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Abstract 

Introduction and Purpose: 

The human gut microbiota, comprising a diverse consortium of approximately 100 trillion 

microorganisms, is integral to maintaining health and modulating disease processes. Its 

development begins at birth, influenced by maternal microbiota and environmental factors. 

Dysbiosis, defined as an imbalance in the gut microbial composition, has been implicated in a 

range of gastrointestinal pathologies, including colorectal cancer (CRC). This review endeavors 
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to elucidate the relationship between gut microbiota and CRC, examining the impact of specific 

bacterial taxa on the pathogenesis CRC.  

Description of the State of Knowledge: 

Gut microbiota encompasses a multitude of microbial species, with their composition differing 

along the gastrointestinal tract. Healthy gut microbiota performs essential functions such as 

pathogen protection, metabolic processes, and immune system modulation. Factors like diet 

and genetics significantly influence microbial composition. Dysbiosis contributes to CRC 

through inflammation, genotoxin production, and immune modulation. Specific bacteria, such 

as Fusobacterium nucleatum and Bacteroides fragilis, are associated with CRC. Mechanisms 

of carcinogenesis include bacterial adherence, invasion of epithelial cells, and activation of pro-

inflammatory pathways. 

Summary: 

Understanding the gut microbiota's role in CRC highlights the importance of maintaining a 

balanced microbiome for cancer prevention. Dietary interventions promoting beneficial 

bacteria and reducing harmful species could mitigate CRC risk. Further research should 

prioritize the identification of microbial biomarkers for early CRC detection and the 

development of therapeutic strategies aimed at modulating the gut microbiota. These efforts 

will enhance CRC prevention and treatment modalities. 

 

 

Keywords: gut microbiota; colorectal cancer; dysbiosis; bacteria 

 

 

 

Introduction 

 

Human gut microbiota comprises an estimated 100 trillion microorganisms, 

encompassing bacteria, viruses, and fungi [1,2]. Interindividual differences in the gut 

microbiota are consistent, initially acquired during infancy from the mother's skin, vagina, and 

feces, and maturing primarily within the first two years of life. Microbiota development results 

from interactions between host physiological processes and environmental microorganisms [3]. 

Establishing a diverse and balanced microbiota early in life is crucial for the development and 
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maturation of a functional immune system [4]. The intestinal microbiota can be classified into 

two categories: beneficial bacteria and opportunistic bacteria capable of causing infections. 

Beneficial microorganisms include genera such as Lactobacillus, Bifidobacterium, 

Enterococcus, and Propionibacterium, whereas the opportunistic group comprises Bacteroides, 

Bacilli, Clostridia, Enterobacteria, Actinobacteria, Peptococci, Staphylococci, and Streptococci 

[5,6]. Interestingly, alterations in the gut microbiota can result in dysbiosis, which has been 

linked to the pathogenesis of gastrointestinal disorders, including irritable bowel syndrome 

(IBS), and colorectal cancer (CRC) [2,7].  

CRC remains a significant global health burden, with its incidence and mortality rates 

varying across regions and populations [8]. According to GLOBOCAN 2022 CRC is the third 

most common cancer diagnosed in men and women worldwide, with more than 1.9 million new 

cases per year. In addition, it ranks in second place regarding mortality, with 904 019 deaths 

noted in 2022 [9]. It was proven that the etiology of CRC involves a combination of hereditary 

and environmental risk factors [10]. The range of heritability of CRC varies from 12% to 35% 

[11].  

As it comes to risk factors, substantial evidence indicates that alcohol consumption, 

smoking, higher consumption of animal-derived foods, and increased body weight elevate the 

overall risk of disease [12,13]. On the other hand, calcium supplements intake, whole grains, 

fiber, and dairy products, alongside engagement in physical activity, are regarded as protective 

measures [13]. It was also suggested that infection with certain bacterial species, including 

Fusobacterium nucleatum and Bacteroides fragilis, may elevate the risk of CRC [14,15].  

This review aims to elucidate the relationship between gut microbiota and CRC, 

examining the impact of specific bacterial species on CRC pathogenesis. 

 

Material and methods 

The study was based on a literature review and analysis of publications available on 

PubMed and Google Scholar platforms. The research was conducted using a combination of 

keywords such as: “gut microbiota”, “colorectal cancer”, “dysbiosis” and “bacteria”. We 

focused on full-text articles that addressed issues related to the subject of this review.  

 

Intestinal microbiota composition 
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The human gastrointestinal (GI) tract microbiota consists approximately 1500 species, 

distributed in more than 50 different phyla [16]. In a single individual, 150 to 170 bacterial 

species predominate, benefiting from the nutrient-rich, warm environment of the gut while 

performing protective, metabolic, and structural functions [17,18]. It was reported that the gut 

microenvironment primarily supports the rise of bacteria from seven predominant phyla: 

Firmicutes, Bacteroidetes followed by Actinobacteria, Fusobacteria, Proteobacteria, 

Verrucomicrobia, and Cyanobacteria. This makes up to 90% of the total bacterial population in 

humans [19]. Most species within the Bacteroidetes phylum belong to the genera Bacteroides 

and Prevotella. In the Firmicutes phylum, species such as Clostridium clusters IV and XIVa, 

including genera Clostridium, Eubacterium, and Ruminococcus, are predominant. Additionally, 

the human gut has been reported to contain the hydrogen-consuming methanogen 

Methanobrevibacter smithii and the halophilic archaea Haloferax alexandrinus and Haloferax 

massiliensis [20]. 

The GI tract is functionally and anatomically divided into the stomach, small intestine, 

and large intestine (LI). Each compartment’s distinct microenvironment and physiochemical 

barriers selectively favor the growth of specific microbiota. Previously, the stomach was 

assumed to be sterile and resistant to bacterial development due to a bactericidal barrier, bile 

acid reflux, thick mucus layer, and gastric peristalsis [21]. In 1981, the Lancet revealed the 

presence of numerous acid-resistant bacterial strains in the stomach, including Streptococcus, 

Neisseria, and Lactobacillus. Robin Warren and Barry Marshall discovered Campylobacter 

pyloridis in 1982, which was then renamed Helicobacter pylori. More than 65% of stomach 

phylotypes originated in the mouth. These mouth-derived bacteria, such as Veillonella, 

Lactobacillus, and Clostridium, were discovered to be acid-resistant and transitory [21,22]. In 

a healthy human stomach, five major phyla are typically present: Firmicutes, Bacteroidetes, 

Actinobacteria, Fusobacteria, and Proteobacteria, with predominant bacterial genera including 

Prevotella, Streptococcus, Veillonella, Rothia, and Haemophilus [23]. 

The small intestine is separated into three sections: the duodenum, the jejunum, and the 

ileum. Bile acids, pancreatic secretions, and antimicrobial agents characterize the duodenum 

milieu, in which quicker food transit and lots of oxygen restrict bacterial density (103–4 CFU/ml) 

and variety. In the duodenum, Firmicutes and Actinobacteria are the predominant phyla. The 

jejunum primarily supports the growth of Gram-positive aerobes and facultative anaerobes, 

such as Lactobacilli, Enterococci, and Streptococci [24]. 
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In the large intestine, anaerobes outnumber aerobes by a factor of 100 to 1000. Bacterial 

density reaches up to 10^12 colony-forming units (CFU) per milliliter, with Firmicutes and 

Bacteroidetes being the dominant phyla [25]. The ratio of these two phyla can vary at different 

life stages and under various pathophysiological conditions, serving as a predictive marker of 

health and disease [26]. In the LI lumen, bacterial genera such as Bacteroides, Bifidobacterium, 

Streptococcus, Enterobacteriaceae, Enterococcus, Clostridium, Lactobacillus, and 

Ruminococcus predominate, whereas Clostridium, Lactobacillus, Enterococcus, and 

Akkermansia are associated with the mucosa. Additionally, certain pathogens, including 

Campylobacter jejuni, Salmonella enterica, Vibrio cholerae, Escherichia coli, and Bacteroides 

fragilis, may be present in the LI in lower abundances [27]. 

Functions of microbiota 

 

The formation of the human gut microbiota begins during early stages of pregnancy. It 

is essential for maintaining normal physiological functions of the host, but also synthesizes 

various metabolic products that can exert either beneficial or detrimental effects on human 

health through host interactions. The gut microbiota establishes and reproduces on the surface 

of the intestinal mucosal surfaces, forming a stable ecosystem that prevents the infiltration of 

pathogenic germs [2].  

The gut microbiota fulfills a multitude of crucial functions within the human body. It 

supports protection against pathogens by colonizing mucosal surfaces and producing various 

antimicrobial substances, thereby enhancing the immune system [28]. Furthermore, it has a 

vital function in digestion and converting nutrients into biologically active compounds. The 

bacteria are capable of metabolizing indigestible carbohydrates such as cellulose, 

hemicelluloses, resistant starch, pectin, oligosaccharides, and lignin to create short chain fatty 

acids (SCFAs) including acetic, propionic, and butyric acids [29]. Firmicutes, Bacteroidetes, 

and some anaerobic gut bacteria are the primary producers of these metabolic products [30]. 

Moreover, regulates the proliferation and differentiation of epithelial cells, modulates insulin 

resistance and secretion [31,32]. The gut microbiota plays an essential part in preserving human 

health, affecting not just the GI tract but also other organs such as the brain, liver, and pancreas 

[33,34]. It influences the gut-brain axis, thereby affecting the patients’ psychological and 

neurological functions [35]. Therefore, gut microbiota plays a pivotal role in maintaining 

intestinal physiology and overall health. 
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Factors affecting gut microbial composition 

Diet 

 The intestinal microbiota is integral to health and disease, with its composition 

influenced by both environmental and host genetic factors. There are several factors that 

significantly influences the regulation of gut microbiota. This is due to promoting the growth 

or decline of certain microbial species, as well as by modifying the metabolites produced within 

the gastrointestinal environment [36]. From birth, dietary inputs are pivotal in forming the 

infant gut microbiota, adapting to shifts in nutrient availability [18]. Furthermore, feeding 

methods profoundly impact the microbial composition of infant gut microbiota [37]. 

Interestingly, infants fed with breast milk tend to have a higher prevalence of Actinobacteria 

and lower levels of Firmicutes and Proteobacteria. Conversely, infants who are formula-fed 

tend to show an increase in populations of Clostridia, Streptococci, Bacteroides, and 

Enterobacteria [38].  

As it comes to animal-based diet, research has demonstrated that dietary habits 

significantly influence gut microbiome diversity. Evidence suggests a link between dietary-

induced alterations in bacterial composition and specific diseases, particularly those 

characterized by chronic low-grade inflammation, such as type II diabetes [39,40]. Diets high 

in animal proteins are associated with elevated levels of Bacteroides spp., Alistipes spp., and 

Bilophila spp., alongside a reduction in beneficial bacteria, including Lactobacillus spp., 

Roseburia spp., and Eubacterium rectale [40]. Mouse studies have revealed that high-fat and 

high-sugar diets caused a decrease in Bacteroidetes, while increasing Firmicutes and Mollicutes 

[41]. Zhang et al. reported significant reductions in lactic acid and Enterococcus in mice fed 

high-fat diets [42]. Further investigations in rodent models confirmed shifts in gut microbiota, 

particularly increased levels of Enterobacteriaceae, Escherichia, Klebsiella, and Shigella in 

high-fat diet groups [43]. Recent research indicates that diets rich in animal and saturated fats 

can significantly impact gut microbiota composition. These dietary patterns are associated with 

increased levels of lipopolysaccharides (LPS) and trimethylamine-N-oxide (TMAo), alongside 

a reduction in short-chain fatty acids (SCFAs) [40,44].  

However, high levels of Prevotella species have been associated with plant-based diet 

[45]. It was confirmed in the study conducted by De Filippo et al., which compared the fecal 

microbiota of children of Burkina Faso and children living in Italy. First group consumed a diet 

low in fat and animal protein but high in starch, fiber, and plant protein, and showed an 

exclusive presence of Prevotella in their gut microbiome. In contrast, European children, whose 
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diet was high in animal protein, sugar, starch, and fat, and low in fiber, did not exhibit this 

microbial profile [46]. Bacteroides, a principal enterotype and genus within the Bacteroidetes 

phylum, presents opposite dietary responses when compared to Prevotella. Its higher levels 

have been linked to long-term consumption of diets that are high in animal proteins and 

saturated fats [47].  

Interestingly, gluten free diet (GFD) may also influence the gut microbiota composition. 

It has been shown that one month of GFD diet in healthy adults was associated with decrease 

in Lactobacillus and Bifidobacterium populations, while the increase in E. coli and 

Enterobacteriaceae was noted. This led to reduction of beneficial gut bacteria and may be linked 

with bacteremia episodes [48]. In addition, healthy volunteers in study conducted by Bonder et 

al. presented a decrease of Roseburia and increase in abundance of Victivallaceae and 

Clostridiaceae [49]. 

Genetics 

 

Host genetics play a crucial role in determining species richness, individual taxa 

abundances, and variability in pathogen susceptibility. The association between the microbiome 

and genes linked to the host’s innate immune system was shown, where pattern recognition 

receptors detect intestinal microorganisms, thereby influencing microbiome composition and 

microbiome-associated diseases [50]. Zoetendal et al. found that monozygotic twins, even when 

living apart for years, exhibited high microbial profile similarity. In contrast, marital partners 

living together with similar diets did not show such similarity [51]. In addition, higher 

heritability in phyla such as Firmicutes, Actinobacteria, Tenericutes, and Euryarchaeota was 

reported, whereas the highly abundant Bacteroidetes phylum exhibited low heritability [52].  

Interestingly, the expression of 6000 genes in the colonic epithelia was in correlation 

with the gut microbiota. Researchers identified 12 allele-specific single-nucleotide 

polymorphisms (SNPs) associated with the gut microbiota, 8 of which were linked to diseases 

such as CRC, Type 2 diabetes (T2D), and obesity [53]. Turpin et al. discovered that that 

approximately one-third of fecal bacterial taxa exhibit heritability. Furthermore, 58 SNPs were 

identified in 1098 individuals, correlating with the relative abundance of 33 bacterial taxa. Four 

loci were validated in a second cohort of 463 subjects and were associated with Rikenellaceae, 

Faecalibacterium, Lachnospira, and Eubacterium [54]. The composition of the gut microbiota 

is influenced by the secretor status based on the ABH antigens and and Lewis histo-blood group 

antigens expression in the mucosa. In a study of 71 healthy individuals, 14 non-secretors 



 

9 

exhibited significantly reduced diversity and richness of bifidobacteria, specifically B. bifidum, 

B. adolescentis, and B. catenulatum/pseudocatenulatum. Conversely, several bacterial 

genotypes were more prevalent, and the richness of dominant bacteria detected by PCR-DGGE 

was higher in non-secretors compared to secretors These findings highlight that ABH secretor 

status may be a key host genetic determinant of intestinal microbiota composition [55]. Further 

evidence supports the substantial contribution of host genetics to the gut microbiome. High 

similarity in heritable taxa and functional gene categories among pigs, humans, and mice was 

observed, which indicated a consistent mechanism of host genetic influence on the gut 

microbiome across mammalian species [56].  

Gut microbiota dysbiosis and CRC 

 

Dysbiosis, characterized by compositional and functional alterations of the gut 

microbiome, contributes to the pathogenesis of various diseases, including obesity, diabetes, 

neurodegenerative disorders, and cancers [57-62]. Notably, bacterial infections can induce 

carcinogenesis. Studies have demonstrated that Helicobacter pylori colonization leads to 

persistent inflammation and gastritis, which can progress to gastric malignancy. Research has 

shown that H. pylori promotes tumorigenesis through the activation of the β-catenin signaling 

pathway [63]. Conversely, the eradication of H. pylori reduces the risk of gastric cancer, 

underscoring its role in early gastric carcinogenesis [64]. 

Several factors impacting gut microbiota are associated with the development of CRC, 

such as obesity, a diet filled with fats, smoking, and regular alcohol consumption [8]. Studies 

conducted on mice with modified immune and inflammatory reactions suggest that an 

imbalance in the gut microbiota alone might be enough for stimulating the development of 

cancer [65,66]. These findings indicate that the immune system plays a crucial role in the 

interactions between gut microbiota and CRC. Besides the influence of specific pathogens on 

carcinogenesis, the high redundancy of gut microbiota at the metagenomic level suggests that 

an imbalance in the microbial community could potentially promote the growth of cancer cells 

[67]. 

CRC has been associated with specific bacterial populations. Recent analyses of fecal 

metagenomic samples from CRC patients have identified CRC-enriched bacteria, including 

Bacteroides fragilis, Fusobacterium nucleatum, Porphyromonas asaccharolytica, Parvimonas 

micra, Prevotella intermedia, Alistipes finegoldii, and Thermanaerovibrio acidaminovorans, 

which may serve as potential diagnostic bacterial markers across different populations [68,69]. 
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Moreover, Streptococcus bovis, Helicobacter pylori, Enterococcus faecalis, and Clostridium 

septicum are among the other bacterial species contributing to CRC [70-72]. In addition, CRC 

microbiota exhibits higher species richness and reduced abundance of potentially protective 

taxa such as Roseburia [73,74]. Numerous studies prove that individuals predisposed to CRC 

exhibit a higher abundance of secondary bile acid-producing microbial species and a reduced 

presence of butyrate-producing bacteria [75].  

 

Fig. 1. Schematic representation of the intestinal microbiome (large intestine) in patients with 

CRC compared to control groups.   

 

Interestingly, colorectal carcinogenesis has several suggested pathways, some of which 

may be dependent on species. These processes involve the generation of genotoxins produced 

by bacteria, changes in microbial metabolism, modification of the host's immunological 

responses and inflammatory pathways, initiation of oxidative stress, and control of anti-

oxidative defenses [76]. The significant role of chronic inflammation as a risk factor for CRC 

has been underscored. Microbial metabolites can penetrate compromised colonic epithelial 

barriers, leveraging the host's immune response to induce inflammation, thereby promoting 

tumorigenesis [75,77]. Another researches indicates that genus of obligate anaerobic 

Fusobacterium including F. mortiferum, F. nucleatum, and F. necrophorum play pivotal role 

in contributing to tumourigenesis through an inflammatory mechanism [78,79]. 
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FadA is a crucial virulence factor for Fusobacterium nucleatum that facilitates cellular 

adhesion and invasion. It stimulates the β-catenin signaling pathway and causes CRC [80]. 

Additionally, many Escherichia coli strains linked with CRC have acquired virulence factors, 

specifically the afa and eae adhesins, which improve their ability to attach to and penetrate the 

intestinal epithelium [81,82]. Toxins might potentially trigger the development of CRC by 

influencing signaling pathways that originate from the host. Certain strains of Helicobacter 

pylori generate CagA or VacA, which have been linked to higher levels of inflammation and 

increased incidences of cancer [83]. The majority of the Gram-negative bacteria implicated in 

CRC produce cytolethal distending toxin (CDT), which is categorized as a bacterial genotoxin. 

CDT presents nuclease activity that triggers a DNA-damage response, leading to cell cycle 

arrest [84]. Additionally, CDT promotes gut colonization and increases pro-inflammatory 

molecules such NF-κB, tumor necrosis factor (TNF)-α, IL-6, and cyclooxygenase (COX) 2, all 

of which contribute to carcinogenesis [85]. 

Summary 

It was demonstrated that the gut microbiota associated with CRC differs significantly 

from that of healthy individuals.  It is important to note that cancer progression is influenced 

not only by the prevalence of individual microbial species but also by the overall metabolic 

pathways and functions of the microbiota. Potentially, gut microbiota may provide 

opportunities to identify patients likely to respond to treatment, enhance existing therapies, and 

develop novel therapeutic approaches.  
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