adopt 

general statistical hypothesis testing methods（Warmenhoven et al., 2018a）(such as analysis of variance) or 
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multivariate statistical analysis methods（Warmenhoven et al., 2018c ; Warmenhoven et al., 2017 ; Liebl et al., 

2014）(such as discriminant analysis, multivariate linear regression models, clustering) to analyze functional 

principal component scores, and then associate each principal component with real physical meanings. In 

traditional multivariate statistics, principal component analysis usually selects sample curves corresponding to the 

5th percentile and 95th percentile of each principal component score, that is, two representative extreme curves, 

and explains the physical meaning of each component by comparing their differences（Landry et al., 2007）. For 

example, when at a certain moment, the sample curve corresponding to the 5th percentile has a larger amplitude, 

while the sample curve corresponding to the 95th percentile has a smaller amplitude, it can be considered that this 

principal component captures the amplitude change at this moment（Wrigley et al., 2005）. However, this method 

can easily lead to interference between the characteristics of each principal component. Therefore, Ramsay added 

and subtracted fixed multiples of eigenfunctions based on the mean function. The formula is as follows: 

s+ = u̅ + √ρ ∗ ξ 

s− = u̅ − √ρ ∗ ξ 

In the above formula, u̅ is the mean function, ξ is the eigenfunction, and √ρ is the standard deviation of the 

principal component eigenvalue. Through the region enclosed by s+   and s−  , we can clearly see where the 

variability occurs, and thus reasonably explain the physical meaning represented by this principal component. 

2 Application of Functional Data Analysis in Complex Human Movement Analysis 

2.1 Applications in Sports Science 

With the continuous development of FDA methods, this technology has gained increasingly widespread 

application in the field of sports science, such as movement analysis research in weightlifting（Dalla Bernardina 

et al., 2021 ; Kipp et al., 2012）, rowing （Warmenhoven et al., 2019b ; Warmenhoven et al., 2018b ; 

Warmenhoven et al., 2018a ; Warmenhoven et al., 2018c ; Warmenhoven et al., 2017）, race walking（Dona et 

al., 2009）, running（Willwacher et al., 2016 ; Liebl et al., 2014）, cycling（Soares et al., 2021）, swimming

（Leroy et al., 2018）, and other sports. 

For weightlifting events, Kipp （Kipp et al., 2012）used functional principal components analysis (fPCA) 

to analyze the movement patterns of the lower limbs of 10 college weightlifters performing snatch lifts at 85% of 

1RM. The study found that the PC1 scores of hip joint flexion-extension angle curves and the PC2 scores of knee 

joint flexion-extension moment were positively correlated with normalized weightlifting performance. At the same 

time, they corresponded to the variability in the first pull phase and the second pull phase, respectively. The study 

suggested that maintaining trunk stability during the first pull phase and rapid knee extension during the second 

pull phase help improve weightlifting performance. Bernardina（Dalla Bernardina et al., 2021）used functional 

analysis of variance (fANOVA) to analyze the displacement velocity changes of the barbell when 10 Paralympic 

weightlifters completed bench press movements at 50% and 90% of 1RM. The study found that at 90% maximum 

load, barbell displacement velocity was asymmetric during 10-20% and 90-100% of the upward pushing phase. 

However, traditional ANOVA did not find statistical differences in the average velocity at the two ends. The study 

suggested that the asymmetry was due to slower initial velocities amplifying the imbalance in muscle strength 

between the two sides, while at the end of the push, the non-dominant limb increased pushing speed to maintain 

the barbell level. The results indicated that fANOVA more accurately reflects the movement patterns in Paralympic 

weightlifting events. 
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For rowing events, Professor Warmenhoven from the Department of Exercise and Sport Science at the 

University of Sydney demonstrated and explained the application of FDA methods such as fPCA（Warmenhoven 

et al., 2019b ; Warmenhoven et al., 2018a）, bivariate functional principal components analysis (BfPCA)

（Warmenhoven et al., 2019a ; Warmenhoven et al., 2018c ; Warmenhoven et al., 2017）, and functional t-test 

(ft-test)（Warmenhoven et al., 2018b） in rowing. In 2017, Warmenhoven（Warmenhoven et al., 2017）applied 

BfPCA to analyze the propulsive force and entry angle changes of the oar during the water entry phase for 27 

Australian female rowers (national level n=14, international level n=13) rowing at a stroke rate of 32 

strokes/minute on water. The study found that the greater the loading rate of oar propulsive force in the first half 

of the water entry phase, the faster the boat speed. The study concluded that the BfPCA method is beneficial for 

extracting features from the oar propulsive force-entry angle change diagram, thereby analyzing the force 

application patterns of high-level rowers. Subsequently in 2018, Warmenhoven（Warmenhoven et al., 2018c）

also used the BfPCA method to explore whether gender would affect the oar propulsive force-entry angle change 

diagram, i.e., the rowing technique patterns of athletes. The study found that gender had a statistically significant 

effect on rowers' oar propulsive force-entry angle changes, suggesting that coaches need to consider gender 

differences when analyzing rowers' movement patterns. In 2019, Warmenhoven（Warmenhoven et al., 2019a）

used the complete rowing cycle oar propulsive force-entry angle change data from two excellent Australian female 

rowers as an example, summarized data processing experiences from previous research, and systematically 

discussed the practical workflow of BfPCA, precautions, and how to connect data results with real physical 

meanings. The study suggested that when two variables have inconsistent units, consideration should be given to 

converting variables into dimensionless quantities to improve the interpretability of results. For the fPCA method, 

Warmenhoven（Warmenhoven et al., 2019b）used the oar propulsive force change data during the complete 

rowing cycle of two excellent Australian female rowers as an example to explain the practical workflow of fPCA, 

the interpretation of results, and reviewed previous research. The study suggested that appropriate use of 

registration, maximum variance rotation, and other methods can effectively improve the interpretability of results. 

For race walking events, Dona （Dona et al., 2009）used the fPCA method to analyze the sagittal plane joint 

angles and net joint moments of the knee in 7 Italian national race walkers at self-selected speeds. The study found 

that PC2 of the knee flexion-extension angle curve reflects the technical characteristics of race walkers during the 

foot landing buffer phase. High-level race walkers maintain knee joint stability, while low-level race walkers 

increase knee extension amplitude. At the same time, low-level athletes have larger knee flexion moments during 

this phase. The study suggested that maintaining this movement pattern for an extended period would increase the 

risk of knee joint injury in low-level race walkers. The research recommended that fPCA helps extract movement 

characteristics of athletes at different skill levels that traditional statistical methods cannot identify, but attention 

should be paid to eliminating differences unrelated to sports performance. 

For running events, Liebl （Liebl et al., 2014）combined fPCA with clustering algorithms to analyze the 

ankle joint flexion-extension moments of the dominant lower limb during the support phase of 119 amateur runners 

at a speed of 3.5m/s, thereby classifying runners into forefoot and rearfoot runners. The study found clear grouping 

of runners, with forefoot runners having statistically significantly higher maximum ankle flexion strength than 

rearfoot runners. Willwacher （Willwacher et al., 2016）also used a combination of fPCA and clustering 

algorithms to analyze the relationship between free moments, lower limb biomechanical characteristics, and injury 

risk during the support phase of 222 amateur runners at a speed of 3.5m/s, using free moment as an indicator for 

runners' choice of shoe type. The study found that runners' Free Moment (FM) had two PCs: PC1 functions to 

counteract the interference of the body's angular momentum during the flight phase, while PC2 functions to 

compensate for the moment difference between the upper and lower limbs during the support phase to ensure body 

stability. The study suggested that runners' FM PC scores could serve as an indicator for classifying runners 

according to injury risk. 



 

10 

For cycling events, Soares（Soares et al., 2021）used the fANOVA method to analyze the pedaling torque 

of 20 amateur cyclists riding power bicycles at 60%, 80%, and 95% maximum power loads. The study found that 

traditional ANOVA did not identify statistical differences in pedaling torque peaks between the two sides of the 

lower limbs, while fANOVA showed statistical differences in the non-peak portions of the pedaling torque on both 

sides. The study concluded that pedaling torque peaks cannot be used alone as an indicator to judge whether the 

force on both lower limbs is symmetrical. When analyzing whether cyclists' lower limb force is symmetrical, the 

overall trend of change needs to be considered. Therefore, fANOVA can be used as a tool to analyze differences 

in overall change trends applied in the biomechanical analysis of cycling. 

For swimming events, Leroy（Leroy et al., 2018）used functional clustering analysis to analyze tracking 

data of 100m freestyle performance during the 12-20 year training period for 1468 French youth swimmers 

published by the French Swimming Federation. The study identified five different patterns of athletic ability 

growth, showing that athletes with similar levels in the early stages may have significant differences in athletic 

level in adulthood. At the same time, the critical period for athletes' performance improvement is before the age of 

16. The study suggested that functional clustering analysis can effectively predict the growth potential of swimmers 

and can be a powerful tool for coaches in talent selection. 

2.2 Applications in Clinical Rehabilitation 

In the field of clinical rehabilitation, most applications of FDA research focus on the biomechanical 

mechanisms of lower limb joint injuries, such as anterior cruciate ligament (ACL) injuries（Stephens et al., 2020 ; 

Baumgart et al., 2017 ; Hebert-Losier et al., 2015）, knee pain（Son et al., 2017a）, ankle instability or sprains

（Son et al., 2017b）, and chronic Achilles tendon injury (AT)（Donoghue et al., 2008）. After an injury occurs, 

patients develop compensatory phenomena to complete functional movement tasks, manifested as abnormal 

movement patterns. Observing and analyzing these patterns helps rehabilitation therapists make clinical decisions 

and avoid the risk of re-injury. FDA treats the movement parameters (joint angle curves, ground reaction force 

curves, etc.) of the patient's complete movement process as geometric objects, which has inherent advantages in 

revealing the differences in movement processes of patients with different severity compared to traditional 

methods. 

For example, Baumgart（Baumgart et al., 2017）divided 40 post-ACL surgery patients into high-score and 

low-score groups according to the International Knee Documentation Committee (IKDC) scoring standards. The 

study combined ft-test and traditional discrete indicators to analyze the GRF data of the two groups of subjects 

performing vertical jump tasks. The ft-test results showed that compared to the high-score group, the GRF of the 

affected lower limb in the low-score group was smaller during the vertical jump squat phase; however, no 

difference in GRF peaks was found between the two groups. The study suggested that FDA indicators are more 

sensitive than traditional discrete indicators and help clinicians discover differences in movement patterns between 

patients at different rehabilitation levels. Similarly, Stephens（Stephens et al., 2020）combined fPCA and 

traditional discrete indicators to analyze the ground reaction force (GRF) during single-leg landing tasks performed 

by the healthy leg and the affected leg of an ACL-injured athlete. The study found that PC4 of the GRF curve 

could effectively identify changes in the movement pattern of the affected lower limb at the end of the rapid 

buffering phase, while there were no differences in traditional discrete indicators (GRF peak, landing stability 

duration) between the two lower limbs. The study suggested that patients adjust their movement strategies 

according to their disease constraints to ensure the stability of their movements, and traditional discrete indicators 

have difficulty reflecting such process-related changes. Additionally, Donoghue（Donoghue et al., 2008）used 

the fPCA method to study the kinematics of AT patients during running. The study found that compared to the 

normal control group, AT patients had smaller PC1 amplitude variation in the frontal plane lower limb joint angles 
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during the first half of the running support phase. The study considered that AT patients have highly similar 

movement patterns during the foot loading phase, consistent with the dynamic systems theory view that after 

injury, patients' movements become stereotyped and energy-consuming, i.e., movement variability decreases. This 

suggests that the characteristics of patients' movement patterns after injury are not related to the actual numerical 

values of movement parameters, but to the overall change trend. 

2.3 Applications in Movement Development 

Early movement development scholars mostly adopted qualitative descriptive methods to summarize 

movement pattern information of basic movement skills at different developmental stages, such as whole-sequence 

and part-sequence methods, but these are easily influenced by the observer's subjectivity. In the later period, to 

objectively and quantitatively evaluate the staged changes in children's movement patterns, scholars introduced 

FDA methods. Initially, Ryan（Ryan et al., 2006）combined fPCA with stepwise discriminant analysis to study 

the developmental characteristics of children's vertical jump movements. The study found that PC3 of knee flexion 

angle could be used as a sensitive indicator to distinguish different developmental stages, reflecting children's 

ability in muscle stretch-shortening cycles of the lower limbs. At the same time, registration could effectively 

improve the discrimination of this PC. Soon after, Harrison（Harrison et al., 2007）used the BfPCA method to 

further study the relationship between children's vertical jump movement maturity and lower limb joint 

coordination. The study found that PC3 of the knee-hip angle-angle diagram could effectively distinguish vertical 

jump movements at different developmental stages, suggesting that higher-order vertical jump movements are 

characterized by greater knee flexion angles and smaller hip flexion angles.  

3 Summary 

During human movement, the motion parameters of limb segments have continuity and periodicity, which 

are typical functional data. Using FDA techniques can more precisely identify subtle transitions in movement 

patterns and supplement important information overlooked by traditional cross-sectional statistics. This study 

clarified the relevant concepts and analytical steps of FDA, outlined the computational framework of fPCA, and 

provided a detailed review of the applications of FDA in complex human movement analysis research, offering a 

reference for the widespread use of FDA. As seen in this paper, FDA demonstrates superior advantages in human 

movement analysis research, but many challenges still exist. These include the setting of smoothing parameters in 

pre-processing, the necessity of registration and maximum orthogonal rotation in fPCA, and the robustness of 

results. To enable this method to become a reliable technical means for human movement analysis research as soon 

as possible, it is recommended that subsequent research focus on the impact of additions, deletions, and parameter 

settings in each analytical step on computational results, in order to form specific and feasible operational process 

standards. 
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