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ABSTRACT
Introduction: Physical activity is associated with a reduced risk of chronic diseases,
including cardiovascular disease, obesity, type 2 diabetes, and cognitive decline. Exercise
supports brain health and cognitive function, with potential benefits for neuroplasticity—the
brain's ability to reorganize in response to demands and injury.
Materials and methods: A literature review was conducted using Pubmed and Google
Scholar database with following search terms: “physical activity”, “neurogenesis”, “BDNF”,
“neuroplasticity” and “cognitive function”.
State of knowledge: Neuroplasticity, the brain’s ability to reorganize and form new
connections in response to learning or injury, is supported at the molecular level by various
factors (e.g. BDNF or VEGF). Aerobic and resistance exercises have been linked to increased
gray and white matter volumes, especially in regions critical to memory and executive
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function. These effects are valuable in preventing cognitive decline and improving mental
health.
Current research has also shown that the impact of exercise on neuroplasticity can be
augmented through consistent, high-intensity activity, which supports neuroplasticity through
hormone modulation. Furthermore, emerging technologies like neuroimaging have advanced
our understanding of the mechanisms underlying exercise-induced brain adaptation, which
holds promise for personalized interventions.
Conclusions: This review focuses on the preventive and therapeutic potential of physical
activity for neurological health, highlighting the need for continued research into how
different forms of physical activity can influence neuroplasticity.

Keywords: neuroplasticity, cognitive functions, mental health, physical activity

INTRODUCTION
Numerous studies indicate that physical activity plays a significant role in lowering

the risk of various chronic diseases and conditions. Regular exercise has been associated with
a decreased incidence of cardiovascular diseases, obesity, type 2 diabetes, cognitive decline,
and other health issues, highlighting its broad benefits for overall health and longevity [1].

Evidence also suggests that physical exercise is an effective means of supporting brain
health and cognitive function, both under normal conditions and in the presence of disease.
Exercise may even offer protection against cognitive decline and neurodegenerative disorders
[2].

The capacity of the nervous system to modify its organization to altered demands and
environments has been termed “neuroplasticity”, which manifests in several contexts,
including the acquisition of new skills, following injury to the nervous system, and as a
consequence of sensory deprivation. [3]. Biochemical processes in synapses and other
neuronal compartments underlie neuroplasticity. This basic molecular level of brain plasticity
covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating
in many coordinated and interacting signal and metabolic processes, their modulation forming
a molecular basis for brain plasticity [4].

Recent studies demonstrate the positive impact of physical exercise on structural and
functional changes in the brain, therefore this area has garnered increasing attention within the
research community. Physical activity broadly impacts brain function and metabolism;
according to research, it increases the production of the neurotrophin BDNF, stimulates
neurogenesis in the hippocampus, and improves cognitive abilities. [5,6,7]. Other findings
indicate that white matter areas susceptible to aging maintain some level of plasticity that can
be stimulated through aerobic exercise; consequently, physical activity may play a role in the
prevention of dementia [8]. In another study, it was observed that moderate intensity cycling
may enhance neuroplasticity in people with stroke. [9].

MATERIALS AND METHODS
In this study, an interdisciplinary approach was utilized, integrating a comprehensive

literature review with empirical data concerning the effects of physical activity on brain
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function and neuroplasticity. Searches were conducted in databases such as PubMed, NCBI
and Google Scholar using pertinent keywords, including “physical activity”, “neurogenesis”,
“BDNF”, “neuroplasticity” and “cognitive function”.

The empirical data analyzed were sourced from clinical and experimental studies,
which were critically assessed based on their methodology, participant populations, and
therapeutic outcomes. Additionally, a comparative analysis was performed to evaluate the
efficacy and safety of both traditional and innovative interventions related to physical activity
and their implications for neurological health.

STATE OF KNOWLEDGE
1. Neuroplasticity

The first mentions of neuroplasticity date back to the late 19th century when, in 1894,
Spanish Nobel laureate Santiago Ramony Cajal used the term "plasticity" for the first time.
Today, there is no clear definition of neuroplasticity; however, it is generally regarded as a
broad set of changes in the nervous system throughout the human life or as a response of the
nervous system to endogenous or exogenous factors, it involves modifications in its
architecture, connectivity, and function [10, 11].

Synaptic neuroplasticity is particularly evident in hippocampal neurons. Long-term
potentiation (LTP), which involves repetitive stimulation, leads to the activation of multiple
synapses, strengthening of weak stimuli, increased sensitivity of synapses to subsequent
stimuli, and structural remodeling of both pre- and postsynaptic elements. The opposite
process, long-term depression (LTD), results in reduced synaptic excitability and a loss of
dendritic spines. Notably, this process can be reversed by the mentioned LTP. Despite the
distinct effects of LTP and LTD, their mutual influence allows for continuous refinement of
inter-neuronal connections and plays a role in shaping cognitive processes [12].

Structural neuroplasticity encompasses the previously mentioned synaptic remodeling,
which can also be regulated by astrocytes. These cells secrete various factors, such as
(Interleukin-1) IL-1, IL-6, IL-8, (Tumor Necrosis Factor α) TNFα, and Nuclear Factor kappa-
light-chain enhancer of activated B cells) NFκB, protect neurons from excitotoxicity by
maintaining low concentrations of glutamate outside the synapse and control the development
of dendritic spines [13].

One of the most commonly observed examples of neuroplasticity occurs during
ischemic stroke. In the penumbra region, where ischemic cells remain alive, reperfusion
within an appropriate time frame may restore their function. Neural cells surrounding the
infarct area can reorganize by forming new synaptic connections. Additionally, cortical
adaptation to new post-stroke conditions may involve other brain regions not affected by the
stroke, which can take over functions previously managed by the ischemic area [14].

Neuroplasticity is also significant in the context of mental health. In individuals
suffering from depression, a reduction in gray matter volume is observed, particularly in the
anterior cingulate cortex and hippocampus regions, which correlates with reduced
neuroplasticity. Among patients receiving antidepressant treatment, an increase in functional
connectivity within the prefrontal cortex and subcortical structures has been observed.
Importantly, this enhanced connectivity is associated with an alleviation of disease symptoms.
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Short-term, intense stress, accompanied by high cortisol levels, can result in losses in specific
brain regions, whereas prolonged stress can lead to the development of new synapses and
dendritic processes within the amygdala, which reinforces the tendency to focus on negative
emotions [15].

2. The physiology of exercise-induced neuroplasticity
Neurotrophins are proteins that ensure the development and function of neurons. This

group includes the Nerve growth factor (NGF), neurotrophins-3 (NT-3), NT-4, NT-5, NT-6
and the Brain-derived neurotrophic factor (BDNF) [16]. Throughout embryonic and postnatal
development, neurotrophins play a crucial role in neuronal survival, differentiation, and
specification. In the adult nervous system, these proteins help regulate or initiate rapid
synaptic responses and alter the function of synapses and the structure of neurites. As a result,
they impact cognition, behavior, learning, and memory formation [17,18].

BDNF influences neurogenesis, by increasing neuronal growth and modulating
dendritic growth patterns, thus achieving greater dendritic length [16]. Furthermore BDNF
affects synaptic plasticity through increased NMDA levels, higher intracellular calcium
storage [19] and decreased blockage of magnesium related NMDA receptors [20].
Additionally BDNF acts as a protector of neuronal cells [16].

Engaging in exercise forces the body to adapt to the new performance requirements.
This process also affects cognitive function via angiogenesis and neurogenesis. Jeremy J.
Walsh and Michael E. Tschakovsky reported that performing physical activity stimulates the
release of BDNF [21], therefore promoting brain tissue repair and remodeling [22]. What is
more, physical exercise contributes to rise in Vascular endothelial growth factor (VEGF)
levels in the hippocampus [23]. On top of that, exercise boosts the release of Insulin-like
Growth Factor 1 (IGF-1) into the bloodstream. Elevated levels of IGF-1 in circulation result
in higher concentrations in the brain, as this factor can cross the blood-brain barrier. In
addition to working alongside other growth factors, IGF-1 promotes re-innervation and the
repair of olivo-cerebellar pathways, enhances vascularization, and amplifies synaptic
efficiency and neural communication [24,25,26].Physical activity also ensures increased
cerebral blood supply by raising the nitric oxide production, hence proving its significance in
neuroplasticity [25].

3. Brain structure changes as a product of exercise
Physical activity, especially aerobic and resistance training, exerts a substantial

influence on brain structures, resulting in a variety of adaptive changes at both the
macrostructural and microstructural levels [27,28]. It affects not only specific brain structures
but also the overall volume and organization of gray and white matter [29,30,31]. Physical
exercise promotes synaptogenesis, leading to an increase in neural connections and improving
the efficiency of information processing [32].

In the hippocampus, which plays a key role in memory processes and the regulation of
emotional responses, neurogenesis can occur as a result of physical activity, particularly
aerobic exercise, leading to the formation of new neurons, especially in the dentate gyrus
region [33]. In studies conducted on mice, it was observed that running exercises significantly
improved spatial learning and memory capabilities by increasing the overall number of
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dendritic spines and the levels of PSD-95 and Synapsin Ia/b proteins. Additionally, there was
an observed enhancement in the colocalization of PSD-95 with neuronal dendrites (MAP-2)
and an increase in the number of astrocytes associated with PSD-95 (GFAP) within the
hippocampus of these animals [34].

Conversely, Tarkka et al. [35] In a study conducted on a group of 45 healthy male
monozygotic twins (mean age 34.5 ± 1.5 years), the authors analyzed the impact of
differences in physical activity levels on brain structures and sensory functions. The results
indicated that more physically active twins exhibited greater gray matter volume in the striatal,
prefrontal, and hippocampal regions, along with reduced volume in the anterior cingulate
cortex. These findings suggest that enhanced aerobic capacity may positively influence brain
morphology and sensory functions, particularly in regions associated with motor control and
memory functions.

Aerobic exercises, including running, swimming, and cycling, provide a range of
neurobiological benefits by increasing cerebral blood flow and enhancing neuronal nutrition
[36,37]. Regular physical activity stimulates the secretion of brain-derived neurotrophic factor
(BDNF), is essential for neurogenesis and synaptic plasticity in the hippocampus, cerebellum,
and frontal cortex. This mechanism enhances neuronal connectivity and facilitates the brain's
adaptation to novel cognitive challenges [38,39].

Although strength training primarily targets muscular strength development, it also
significantly impacts cognitive function. Research indicates that resistance training can
contribute to an increase in gray matter volume, particularly in brain regions associated with
working memory and attentional processes [30,40]. These exercises may also stimulate an
increase in IGF-1 levels, which is essential for the proper functioning of neurons and is
involved in regenerative processes within the brain [39,41]. Strength training may also
influence BDNF levels, although this effect is more pronounced with aerobic exercises [39].

4. The impact of physical activity on cognitive functions
Cognitive functions are fundamental elements in the process of perception of our

surrounding. The attention of many authors is brought by components of cognitive functions,
including executive functioning, memory, attention and thinking [42,43]. Researchers
revealed the positive correlation between improvement of cognitive functions and regular
physical activity [44, 45, 46, 47, 48 ]. Physical exercise was found not only to improve
memory among children [44] but also to increase the size of the hippocampus and protect
against its volume loss enhancing memory function in adults [46].

Some studies were conducted examining children and adolescents with ADHD
(attention deficit hyperactivity disorder) and revealed positive impact of aerobic exercises and
cognitive-engaging exercises on attention [49,50,51]. Researchers suggest that workout
promotes synthesis of BDNF (brain-derived neurotrophic factor) which is crucial for
neuroplasticity, raises the secretion of various neurotransmitters such as dopamine and
serotonin and increases blood flow in the brain. That can mitigate the symptoms of the ADHD
[49] which are inattention, hyperactivity and impulsivity [52].
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Cognitive functions can also be impaired in a great amount of mental disorders [53, 54,
55, 56, 57]. One of them is depression, currently around 350 million people on the planet
suffer from this condition [58]. Many authors emphasize that regular physical workout not
only decreases the risk of development of depression among the healthy population but also
improves the quality of life of people with such disorder. [59,60,61]. It is of great importance
that appropriately selected exercises carried out in an appropriate environment can be a useful
therapeutic tool with a fight against depression and related to it cognitive functions
impairment [59,60,62,63,55].
Some studies revealed that physical activity improves cognitive functions in other mental
health conditions such as bipolar disorder [64] and schizophrenia, having a positive impact
on attention, memory and social cognition [56].

5. Physical activity across different age groups and brain plasticity
Let us examine how physical activity across various age groups has impacted brain

plasticity. The study by Fotini Valipoous et al. [65] conducted a meta-analysis on research
concerning creativity during physical activities and its impact on cognitive and academic
outcomes. A total of 92 studies were analyzed on this topic. Physical activities can be
implemented in various ways. The study considered factors such as the diversity of activities,
their reduced reliance on technical skill acquisition, instruction, or demonstration, their
occurrence in open spaces with props, and their inclusion of peer interactions. Interestingly,
the results did not show an association between physical activities and greater positive
impacts on executive functions, academic achievement, or fluid intelligence. Although the
findings may seem somewhat disappointing, it is worth noting that the analyzed studies
lacked diversity in their methodologies. Therefore, we should await more robust studies in
this field.

An interesting study is the prospective, single-center, randomized PASTEC trial, [66]
which uses a cross-over design to compare the effects of two types of training in children with
cancer: pure physical training versus a combination of physical and attentional training.
Unfortunately, despite promising results in the pre-cross-over phase, the primary endpoint
was not achieved in the post-cross-over phase. Nonetheless, significant improvements were
observed in areas such as anxiety, emotional control, organizational skills, and motor deficits.
No significant differences were found between the pure physical training group and the
physical-attentional group.

In the context of adult populations, a notable study conducted by Rongrong Chen et al.
[67] investigated the effects of physical activity on individuals with insomnia. At the level of
brain circuitry, patients suffering from insomnia exhibited reduced connectivity within the
extensive motor network. Following a structured exercise intervention, participants in the
exercise group demonstrated a statistically significant improvement in self-reported sleep
quality compared to those in the waitlist control group. Furthermore, there was a significant
increase in functional connectivity between the motor network and the cerebellum in the
exercise group. Notably, the study identified significant correlations between enhancements in
subjective sleep measures and alterations in connectivity within the motor network,
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underscoring the potential role of physical activity in modulating brain function and
improving sleep outcomes in this population.

Cognitive inhibition is a vital aspect of our lives, encompassing the ability to regulate
thoughts, cognitive responses, and reactions to cognitive stimuli. Motor inhibition helps us for
example stop an ongoing movement actions [68], allowing for the adaptation or stopping of
actions to suit the situation or goal. In cognitive terms, inhibition blocks the spread of neural
impulses between brain areas necessary to complete a specific task [69], enhancing focus and
supporting goal-directed behaviors.

In a study conducted by Yael Netz et al. [70], adults aged 40 to 60 were randomly
assigned to either an experimental group or a control group. One to two weeks after the initial
assessment, participants were tasked with completing a three-limb (3-Limb) inhibition task
and a verbal version of the Stroop test, both before and after engaging in moderate-intensity
acute aerobic exercise (for the experimental group) or resting (for the control group). Both
groups demonstrated a similar level of improvement from the initial assessment to the pre-test.
However, the experimental group exhibited a notable trend toward improvement in both
cognitive and motor tasks between the pre-test and post-test, although this was not statistically
significant. Additionally, exploratory analysis revealed significant differences favoring the
experimental group among highly fit participants on the 3-Limb task. A significant correlation
was identified between the inhibition conditions, linking choices in motor inhibition to
incongruent colors/words in cognitive inhibition, particularly regarding the improvements
observed after exercise. It appears that individuals with higher fitness levels benefit more
from exercise compared to those with lower fitness levels. Moreover, performance on
behavioral tasks representing both motor and cognitive inhibition is interrelated. This
observation suggests that fitness levels and acute exercise play a role in the connection
between cognitive and motor inhibition.

An interesting study called "ACTIVE" [71] was conducted among seniors aged 65 and
older. The aim was to evaluate the effectiveness of interventions focused on memory,
reasoning, and visual processing speed in maintaining cognitive health and functional
independence in older adults. Notably, individuals were excluded from the study if they had
significant cognitive impairments (a score of less than 23 on the Mini-Mental State
Examination), functional limitations (dependence or regular assistance with daily activities as
measured by the Minimum Data Set Home Care), self-reported diagnoses of Alzheimer’s
disease, stroke within the past year, or certain cancers, current chemotherapy or radiation
therapy, or poor vision, hearing, or communication skills that could interfere with the
interventions or outcome assessments.

A total of 2,802 participants were enrolled, with an average age of 74 years, an
average education level of 13 years, 74% identifying as white, 26% as African American, and
76% being women [71]. Each intervention led to immediate improvements in the targeted
cognitive abilities, and these benefits were sustained for five years. The training produced
effects specific to each skill. The most significant improvements were observed in the group
focused on processing speed, followed by those in the reasoning and memory groups. Each
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type of training yielded its greatest effects right after the intervention, although there was
some decline over time. Moreover, older adults who completed cognitive processing speed
training were 40% less likely to stop driving in the subsequent three years and experienced
50% fewer traffic accidents over six years compared to the control group!

6. The importance of regularity and type of exercise for neuroplasticity
The effectiveness of physical exercise in preventing neurodegeneration and

maintaining neuroplasticity heavily depends on the regularity of activity. Regular training
reduces chronic oxidative stress, supports mitochondrial biogenesis, regulates levels of pro-
inflammatory cytokines in the hippocampus, and promotes the expression of
neurotransmitters (serotonin and dopamine) as well as neurotrophic factors like BDNF and
GDNF [72]. Regular aerobic exercise increases hippocampal volume, which is critical for
memory and learning abilities [73]. Numerous studies seem to confirm the significant role of
exercise regularity in promoting neuroplasticity. In one such study, Mingming Zhao et al.
describe significant improvements in balance, motor disturbances, and cardiac function
among Parkinson’s disease patients who engaged in exercises like swimming and spinal
stretching for 30 minutes daily over a year, compared to a control group that did not exercise
regularly [74].

Similarly, Kristine Hoffman et al. conducted a randomized study of 200 patients with
mild Alzheimer’s disease, assigning them to a supervised aerobic exercise group (60-minute
sessions three times a week for 16 weeks on a cycle ergometer, elliptical trainer, or treadmill)
and a control group. Exercising patients scored better on the NPI-Q test, assessing
neuropsychiatric functions. In a subgroup of patients who exercised more intensively, there
was a significant improvement in the SDMT test, which evaluates cognitive functions,
compared to baseline and the control group [75]. These findings highlight the importance of
maintaining a training frequency of at least several times per week for a period no shorter than
a few months.

Hoffman’s study also addresses another critical aspect of physical exercise in
neuroplasticity: intensity and duration. The study defined the higher-intensity group as those
attending over 80% of sessions and exercising at 70-80% of maximum heart rate (HR) [75].
This and several other studies suggest greater benefits from maintaining regular physical
activity at an intensity between 70% and 80% of maximum HR, lasting from 30 minutes to an
hour daily [73, 74, 75].

Aerobic training is undoubtedly at the forefront of physical activities impacting
neuroplasticity. Aerobic exercises improve cerebral blood flow, directly stimulating the
production of BDNF, a key factor in learning and memory processes [76, 77]. The undeniable
dominance of aerobic exercises over other training forms is further confirmed by studies like
the one by Arthur F. Kramer et al., who compared 24 adults aged 60 to 75 with previously
sedentary lifestyles, randomly assigning them to aerobic (walking) or anaerobic (stretching
and toning) exercises, performed regularly over six months. They found that those in the
aerobic group showed a significant improvement in tasks requiring executive control
compared to the anaerobic group [78].
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Nonetheless, regular anaerobic exercise also provides benefits, such as stimulating the
production of hormones like testosterone and IGF-1, which influence neuroplasticity by
enhancing cell proliferation and preventing apoptosis [79, 80]. A study by Ricardo S.
Cassilhas et al. demonstrated improvements in memory performance and verbal concept
formation among 62 older men aged 65 to 75 who participated in moderate- or high-intensity
resistance training three times per week for six months [81].

Considering different types of physical activities, the distinction between team and
individual sports is noteworthy. Physical activity from each spectrum influences
neuroplasticity, although team sports affect it somewhat differently. Torbjörn Vestberg et al.
presented an interesting perspective on cognitive function development by analyzing football
players. They observed superior executive function skills in athletes of this sport compared to
non-team-sport participants. Such skills may translate to greater overall adaptive cognitive
abilities compared to those practicing individual sports [82].

7. Sports as a component of neuroplastic therapy
Low physical activity throughout life may increase the risk of brain diseases such as

stroke, Alzheimer’s disease, and Parkinson’s disease [83]. Therefore, in the context of central
nervous system diseases, prevention through regular physical activity is crucial. The
American Heart Association (AHA) recommends regular aerobic exercise as part of both
prevention and treatment for stroke [84].

Rehabilitation is thus one of the main therapeutic methods for patients recovering
from stroke. In addition to aerobic exercises, it includes task-oriented therapy as well as
isometric, isokinetic, and isotonic training [85]. Rehabilitation is essential for minimizing the
effects of stroke, and patients who undergo regular, professional therapy after the acute phase
of a stroke typically recover more quickly. A study by Winstein et al. found that participation
in an aerobic exercise program leads to improvements in both motor and cognitive functions
in post-stroke patients [86].

Positive effects of aerobic exercise are also observed in patients following a
concussion. In a study by John J. Leddy et al., the use of aerobic exercises as therapy helped
improve CO₂ sensitivity, often impaired in this type of injury, leading to normalization of
PaCO₂, exercise ventilation, and exercise tolerance [87].

Furthermore, a study by Gąsior et al. demonstrated that strength training can be an
effective rehabilitation method for adults with cerebral palsy, which may also be relevant in
the context of post-stroke rehabilitation [88].

Physical activity also contributes to a statistically significant improvement in cognitive
function in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, as well as in psychiatric disorders like depression and schizophrenia
[74,75,89].

8. The future of research on neuroplasticity and sports
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The future of research on neuroplasticity in relation to sports is poised for significant
advancements, particularly through the integration of modern technologies and methodologies.
Neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI), Diffusion
Tensor Imaging (DTI), and Positron Emission Tomography (PET) are becoming increasingly
essential in understanding the brain's adaptive responses to physical activity. These imaging
modalities allow researchers to visualize changes in brain structure and function associated
with neuroplasticity, providing insights into how exercise can enhance cognitive and motor
performance [90,91].

Moreover, the incorporation of biomarkers and electroencephalography (EEG) will
facilitate a deeper understanding of the physiological changes that accompany neuroplastic
adaptations. Biomarkers can help identify individuals who are more likely to benefit from
specific training regimens, while EEG can provide real-time data on brain activity during
physical exertion, thereby linking cognitive processes with motor functions [90,92].

In terms of health prevention and training optimization, emerging technologies such as
virtual reality (VR) and wearable devices are transforming how athletes train and recover. VR
can simulate various training environments, allowing for controlled studies on how different
stimuli affect neuroplasticity.

Wearable technology provides continuous monitoring of physiological parameters,
enabling personalized training adjustments based on real-time data [93,94]. Additionally,
mobile applications can deliver tailored exercise programs that promote neuroplastic changes
through structured physical activity.

Despite these advancements, the relationship between physical activity and
neuroplasticity remains an area of exploration with considerable potential. Current research
indicates that while exercise induces beneficial neuroplastic changes, the underlying
mechanisms are not fully understood. This suggests a need for further studies to elucidate how
different forms of physical activity influence brain plasticity across various populations.
Understanding these mechanisms will be crucial for optimizing training protocols and
maximizing the benefits of neuroplasticity in sports settings [92,95].

CONCLUSIONS
Physical activity plays a vital role in promoting neuroplasticity and cognitive health,

offering protective effects against neurological disorders and mental health conditions.
Aerobic and resistance exercises, particularly when regular and moderately intense, support
brain adaptation through increased neurogenesis, synaptic plasticity, and neurotrophic factor
expression. These changes enhance brain structure and function, particularly in memory and
executive regions. Advanced technologies, including neuroimaging, provide insight into
exercise-induced brain adaptations, opening paths for personalized therapies. Despite progress,
further research into how different forms of physical activity can influence brain functions is
needed to optimize exercise protocols for neuroplasticity across diverse populations.

In summary, structured physical activity represents an effective, non-invasive
approach to preserving cognitive health and enhancing resilience against the effects of brain
aging and neurodegenerative diseases.
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