

OSKROBA, Karolina, SOKOŁOWSKI, Maciej, GRACZYK, Ester, KRYŚLAK, Joanna, SKIBICKA, Katarzyna, SOLARZ, Adam, SZABELSKI, Szymon, CWALINA, Oliwia and TURCZA, Jakub Filip. The role of botulinum toxin in the treatment of diseases beyond aesthetics: migraine, hyperhidrosis and bruxism - literature review. *Quality in Sport*. 2025;41:59842. eISSN 2450-3118.  
<https://doi.org/10.12775/QS.2025.41.59842>  
<https://apcz.umk.pl/QS/article/view/59842>

The journal has been 20 points in the Ministry of Higher Education and Science of Poland parametric evaluation. Annex to the announcement of the Minister of Higher Education and Science of 05.01.2024. No. 32553.

Has a Journal's Unique Identifier: 201398. Scientific disciplines assigned: Economics and finance (Field of social sciences); Management and Quality Sciences (Field of social sciences).

Punkty Ministerialne z 2019 - aktualny rok 20 punktów. Załącznik do komunikatu Ministra Szkolnictwa Wyższego i Nauki z dnia 05.01.2024 r. Lp. 32553. Posiada Unikatowy Identyfikator Czasopisma: 201398.

Przypisane dyscypliny naukowe: Ekonomia i finanse (Dziedzina nauk społecznych); Nauki o zarządzaniu i jakości (Dziedzina nauk społecznych).

© The Authors 2025;

This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 28.03.2025. Revised: 25.04.2025. Accepted: 06.05.2025. Published: 11.05.2025.

## **The role of botulinum toxin in the treatment of diseases beyond aesthetics: migraine, hyperhidrosis and bruxism - literature review**

## **Rola toksyny botulinowej w leczeniu schorzeń poza medycyną estetyczną: migrena, nadpotliwość i bruksizm - przegląd literatury**

### **Authors:**

**1.**

#### **Karolina Oskroba**

Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy Uniwersytetu Mikołaja Kopernika w Toruniu

e-mail: [karolinaoskroba1@gmail.com](mailto:karolinaoskroba1@gmail.com)

<https://orcid.org/0009-0003-7169-2841>

**2.**

#### **Maciej Sokolowski**

Szpital Specjalistyczny im. Stefana Żeromskiego w Krakowie

e-mail: [sokolowskimaciej17@gmail.com](mailto:sokolowskimaciej17@gmail.com)

<https://orcid.org/0009-0009-8559-0620>

**3.**

#### **Ester Graczyk**

Uniwersytecki Szpital Kliniczny nr 2 Uniwersytetu Medycznego w Łodzi

e-mail: [esteragracz98@gmail.com](mailto:esteragracz98@gmail.com)

<https://orcid.org/0009-0006-4901-0172>

**4.**

#### **Joanna Kryślak**

Uniwersytecki Szpital Kliniczny w Poznaniu

e-mail: [joanna0kryslak@gmail.com](mailto:joanna0kryslak@gmail.com)

<https://orcid.org/0009-0004-5678-2643>

**5.**

**Katarzyna Skibicka**

Szpital Uniwersytecki nr 2 im. Jana Biziela w Bydgoszczy

e-mail: [ka.skibicka@gmail.com](mailto:ka.skibicka@gmail.com)

<https://orcid.org/0009-0001-3192-9301>

**6.**

**Adam Solarz**

Szpital Specjalistyczny im. Stefana Żeromskiego w Krakowie

e-mail: [adam.solarz@poczta.onet.eu](mailto:adam.solarz@poczta.onet.eu)

<https://orcid.org/0009-0005-6039-8449>

**7.**

**Szymon Szabelski**

Uniwersytecki Szpital Kliniczny nr 2 Uniwersytetu Medycznego w Łodzi

e-mail: [szabelskiszymon8@gmail.com](mailto:szabelskiszymon8@gmail.com)

<https://orcid.org/0009-0002-5621-2590>

**8.**

**Oliwia Cwalina**

Uniwersyteckie Centrum Kliniczne im. prof. K. Gibińskiego Śląskiego Uniwersytetu Medycznego w Katowicach

email: [olivia.cwalina97@gmail.com](mailto:olivia.cwalina97@gmail.com)

<https://orcid.org/0000-0002-7071-0273>

**9.**

**Jakub Filip Turcza**

Zakład Kosmetologii i Medycyny Estetycznej, Uniwersytet Medyczny w Lublinie

e-mail: [jakub.turcza@umlub.pl](mailto:jakub.turcza@umlub.pl)

<https://orcid.org/0009-0004-3609-8772>

**Streszczenie**

W XIX wieku toksyna botulinowa była postrzegana wyłącznie jako silna trucizna. Późniejsze badania umożliwiły jej użycie w praktyce medycznej. Obecnie znajduje szerokie zastosowanie przede wszystkim w medycynie estetycznej. Jej potencjał terapeutyczny wykracza jednak daleko poza zabiegi kosmetyczne. Niniejszy artykuł przeglądowy analizuje zastosowanie toksyny botulinowej w leczeniu migreny, bruksizmu oraz nadpotliwości. W wymienionych schorzeniach toksyna botulinowa wykorzystywana jest głównie jako terapia objawowa, szczególnie w przypadkach, gdy leczenie pierwszego rzutu okazuje się nieskuteczne. W celu zapewnienia kompleksowego podejścia omówiono w artykule patofizjologię tych zaburzeń, standardowe schematy leczenia oraz mechanizmy działania toksyny botulinowej w łagodzeniu objawów. Przedstawiono również aktualne wytyczne towarzystw naukowych dotyczące lokalizacji iniekcji oraz ich częstotliwości. Dodatkowo omówiono rodzaje stosowanych preparatów toksyny botulinowej, odpowiednie dawkowanie, koszty terapii, możliwe działania niepożądane oraz wyzwania związane z trwałością efektów terapeutycznych. Z uwagi na wysokie koszty leczenia i konieczność wielokrotnych iniekcji w stosunkowo krótkich odstępach czasowych, dalsze badania nad optymalizacją terapii są w pełni uzasadnione. W celu zwiększenia dostępności tej metody

terapeutycznej, należy rozważyć opracowanie nowych protokołów leczenia, które zmniejszyłyby częstotliwość podawania toksyny botulinowej, bądź wprowadzenie preparatów o wydłużonym czasie działania.

## Abstract

In the 19th century, botulinum toxin was recognized solely as a poison. Subsequent research led to its medical applications, and today, it is predominantly utilized in aesthetic medicine. However, its therapeutic potential extends beyond cosmetic procedures. This review examines the use of botulinum toxin in the management of migraine, bruxism, and hyperhidrosis. In these conditions, botulinum toxin primarily serves as a symptomatic treatment, often considered when first-line therapies fail. To provide a comprehensive understanding, this article discusses the pathophysiology of these disorders, standard treatment protocols, and the mechanisms by which botulinum toxin alleviates symptoms. Guidelines from scientific societies regarding injection frequency and anatomical sites are outlined. Additionally, the type of botulinum toxin, dosage, treatment costs, potential adverse effects, and challenges related to treatment durability are reviewed. Further research on botulinum toxin is warranted, as the therapy is associated with high costs and necessitates multiple injections in close succession. To improve accessibility, therapeutic protocols that reduce the number of injections should be developed, or formulations with an extended duration of action should be introduced.

**Slowa kluczowe:** Toksyna Botulinowa, migrena, bruksizm, nadpotliwość, użycie pozakosmetyczne, BoNT A

**Keywords:** Botulinum toxin, migraine, bruxism, hyperhidrosis, beyond cosmetics, BoNT A

## 1. Introduction

Botulinum toxin (BoNT) is a neurotoxin produced by the bacterium *Clostridium botulinum*. (Phan K et al. 2022) It was first described by Justinus Kerner in 1820 as 'sausage poisoning.' The bacterium responsible for its production was isolated in 1895 by van Ermengem from a piece of ham that had poisoned 34 individuals. (Watson NA et al. 2021) The initial medical application of botulinum toxin was pioneered by Alan B. Scott, who injected it into the oculomotor muscles to treat strabismus. Subsequently, the U.S. Food and Drug Administration (FDA) approved BoNT for therapeutic use in 1989. This approval catalyzed significant advances in BoNT research, developing new therapeutic formulations and expanding indications for its use. (Choudhury S et al. 2021)

In contemporary practice, BoNT is often associated with aesthetic medicine due to its widespread use in cosmetic procedures, which are frequently covered by the media. BoNT-based treatments are among the most commonly performed aesthetic interventions. (Hong SO 2023) However, botulinum toxin has several other clinical applications that offer substantial therapeutic benefits. The FDA has approved its use for conditions such as eyelid spasm, hemifacial spasm, strabismus, torticollis, migraine, hyperhidrosis, limb spasticity, and

overactive bladder. Additionally, numerous off-label uses, including the treatment of bruxism and postherpetic neuralgia, have been reported.(Choudhury S et al. 2021)

This article reviews recent scientific literature concerning the therapeutic applications of botulinum toxin beyond aesthetic medicine. It highlights its potential role in minimally invasive therapies, particularly in cases where conservative treatments have proven ineffective. Furthermore, the article explores BoNT as an alternative or adjunctive treatment, with a specific focus on conditions such as migraine headaches, hyperhidrosis, and bruxism.

## 2. Division of BoNT Types

BoNT consists of two peptide chains connected by a disulfide bond. The complete protein structure comprises three distinct domains—two located within the heavy chain and one in the light chain. The C-terminal domain of the heavy chain facilitates toxin binding to receptor sites, while the N-terminal domain is responsible for translocation.(Kumar R. et al. 2016) The light chain functions as a catalytic unit. The toxin molecule is surrounded and stabilized by naturally occurring proteins, enhancing its stability.(Jabbari B. 2017)

Based on serological properties, BoNTs are classified into seven serotypes, designated A through G. Among these, BoNT A, BoNT B, BoNT E, and BoNT F are known to cause botulism in both humans and animals. Conversely, BoNT C and BoNT D primarily affect domestic animals. BoNT G-producing organisms have been isolated from soil but have not been implicated in causing botulism. The U.S. FDA has approved at least six BoNT formulations for clinical use. Notably, for various indications, BoNT A and BoNT B are utilized in medical treatments.(Choudhury S et al. 2021)

## 3. Mechanism of Action of BoNT at the Cellular Level

After injection, BoNT enters the extracellular space, where its heavy chain binding domain attaches to polysialogangliosides on the cell surface. The toxin is subsequently internalized through binding to another surface receptor, such as synaptotagmin or glycosylated synaptic vesicle proteins, and enters synaptic vesicles. Acidification of these vesicles, facilitated by proton pumps, activates proteins responsible for transporting acetylcholine from the cytosol into their interior.

In the absence of BoNT, synaptic vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synaptic cleft. BoNT inhibits this process by translocating its light chain into the cytoplasm, which is activated by heat shock proteins and the thioredoxin reductase system. The active light chain cleaves and inactivates the transmembrane SNARE proteins, including vesicle-associated membrane protein (VAMP), synaptosomal-associated protein 25 (SNAP-25), and syntaxin. These proteins are critical for vesicle fusion with the synaptic membrane, and their inactivation prevents acetylcholine release into the synaptic space.(Jabbari B. 2018)

Beyond blocking acetylcholine release, BoNT also inhibits the release of other substances carried by small synaptic vesicles, such as glutamate. Additionally, it affects large dense-core vesicles, preventing the release of calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38), and substance P. BoNT also disrupts the transport of proteins and receptors, including transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and purinergic receptor P2X3, which are crucial for nociception.(Choudhury S et al. 2021)(Jabbari B. 2017)

## 4. Migraine

Migraine is a genetically determined neurological disorder characterized by unilateral headaches of moderate to severe intensity. These headaches are frequently accompanied by nausea and heightened sensitivity to light. Migraine attacks can last from several hours to several days, significantly impacting patients' quality of life.(Pescador Ruschel MA et al. 2024) Migraines can be classified into the following categories: migraine without aura, migraine with aura, chronic migraine, probable migraine, and migraine-related episodes.

The etiology of migraine is complex and involves polygenic inheritance, with migraines occurring three times more frequently in genetically related individuals.(de Vries B et al. 2016) Additionally, migraines may be triggered by factors such as stress, hormonal fluctuations, irregular meals, specific foods, or weather changes.(Pavlovic 2014) While the exact pathophysiology of migraines remains incompletely understood,

several theories have been proposed. These include activation of afferent fibers of the trigeminal nerve associated with the brain's soft pia mater, cortical spreading depression as described by Leão, secretion of vasoactive neuropeptides such as substance P, calcitonin gene-related peptide (CGRP), and neurokinin A, as well as alterations in serotonin levels.(Karatas H et al. 2013)(Matsuda M et al. 2019)(Deen M et al. 2018)

Migraines affect approximately 12% of the population, with a higher prevalence in women than men. The peak incidence occurs between the ages of 35 and 39.(Pescador Ruschel MA et al. 2024)

Treatment of migraines is divided into two main approaches:

1. Acute treatment of migraine attacks.
2. Preventive treatment to reduce attack frequency, severity, and duration.

Acute treatment involves the use of analgesics such as paracetamol and nonsteroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, naproxen, and diclofenac, for mild to moderate pain. For more severe cases or those unresponsive to NSAIDs, triptans, such as sumatriptan and zolmitriptan, are considered first-line therapies. Studies indicate that approximately 75% of patients benefit from triptan therapy.(Singh RBH et al. 2020) These medications can be administered via multiple routes, including intranasally, which is advantageous for patients experiencing nausea or vomiting. Adjunctive antiemetics, such as metoclopramide or chlorpromazine, may also be used in these patients. Newer agents such as gepants (CGRP antagonists) and ditans (selective serotonin 1F receptor agonists) may be effective for refractory cases. Ergotamine and dihydroergotamine are still available but are associated with more side effects.(Pescador Ruschel MA et al. 2024)

Preventive treatment aims to reduce migraine frequency, intensity, and duration by identifying and avoiding triggers.(Ha H et al. 2019) Medications used for prevention include beta-blockers, antidepressants (e.g., amitriptyline, venlafaxine), anticonvulsants (e.g., valproic acid), calcium channel blockers, CGRP antagonists, and BoNT.(Pescador Ruschel MA et al. 2024)

## **5. BoNT A in Migraine**

BoNT A is indicated for the treatment of chronic migraine, defined as headaches occurring at least 15 days per month for more than three months, with migraine features present on at least eight days per month.(Cephalgia 2018) In 2016, the American Academy of Neurology recommended BoNT A for chronic migraine treatment. In 2018, the European Headache Federation endorsed its use following the failure of two to three prophylactic medications.(Simpson D.M et al. 2016)(Bendtsen L. et al. 2018)

During migraine attacks, C-type fibers in the dura are activated by cortical spreading depression. These fibers release CGRP, which increases sensitization and can activate A-type pain fibers. Signals are transmitted to the trigeminocervical complex in the brainstem, activating second-order neurons in trigeminal sensory pathways, ultimately resulting in headaches.(Becker WJ 2020)

Several mechanisms of action of BoNT A in migraine therapy have been proposed. Sensory neurons in the head have branches terminating both at the dura mater and extracranially through cranial sutures or emissary canals. BoNT A injections into these extracranial sites may modulate pain signaling from intracranial sources.(Zhang X. et al. 2016) Additionally, BoNT A reduces CGRP release, diminishing sensitization of C- and A-type fibers and lowering blood CGRP levels, thus reducing migraine frequency. Peripheral blockade of extracranial nerve conduction may also contribute to pain relief.(Cernuda-Morollón E. et al. 2015)(Pellesi L. et al. 2020)

The PREEMPT protocol (Phase III Research Evaluating Migraine Prophylaxis Therapy) recommends 31 injections of 5 units each into the frontal, temporal, occipital, upper neck, and trapezius regions. An additional eight injections may be administered based on pain localization ("follow the pain" approach). Treatments are

repeated every 12 weeks. Proper injection technique is critical to minimize adverse effects. Treatment response is evaluated four weeks before and after therapy. Discontinuation is advised if headache frequency decreases to fewer than 10 days per month for three consecutive months. Patients should be reassessed after 4-5 months to monitor for recurrence of chronic migraine.(Blumenfeld A.M et al. 2020)

According to Ching J et al., early intervention during the clinical course of chronic migraine may improve the likelihood of achieving remission and discontinuing BoNT therapy.(Ching J. et al. 2019) BoNT treatment may be particularly beneficial for patients who are unresponsive to first-line therapies or have contraindications to oral medications.(Hoffmann J et al. 2014)

In the PREEMPT trials, BoNT A improved quality of life by 44% at week 25 and by 59% at week 56. Among 688 participants, 49.3% reported at least a 50% reduction in headache frequency following the first injection cycle.(Silberstein et al. 2013) BoNT A has also demonstrated synergistic effects with triptans, enhancing their efficacy.(Eren OE et al. 2020)

Despite its benefits, BoNT A lacks specificity, affecting both sensory and motor neurons. To avoid paralytic side effects, low doses are required. Developing BoNT formulations targeting only sensory fibers could enhance therapeutic efficacy and allow higher dosing.(Becker WJ 2020) Transdermal BoNT formulations are also under investigation.(Fonfria E. et al. 2018)

BoNT therapy is costly, with an estimated annual expense of \$3,000.(Fonfria E. et al. 2018) Side effects, although infrequent, include eyelid ptosis (2%), neck pain (4%), and muscle weakness (3%). Overall, BoNT A is well tolerated and considered a viable treatment option for chronic migraine.(Yalinay Dikmen P. et al. 2018)(Pallapothu MR et al. 2023)

## 6. Bruxism

Bruxism is a common disorder characterized by excessive activity of the masseter muscles, resulting in clenching or grinding of the teeth. It presents in two forms: sleep bruxism and awake bruxism. Approximately 20% of the population experiences daytime bruxism, while 10% are affected by nocturnal bruxism.(Malcangi G et al. 2023)

The primary symptoms include headaches, temporomandibular joint pain, masseter muscle pain, excessive mechanical wear of the teeth, prosthetic complications, tooth fractures, hypertrophy of the masticatory muscles, and restricted mouth opening.(Fernández-Núñez T et al. 2019)(Lal SJ et al. 2024) The etiology of bruxism is multifactorial and may involve genetic predisposition, psychological factors (e.g., stress, emotional tension), anatomical abnormalities of the oral cavity, and alterations in central nervous system function.(Matusz K et al. 2022)

The diagnosis of bruxism requires a comprehensive evaluation, including a detailed medical history, standardized questionnaires, clinical examination, and supplementary diagnostic tests such as electromyography (EMG) and polysomnography to assess masticatory muscle activity during sleep. EMG recordings of masticatory muscle activity serve as an objective diagnostic tool, and when combined with polysomnography, they represent the gold standard for diagnosis. Diagnostic criteria include the presence of clenching and grinding of teeth during sleep, accompanied by at least one additional symptom, such as excessive tooth wear, grinding sounds reported by household members, or increased muscle tension in the facial and cervical regions.(Lobbezoo F et al. 2018)

Treatment is indicated when bruxism leads to detrimental effects on oral structures or when patients report pain-related symptoms.(Lal SJ et al. 2024) The primary treatment objective is muscle relaxation, which can be achieved through various interventions. First-line therapy includes behavioral modifications, psychotherapy (focusing on stress reduction and lifestyle adjustments), and relaxation techniques aimed at alleviating muscle tension. Occlusal splints are commonly prescribed to prevent mechanical damage to the dentition. In cases where conservative measures are insufficient, pharmacological therapy, such as clonazepam (0.5 mg) or clonidine (0.1 mg), may be considered; however, due to limited evidence supporting their efficacy, these medications are not routinely recommended. An alternative treatment option is BoNT A injection, which has been shown to

significantly reduce muscle spasm intensity, thereby improving patient-reported outcomes, including sleep quality and overall satisfaction.(Ali SM et al. 2021)(Choudhury S et al. 2021)(Lal SJ et al. 2024)

## **7. BoNT A in Bruxism**

BoNT A can be administered via intramuscular or intradermal injection. When delivered intramuscularly, the toxin induces proteolysis of SNAP-25, thereby inhibiting acetylcholine release at the neuromuscular junction. This results in a reduction in muscle contraction strength and partial, temporary muscle paralysis, typically lasting for several months until repeat therapy is required. BoNT-A affects neurotransmission at chemical synapses within both the peripheral and central nervous systems.[Choudhury S et al. 2021](Malcangi G et al. 2023)

During BoNT A administration, small doses are used to localize the effect to the targeted area. The maximum therapeutic effect is typically observed 2–6 weeks post-injection and persists for approximately 2–4 months. BoNT A reduces the force exerted by the masseter muscles, as measured at the point of contact between antagonist teeth during occlusion.(Matusz K et al. 2022) In cases of sleep bruxism, BoNT A decreases the intensity of muscle contractions without altering their frequency. This approach is considered effective in reducing the intensity of masticatory muscle contractions, particularly when combined with occlusal splints.(Shim YJ et al. 2020)

The administration of approximately 12–18 units of BoNT A into the ventral portion of the masseter muscle effectively reduces hypertrophy and alleviates morning headaches.(Malcangi G et al. 2023) Reported adverse effects include pain at the injection site, xerostomia, speech difficulties, localized muscle weakness, dysphagia, and ecchymosis.(Da Silva Ramalho J.A. et al. 2023)(Ondo W.G. et al. 2018)(Yurttutan M.E. et al. 2019) Additionally, treatment with BoNT-A is associated with significant financial costs.(Malcangi G et al. 2023)

## **8. Hyperhidrosis**

Hyperhidrosis is a chronic autonomic disorder characterized by excessive stimulation of cholinergic receptors on eccrine glands, resulting in sweat production exceeding the amount required for thermoregulatory homeostasis.(Sammons JE et al. 2017) Due to the high concentration of eccrine glands in the axillae, palms, face, and soles, these areas are the most commonly affected. Hyperhidrosis affects approximately 3% of the American population, with the highest prevalence observed in individuals aged 20 to 60 years.(Strutton DR et al. 2004)(Martina E et al. 2021)

Hyperhidrosis is classified into primary and secondary forms. The etiology of primary hyperhidrosis remains unclear, although genetic predisposition is considered a significant contributing factor. Symptoms typically manifest in younger individuals. Secondary hyperhidrosis may result from various underlying conditions, including medication use, diabetes mellitus, hyperthyroidism, Parkinson's disease, tuberculosis, pheochromocytoma, lymphoma, and menopause. The disorder is associated with excessive sympathetic nervous system activity, leading to acetylcholine release from nerve endings. Cholinergic stimulation of muscarinic receptors induces sweating. The thermoregulatory center of the hypothalamus plays a key role in the sympathetic innervation of sweat glands.(Romero FR et al. 2016)(Brackenrich J et al. 2022)(Menzinger S et al. 2017)

Diagnosis is established through clinical evaluation, supplemented by quantitative assessment scales for sweat production. Diagnostic criteria for primary hyperhidrosis include a duration of at least six months, involvement of the axillae, palms, soles, or face, bilateral and symmetrical distribution, absence of nocturnal sweating, onset before the age of 25 years, positive family history, and impairment of daily activities. In cases where a secondary cause is suspected, further investigations should be conducted to exclude infectious diseases, renal disorders, malignancies, diabetes mellitus, and thyroid dysfunction.(Brackenrich J et al. 2022)(Romero FR et al. 2016)

Management options include topical and systemic therapies. First-line treatment consists of over-the-counter aluminum chloride hexahydrate 20%, applied nightly for three to four days, followed by maintenance therapy as needed. However, skin irritation may occur as an adverse effect. Recently, topical glycopyrronium tosylate has been approved for the treatment of hyperhidrosis. In patients unresponsive to topical therapy, oral anticholinergic agents such as oxybutynin (5–10 mg/day) or topical glycopyrrolate (0.5–2.0%) may be considered. For

refractory cases, botulinum toxin type A injections have demonstrated efficacy.(Brackenrich J et al. 2022)(Fujimoto T. 2016)(Delort S et al. 2017)

## **9. BoNT A in Hyperhidrosis**

Botulinum toxin type A was approved by the U.S. FDA in 2004 for the treatment of primary severe hyperhidrosis localized to the axillary region.(Chen S. 2012) Research has demonstrated its off-label efficacy in treating hyperhidrosis affecting the hands, feet, trunk, and face.(Perez-Bernal AM et al. 2005)(Kim WO et al. 2009)(Komericki P et al. 2012)

BoNT A exerts its effect by cleaving the SNAP-25 protein, thereby inhibiting the presynaptic fusion and binding acetylcholine vesicles to nerve endings. This process prevents the release of acetylcholine and subsequently blocks neural stimulation of the sweat glands, leading to a marked reduction in sweat production within the treated area. The duration of reduced sweating ranges from six to 24 months.(Brackenrich J et al. 2022)

BoNT A is administered via intradermal injection, ensuring targeted action on the sweat glands. The injection depth varies depending on the anatomical site, with the dermal-subcutaneous junction in the axillary region reaching approximately 2 mm, while in the plantar region, it extends to 4.5 mm. The Minor's test (starch-iodine) or Ponceau Red staining may be utilized to delineate the affected area accurately. The number of injections is determined by the severity of symptoms and the surface area requiring treatment, with injection volumes typically ranging from 0.1 to 0.2 mL.

Higher injection volumes may lead to diffusion beyond the targeted area, potentially resulting in unintended denervation. Adverse effects are generally mild, including pain, hematoma, bruising, headache, myalgia, pruritus, and urticaria. Additionally, compensatory sweating occurs in approximately 5% of patients. A reduction in sweating is usually observed within 7 to 10 days post-treatment and persists for approximately 6 to 10 months. Following BoNT A injection into the axillary region, patient satisfaction rates range from 66% to 100%.(Nawrocki S et al. 2020)

The primary drawbacks of BoNT A therapy include its high cost and the necessity for repeated treatments to maintain efficacy.(Brackenrich J et al. 2022) Isla-Tejera B et al. compared the cost of treating hyperhidrosis with endoscopic thoracic sympathectomy versus BoNT A over one and five years, concluding that the cost of BoNT A treatment was higher than that of surgical intervention.(Isla-Tejera B et al. 2013)

BoNT A provides symptomatic relief by inhibiting sweat gland activity but does not address the underlying cause of hyperhidrosis. Once treatment is discontinued, symptoms typically recur. Severe hyperhidrosis significantly impairs quality of life, affecting both mental and physical well-being. Patients frequently experience stress, embarrassment, and social or professional difficulties, further diminishing their overall well-being.(Brackenrich J et al. 2022)

## **10. Conclusions**

Botulinum toxin therapy has demonstrated efficacy in the management of various conditions beyond the scope of aesthetic medicine. It is primarily employed as an alternative therapeutic option when first-line treatments prove ineffective. The effectiveness and therapeutic potential of BoNT are supported by numerous recommendations from regulatory agencies and scientific societies.

Although botulinum toxin is among the most potent neurotoxins known, its clinical use is associated with a relatively low incidence of adverse effects. However, its primary limitations include high costs and the requirement for frequent injections at short intervals. Further research is needed to develop cost-effective strategies to improve accessibility for a broader patient population. Additionally, efforts should focus on optimizing treatment protocols to reduce the frequency of injections or extend the duration of BoNT's therapeutic effects, thereby enhancing patient convenience and compliance.

## **Disclosure:**

**Author's contribution:**

**Conceptualization:** Adam Solarz, Karolina Oskroba

**Check:** Karolina Oskroba, Maciej Sokołowski

**Formal analysis:** Karolina Oskroba, Oliwia Cwalina

**Resources:** Karolina Oskroba, Ester Graczyk, Joanna Kryślak,

**Data curation:** Karolina Oskroba, Katarzyna Skibicka, Szymon Szabelski

**Writing - rough preparation:** Karolina Oskroba, Maciej Sokołowski

**Writing - review and editing:** Karolina Oskroba, Maciej Sokołowski, Ester Graczyk, Joanna Kryślak, Katarzyna Skibicka, Adam Solarz, Szymon Szabelski, Oliwia Cwalina,

**Supervision:** Jakub Filip Turcza

**Project administration:** Jakub Filip Turcza

**Funding Statement:** This research has not received any special funding.

**Institutional Review Board Statement:** Not applicable

**Informed Consent Statement:** Not applicable

**Acknowledgments:** This research has not received any administrative or technical support.

**Conflict of Interest Statement:** The authors declare no conflict of interest.

**All authors have read and agreed with the published version of the manuscript.**

**References:**

1. Phan K, Younessi S, Dubin D, Lin MJ, Khorasani H. Emerging off-label esthetic uses of botulinum toxin in dermatology. *Dermatol Ther.* 2022;35(1):e15205. doi:10.1111/dth.15205
2. Watson NA, Siddiqui Z, Miller BJ, Karagama Y, Gibbins N. Non-aesthetic uses of botulinum toxin in the head and neck. *Eur Arch Otorhinolaryngol.* 2021;278(11):4147-4154. doi:10.1007/s00405-021-06750-4

3. Choudhury S, Baker MR, Chatterjee S, Kumar H. Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. *Toxins (Basel)*. 2021 Jan 14;13(1):58. doi: 10.3390/toxins13010058. PMID: 33466571; PMCID: PMC7828686.
4. Hong SO. Cosmetic Treatment Using Botulinum Toxin in the Oral and Maxillofacial Area: A Narrative Review of Esthetic Techniques. *Toxins (Basel)*. 2023 Jan 17;15(2):82. doi: 10.3390/toxins15020082. PMID: 36828397; PMCID: PMC9964918.
5. Kumar R., Dhaliwal H.P., Kukreja R.V., Singh B.R. The botulinum toxin as a therapeutic agent: Molecular structure and mechanism of action in motor and sensory systems. *Semin. Neurol.* 2016;36:10–19. doi: 10.1055/s-0035-1571215.
6. Jabbari B. *Botulinum Toxin Treatment in Clinical Medicine*. Springer; Cham, Switzerland: 2017.
7. Jabbari B. *Botulinum Toxin Treatment What Everyone Should Know*. 1st ed. Springer; Berlin/Heidelberg, Germany: 2018. Chapter 2 Basics of Structure and Mechanisms of Function of Botulinum Toxin—How Does it Work? pp. 11–17.
8. Pescador Ruschel MA, De Jesus O. Migraine Headache. [Updated 2024 Jul 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK560787/>
9. de Vries B, Anttila V, Freilinger T, et al. Systematic re-evaluation of genes from candidate gene association studies in migraine using a large genome-wide association data set. *Cephalgia*. 2016;36(7):604-614. doi:10.1177/0333102414566820
10. Pavlovic, J. M., Buse, D. C., Sollars, C. M., Haut, S., & Lipton, R. B. (2014). *Trigger Factors and Premonitory Features of Migraine Attacks: Summary of Studies*. *Headache: The Journal of Head and Face Pain*, 54(10), 1670–1679. doi:10.1111/head.12468
11. Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Koçak E, Sen ZD, Dalkara T. Spreading depression triggers headache by activating neuronal Panx1 channels. *Science*. 2013 Mar 01;339(6123):1092-5.
12. Matsuda M, Huh Y, Ji RR. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. *J Anesth*. 2019 Feb;33(1):131-139. doi: 10.1007/s00540-018-2579-4. Epub 2018 Nov 17. PMID: 30448975; PMCID: PMC6813778.
13. Deen M, Hansen HD, Hougaard A, Nørgaard M, Eiberg H, Lehel S, Ashina M, Knudsen GM. High brain serotonin levels in migraine between attacks: A 5-HT4 receptor binding PET study. *Neuroimage Clin*. 2018;18:97-102.
14. Singh RBH, VanderPluym JH, Morrow AS, et al. *Acute Treatments for Episodic Migraine*. Rockville (MD): Agency for Healthcare Research and Quality (US); December 2020.
15. Ha H, Gonzalez A. Migraine Headache Prophylaxis. *Am Fam Physician*. 2019;99(1):17-24.
16. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. *Cephalgia*. 2018;38(1):1-211. doi:10.1177/0333102417738202
17. Simpson D.M., Hallett M., Ashman E.J., Comella C.L., Green M.W., Gronseth G.S., Armstrong M.J., Gloss D., Potrebic S., Jankovic J., et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. *Neurology*. 2016;86:1818–1826. doi: 10.1212/WNL.0000000000002560.
18. Bendtsen L., Sacco S., Ashina M., Mitsikostas D., Ahmed F., Pozo-Rosich P., Martelletti P. Guideline on the use of onabotulinumtoxinA in chronic migraine: A consensus statement from the European Headache Federation. *J. Headache Pain*. 2018;19:91. doi: 10.1186/s10194-018-0921-8.
19. Becker WJ. Botulinum Toxin in the Treatment of Headache. *Toxins (Basel)*. 2020 Dec 17;12(12):803. doi: 10.3390/toxins12120803. PMID: 33348571; PMCID: PMC7766412.
20. Zhang X., Strassman A.M., Novack V., Brin M.F., Burstein R. Extracranial injections of botulinum neurotoxin type A inhibit intracranial meningeal nociceptors' responses to stimulation of TRPV1 and TRPA1 channels: Are we getting closer to solving this puzzle? *Cephalgia*. 2016;36:875–886. doi: 10.1177/0333102416636843.
21. Cernuda-Morollón E., Ramón C., Martínez-Camblor P., Serrano-Pertierra E., Larrosa D., Pascual J. OnabotulinumtoxinA decreases interictal CGRP plasma levels in patients with chronic migraine. *Pain*. 2015;156:820–824. doi: 10.1097/j.pain.0000000000000119.
22. Pellesi L., Do T.P., Ashina H., Ashina M., Burstein R. Dual Therapy with Anti-CGRP Monoclonal Antibodies and Botulinum Toxin for Migraine Prevention: Is There a Rationale? *Headache*. 2020;60:1056–1065. doi: 10.1111/head.13843.

23. Blumenfeld A.M., Silberstein S.D. Response to “Modifications to the PREEMPT Protocol for OnabotulinumtoxinA Injections for Chronic Migraine in Clinical Practice”. *Headache*. 2020;60:2597–2599. doi: 10.1111/head.13996.
24. Ching J., Tinsley A., Rothrock J. Prognosis Following Discontinuation of OnabotulinumA Therapy in “Super-responding” Chronic Migraine Patients. *Headache*. 2019;59:1279–1285. doi: 10.1111/head.13630.
25. Hoffmann J., Goadsby PJ. Emerging targets in migraine. *CNS Drugs*. 2014;28(1):11-17. doi:10.1007/s40263-013-0126-2
26. Silberstein, S.D.; Blumenfeld, A.M.; Cady, R.K.; Turner, I.M.; Lipton, R.B.; Diener, H.C.; Aurora, S.K.; Sirimanne, M.; DeGryse, R.E.; Turkel, C.C.; *et al.* OnabotulinumtoxinA for treatment of chronic migraine: Preempt 24-week pooled subgroup analysis of patients who had acute headache medication overuse at baseline. *J. Neurol. Sci.* **2013**, *331*, 48–56
27. Eren OE, Gaul C, Peikert A, Gendolla A, Ruscheweyh R, Straube A. Triptan efficacy does not predict onabotulinumtoxinA efficacy but improves with onabotulinumtoxinA response in chronic migraine patients. *Sci Rep.* 2020 Jul 9;10(1):11382. doi: 10.1038/s41598-020-68149-1. PMID: 32647152; PMCID: PMC7347633.
28. Fonfria E, Maignel J, Lezmi S, Martin V, Splevins A, Shubber S, Kalinichev M, Foster K, Picaut P, Krupp J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. *Toxins (Basel)* 2018;10:208. doi: 10.3390/toxins10050208.
29. Yalinay Dikmen P, Kosak S, Ilgaz Aydinlar E, Sagduyu Kocaman A. A single-center retrospective study of onabotulinumtoxinA for treatment of 245 chronic migraine patients: survey results of a real-world experience. *Acta Neurol Belg.* 2018;118(3):475-484. doi:10.1007/s13760-018-0978-9
30. Pallapothu MR, Quintana Mariñez MG, Chakkera M, Ravi N, Ramaraju R, Vats A, Nair AR, Bandhu AK, Koirala D, Mohammed L. Long-Term Management of Migraine With OnabotulinumtoxinA (Botox) vs Calcitonin Gene-Related Peptide Antibodies (Anti-CGRP). *Cureus*. 2023 Oct 8;15(10):e46696. doi: 10.7759/cureus.46696. PMID: 38021691; PMCID: PMC10630153.
31. Malcangi G, Patano A, Pezzolla C, Riccaldo L, Mancini A, Di Pede C, Inchingolo AD, Inchingolo F, Borda IR, Dipalma G, Inchingolo AM. Bruxism and Botulinum Injection: Challenges and Insights. *J Clin Med.* 2023 Jul 10;12(14):4586. doi: 10.3390/jcm12144586. PMID: 37510701; PMCID: PMC10380379.
32. Fernández-Núñez T, Amghar-Maach S, Gay-Escoda C. Efficacy of botulinum toxin in the treatment of bruxism: Systematic review. *Med Oral Patol Oral Cir Bucal.* 2019 Jul 1;24(4):e416-e424. doi: 10.4317/medoral.22923. PMID: 31246937; PMCID: PMC6667018.
33. Lal SJ, Sankari A, Weber, DDS KK. Bruxism Management. 2024 May 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. PMID: 29494073.
34. Matusz K, Maciejewska-Szaniec Z, Gredes T, Pobudek-Radzikowska M, Glapiński M, Górná N, Przystańska A. Common therapeutic approaches in sleep and awake bruxism - an overview. *Neurol Neurochir Pol.* 2022;56(6):455-463. doi: 10.5603/PJNNS.a2022.0073. Epub 2022 Nov 29. PMID: 36444852.
35. Lobbezoo F, Ahlberg J, Raphael KG, Wetselaar P, Glaros AG, Kato T, Santiago V, Winocur E, De Laat A, De Leeuw R, Koyano K, Lavigne GJ, Svensson P, Manfredini D. International consensus on the assessment of bruxism: Report of a work in progress. *J Oral Rehabil.* 2018 Nov;45(11):837-844.
36. Ali SM, Alqtaibi AY, Aboalrejal A, Elawady DM. Botulinum toxin and occlusal splints for the management of sleep bruxism in individuals with implant overdentures: A randomized controlled trial. *Saudi Dent J.* 2021 Dec;33(8):1004-1011.
37. Shim YJ, Lee HJ, Park KJ, Kim HT, Hong IH, Kim ST. Botulinum Toxin Therapy for Managing Sleep Bruxism: A Randomized and Placebo-Controlled Trial. *Toxins (Basel)*. 2020 Mar 9;12(3):168. doi: 10.3390/toxins12030168. PMID: 32182879; PMCID: PMC7150956.
38. Da Silva Ramalho J.A., Palma L.F., Ramalho K.M., Tedesco T.K., Morimoto S. Effect of Botulinum Toxin A on Pain, Bite Force, and Satisfaction of Patients with Bruxism: A Randomized Single-Blind Clinical Trial Comparing Two Protocols. *Saudi Dent. J.* 2023;35:53–60. doi: 10.1016/j.sdentj.2022.12.008
39. Ondo W.G., Simmons J.H., Shahid M.H., Hashem V., Hunter C., Jankovic J. Onabotulinum Toxin-A Injections for Sleep Bruxism: A Double-Blind, Placebo-Controlled Study. *Neurology*. 2018;90:e559–e564. doi: 10.1212/WNL.0000000000004951.

40. Yurtutan M.E., Tütüncüler Sancak K., Tüzüner A.M. Which Treatment Is Effective for Bruxism: Occlusal Splints or Botulinum Toxin? *J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg.* 2019;77:2431–2438. doi: 10.1016/j.joms.2019.06.005.
41. Sammons JE, Khachemoune A. Axillary hyperhidrosis: a focused review. *J Dermatolog Treat.* 2017 Nov;28(7):582-590.
42. Strutton DR, Kowalski JW, Glaser DA, Stang PE. US prevalence of hyperhidrosis and impact on individuals with axillary hyperhidrosis: results from a national survey. *J Am Acad Dermatol.* 2004 Aug;51(2):241-8.
43. Martina E, Diotallevi F, Radi G, Campanati A, Offidani A. Therapeutic Use of Botulinum Neurotoxins in Dermatology: Systematic Review. *Toxins (Basel).* 2021 Feb 5;13(2):120. doi: 10.3390/toxins13020120. PMID: 33562846; PMCID: PMC7915854.
44. Romero FR, Haddad GR, Miot HA, Cataneo DC. Palmar hyperhidrosis: clinical, pathophysiological, diagnostic and therapeutic aspects. *An Bras Dermatol.* 2016 Nov-Dec;91(6):716-725.
45. Brackenrich J, Fagg C. Hyperhidrosis. 2022 Oct 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. PMID: 29083676.
46. Menzinger S, Quenan S. [Evaluation and management of hyperhidrosis]. *Rev Med Suisse.* 2017 Mar 29;13(556):710-714.
47. Fujimoto T. Pathophysiology and Treatment of Hyperhidrosis. *Curr Probl Dermatol.* 2016;51:86-93.
48. Delort S, Marchi E, Corrêa MA. Oxybutynin as an alternative treatment for hyperhidrosis. *An Bras Dermatol.* 2017 Mar-Apr;92(2):217-220.
49. Chen S. Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. *Toxins (Basel).* 2012 Oct;4(10):913-39. doi: 10.3390/toxins4100913. Epub 2012 Oct 19. PMID: 23162705; PMCID: PMC3496996.
50. Perez-Bernal AM, Avalos-Peralta P, Moreno-Ramirez D, Camacho F. Treatment of palmar hyperhidrosis with botulinum toxin type A: 44 months of experience. *J Cosmet Dermatol.* 530 2005;4(3):163-166.
51. Kim WO, Kil HK, Yoon KB, Noh KU. Botulinum toxin: a treatment for compensatory hyperhidrosis 534 in the trunk. *Dermatol Surg.* 2009;35(5):833-838; discussion 838.
52. Komericci P, Ardjomand N. Hyperhidrosis of face and scalp: repeated successful treatment with 536 botulinum toxin type A. *Indian J Dermatol Venereol Leprol.* 2012;78(2):201-202.
53. Nawrocki S, Cha J. Botulinum toxin: Pharmacology and injectable administration for the treatment of primary hyperhidrosis. *J Am Acad Dermatol.* 2020 Apr;82(4):969-979. doi: 10.1016/j.jaad.2019.11.042. Epub 2019 Dec 4. PMID: 31811879.
54. Isla-Tejera B, Ruano J, Alvarez MA, Brieva T, Cárdenas M, Baamonde C, Salvatierra A, Del Prado-Llergo JR, Moreno-Giménez JC. Economic evaluation of botulinum toxin versus thoracic sympathectomy for palmar hyperhidrosis: data from a real-world scenario. *Dermatol Ther (Heidelb).* 2013 May 14;3(1):63-72. doi: 10.1007/s13555-013-0025-y. PMID: 23888256; PMCID: PMC3680634.