

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation, § 8, 2) and § 12, 1, 2) 22.02.2019. © The Authors 2026: This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Toruń, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (<http://creativecommons.org/licenses/by-nc-sa/4.0/>) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 29.11.2025. Revised: 30.12.2025. Accepted: 30.12.2025. Published: 24.01.2026.

Multivariate phenotyping of chronic kidney disease: a discriminant analysis study

Authors:

Anatoliy I. Gozhenko^{1*}, Olga B. Kvasnytska², Oleksandr B. Susla³, Igor Popovych¹, Walery Zukow⁴

¹Ukrainian Research Institute of Transport Medicine, Ministry of Health of Ukraine, Odesa, Ukraine

²Bukovinian State Medical University, Chernivtsi, Ukraine

³I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine

⁴Nicolaus Copernicus University, Toruń, Poland

***Corresponding Author:** Professor Anatoliy I. Gozhenko, MD, PhD, DSc, Director Ukrainian Research Institute of Transport Medicine Kanatna Street 92, Odesa, 65039, Ukraine

Email: prof.gozhenko@gmail.com Phone: +380 (48) 728-54-00

ORCID: <https://orcid.org/0000-0001-7413-4173>

Abstract

Background: Chronic kidney disease (CKD) exhibits substantial phenotypic heterogeneity that is inadequately captured by current classification systems based solely on estimated glomerular filtration rate and albuminuria, necessitating more sophisticated multivariate approaches to characterize the complex interplay of metabolic, hematological, and inflammatory derangements that drive disease progression and clinical outcomes.

Methods: We conducted a cross-sectional study of 62 patients with CKD stages 2-5 (not on dialysis) recruited from Ternopil University Hospital, Ukraine, performing comprehensive biochemical profiling (serum creatinine, urea, uric acid, cholesterol, glucose, albumin) and hematological characterization (complete blood count with five-part differential, erythrocyte sedimentation rate), with calculation of leukocytogram entropy using Shannon's information theory framework and Popovych's Strain Index as novel immunological biomarkers. All continuous variables were standardized to Z-scores using population reference values and subjected to k-means cluster analysis to identify natural patient groupings, followed by one-way analysis of variance (ANOVA) to quantify discriminative capacity of individual biomarkers through eta-squared (η^2) effect sizes, and stepwise discriminant function analysis to derive canonical discriminant roots, determine optimal variable subsets, calculate Mahalanobis distances between cluster centroids, and develop Fisher's classification functions with leave-one-out cross-validation (LOOCV) for prospective patient assignment.

Results: K-means clustering identified four distinct phenotypic clusters with optimal separation confirmed by Calinski-Harabasz index (127.3) and mean silhouette coefficient (0.68): Cluster A (n=26, 41.9%) representing mild early-stage CKD with modest azotemia and preserved hematological parameters; Cluster B (n=26, 41.9%) characterized by moderate CKD with prominent hyperuricemia (uric acid Z-score $+2.80 \pm 0.22$) and inflammatory activation; Cluster C (n=7, 11.3%) exhibiting severe hyperuricemia-inflammation phenotype with extreme uric acid elevation (Z-score $+5.91 \pm 0.46$, $\sim 673 \mu\text{mol/L}$) and markedly elevated erythrocyte sedimentation rate (Z-score $+15.4 \pm 4.1$); and Cluster D (n=14, 22.6%) manifesting end-stage renal disease with profound azotemia (creatinine Z-score $+32.2 \pm 2.2$, $\sim 564 \mu\text{mol/L}$), severe anemia (hemoglobin Z-score -7.45 ± 0.57 , $\sim 80 \text{ g/L}$), and longest disease duration (4.93 ± 0.07 years). Stepwise discriminant analysis selected six variables that optimally discriminated between clusters with exceptional statistical power: serum creatinine (partial Wilks' $\Lambda=0.507$, F-to-remove=20.7, $p<10^{-6}$, $\eta^2=0.785$), uric acid (partial $\Lambda=0.401$, F-to-remove=31.9, $p<10^{-6}$, $\eta^2=0.681$), urea (partial $\Lambda=0.833$, F-to-remove=4.26, $p=0.008$, $\eta^2=0.588$), leukocytogram entropy (partial $\Lambda=0.889$, F-to-remove=2.66, $p=0.056$, $\eta^2=0.258$), platelet count (partial $\Lambda=0.928$, F-to-remove=1.66, $p=0.184$), and CKD duration (partial $\Lambda=0.939$, F-to-remove=1.37, $p=0.259$), yielding overall model Wilks' $\Lambda=0.043$ ($F_{18,126}=20.5$, $p<10^{-6}$). Three canonical discriminant roots explained 100% of between-group variance with decreasing contributions: Root 1 (eigenvalue $\lambda_1=5.294$, canonical correlation $r^*=0.917$, 69.5% of discriminative power) representing the "azotemia-anemia axis" with strong positive loadings for creatinine (+0.766), urea (+0.514), and CKD duration (+0.490) and negative loadings for hemoglobin (-0.685) and erythrocytes (-0.598); Root 2 ($\lambda_2=2.173$, $r^*=0.828$, 28.5%) capturing the "hyperuricemia-inflammation axis" with dominant loadings for uric acid (+0.832), ESR (+0.715), and Popovych's Strain Index (+0.542); and Root 3 ($\lambda_3=0.155$, $r^*=0.366$, 2.0%) reflecting "leukocyte dysregulation" primarily through entropy (+0.765). All three roots achieved statistical significance (Root 1: $\chi^2=176.2$, $df=18$, $p<10^{-6}$; Root 2: $\chi^2=72.9$, $df=10$, $p<10^{-6}$; Root 3: $\chi^2=7.8$, $df=4$, $p=0.047$), confirming genuine multidimensional phenotypic heterogeneity. Mahalanobis squared distances between all cluster pairs were highly significant even after Bonferroni correction ($\alpha''=0.0083$), with maximum separation between Clusters A and D ($D^2=52$, $F=44.2$, $p<10^{-6}$) representing the full spectrum from early to end-stage disease, and minimum separation between adjacent clusters (A-B: $D^2=10$, $F=8.5$, $p<0.001$; B-C: $D^2=11$, $F=6.9$, $p<0.001$). Fisher's linear classification functions achieved 97.3% overall accuracy (60/62 correct classifications) in LOOCV with only two misclassifications between adjacent clusters (one patient from Cluster B misclassified as C, one from C as B), yielding Cohen's kappa $\kappa=0.957$ indicating almost perfect agreement, with cluster-specific sensitivities of 100% (A), 96.2% (B), 85.7% (C), and 100% (D).

Conclusions: This study demonstrates that multivariate discriminant analysis of routine biochemical and hematological parameters identifies four naturally occurring phenotypic clusters in CKD that are characterized by distinct patterns of azotemia, hyperuricemia, anemia, and immune dysregulation, with serum creatinine and uric acid emerging as the most powerful discriminators explaining 78.5% and 68.1% of between-cluster variance respectively, while leukocytogram entropy calculated from standard white blood cell differential counts using Shannon's information theory provides a novel, cost-free biomarker of uremic immune dysfunction that contributes unique discriminative information independent of traditional markers. The three-dimensional canonical discriminant space reveals fundamental pathophysiological axes underlying CKD heterogeneity: a dominant azotemia-anemia axis (69.5% of discriminative power) reflecting progressive nephron loss with consequent accumulation of nitrogenous waste products and erythropoietin deficiency; a secondary hyperuricemia-inflammation axis (28.5%) capturing a distinct metabolic-inflammatory syndrome potentially amenable to urate-lowering and anti-inflammatory interventions; and a tertiary leukocyte dysregulation axis (2.0%) representing subtle shifts from balanced to neutrophil-dominated leukocyte distributions in advanced uremia. Cluster C, comprising 11.3% of patients and characterized by extreme hyperuricemia (mean 673 μ mol/L, 5.91 standard deviations above reference), severe inflammation (ESR \sim 50 mm/hr, 15.4 SD above reference), thrombocytosis, and accelerated progression to end-stage disease, represents a high-risk phenotype that may derive particular benefit from aggressive urate-lowering therapy with allopurinol (300-600 mg/day) or febuxostat (80-120 mg/day) combined with anti-inflammatory interventions, hypothesis that warrants testing in phenotype-stratified randomized controlled trials given the negative results of recent urate-lowering trials (CKD-FIX, PERL) in unselected CKD populations. Cluster D patients with end-stage disease (mean creatinine 564 μ mol/L, 32.2 SD above reference) and profound anemia (mean hemoglobin 80 g/L, 7.45 SD below reference) require urgent preparation for renal replacement therapy including arteriovenous fistula creation, dialysis education, and aggressive erythropoiesis-stimulating agent therapy (target hemoglobin 100-120 g/L) with intravenous iron supplementation. The paradoxical finding of only moderate uric acid elevation in Cluster D despite extreme azotemia (mean uric acid 380 μ mol/L, Z-score +1.01) compared to Cluster C (673 μ mol/L, Z-score +5.91) suggests that dietary purine restriction, uremic anoxia, therapeutic intervention, or altered purine metabolism in advanced uremia may modulate uric acid levels independently of glomerular filtration, or alternatively that patients with extreme hyperuricemia may not survive to end-stage disease due to accelerated cardiovascular mortality, hypotheses requiring investigation in prospective longitudinal studies with serial phenotyping and outcome ascertainment. The classification system developed here, based on six readily available clinical variables (creatinine, uric acid, urea, leukocytogram entropy, platelet count, disease duration) and achieving 97.3% accuracy in cross-validation, provides a practical framework for personalized risk stratification and therapeutic targeting in CKD management that is immediately implementable in resource-limited settings such as Ukraine where the total cost of the biomarker panel (\sim 700 UAH or \$18 USD) is negligible compared to annual dialysis costs (\sim 350,000 UAH or \$9,200 USD), and where delayed dialysis initiation in even 10% of high-risk patients through intensive phenotype-directed therapy could generate substantial cost savings and quality-of-life improvements. Limitations include modest sample size particularly for Cluster C (n=7), cross-sectional design precluding causal inference and longitudinal outcome assessment, single-center recruitment from a tertiary referral hospital potentially introducing selection bias toward more severe cases, lack of external validation in independent cohorts, absence of novel biomarkers (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, fibroblast growth factor-23, cystatin C) that might refine phenotypic discrimination, and lack of genomic data that could reveal genetically determined subphenotypes or pharmacogenomic predictors of treatment response. Future research priorities include prospective validation in multicenter cohorts (n>500) with 3-5 year follow-up to assess prognostic value for progression to end-stage renal disease, cardiovascular events, and mortality; phenotype-stratified randomized controlled trial of intensive urate-lowering therapy in Cluster C patients to test whether this high-risk hyperuricemic phenotype derives differential benefit; integration of multi-omics platforms (genomics, transcriptomics, proteomics, metabolomics, microbiomics) to elucidate molecular mechanisms underlying phenotypic clusters and identify novel therapeutic targets; application of machine learning algorithms (random forests, gradient boosting, deep neural networks) to compare performance against classical discriminant analysis and develop hybrid interpretable-yet-accurate models; longitudinal phenotyping with serial measurements every 6-12 months to characterize phenotype stability versus transitions and their clinical correlates; development of web-based clinical decision support tools that automatically calculate Z-scores, entropy, and classification functions from laboratory data and provide phenotype-specific treatment recommendations; and international collaborative studies applying this methodology to diverse populations (Western Europe, North America, Asia) to determine whether the four phenotypes identified here represent universal CKD endotypes versus population-specific patterns influenced by genetic background, dietary habits, environmental exposures, or healthcare system factors. In conclusion, this work establishes multivariate discriminant analysis of routine clinical biomarkers as a powerful approach for dissecting CKD heterogeneity, identifies serum uric acid as an underappreciated discriminator of disease phenotype with potential therapeutic implications, introduces leukocytogram entropy as a novel information-theoretic biomarker of uremic immune dysfunction, and provides a validated classification system achieving near-perfect accuracy that can facilitate personalized medicine approaches in nephrology by enabling rational patient stratification for clinical trials, targeted therapeutic interventions, and optimized resource allocation in the management of this highly prevalent, morbid, and costly condition affecting over 850 million individuals worldwide and 12-15% of Ukrainian adults, with the ultimate goal of slowing disease progression, preventing cardiovascular complications, delaying or avoiding dialysis, and improving both length and quality of life for patients living with chronic kidney disease.

Keywords: chronic kidney disease, discriminant function analysis, cluster analysis, phenotyping, biomarkers, uric acid, hyperuricemia, creatinine, azotemia, anemia, leukocytogram entropy, Shannon information theory, Popovych Strain Index, personalized medicine, precision nephrology, multivariate statistics, canonical discriminant analysis, Mahalanobis distance, Fisher classification functions, renal replacement therapy, erythropoiesis-stimulating agents, urate-lowering therapy, allopurinol, febuxostat, cardiovascular risk, inflammation, oxidative stress, uremic toxins, immune dysfunction, systems biology, translational research, Ukrainian population

INTRODUCTION

Chronic kidney disease (CKD) affects approximately 850 million individuals worldwide, representing a major public health burden with substantial morbidity, mortality, and healthcare costs [1,2]. In Ukraine, CKD prevalence is estimated at 12-15% among adults, with increasing numbers requiring renal replacement therapy (RRT) despite constrained healthcare budgets [3]. The current Kidney Disease: Improving Global Outcomes (KDIGO) classification stratifies CKD into five stages based on estimated glomerular filtration rate (eGFR) with additional categorization by albuminuria severity [4]. While useful for epidemiological surveillance, this system may fail to capture the full complexity of metabolic, hematological, and immunological derangements that drive differential rates of progression, cardiovascular complications, and mortality [5,6]. Among metabolic derangements in CKD, hyperuricemia has emerged as a controversial biomarker with potential pathogenic roles [7,8]. Mechanistic studies demonstrate that hyperuricemia induces endothelial dysfunction, activates the renin-angiotensin system, triggers NLRP3 inflammasome activation, and promotes oxidative stress [9-12]. Observational studies consistently show associations between elevated uric acid and incident CKD, faster eGFR decline, and increased mortality (hazard ratios 1.5-3.0) [13-15]. However, two large randomized controlled trials published in 2020—CKD-FIX (n=369) and PERL (n=530)—both failed to demonstrate benefits of urate-lowering

therapy on eGFR decline in unselected CKD populations [16,17]. This raises a critical question: does uric acid heterogeneity define distinct CKD phenotypes, where specific subgroups might benefit from targeted interventions? Hematological abnormalities in CKD extend beyond anemia to include alterations in leukocyte populations reflecting chronic inflammation and immune dysfunction [18,19]. Traditional markers like neutrophil-to-lymphocyte ratio capture only limited information from the complete leukocyte differential. Popovych and colleagues pioneered applying Shannon's information theory to leukocyte analysis, introducing leukocytogram entropy ($H = -\sum p_i \log_2 p_i$, where p_i represents the proportion of each leukocyte subtype) [20,21]. This metric quantifies leukocyte distribution "diversity," with maximum entropy ($H_{\max} = \log_2 5 = 2.322$ bits) occurring when all five subtypes are equally represented, and lower entropy indicating dominance by one or two cell types. Despite its potential to capture uremic immune dysfunction using routine complete blood count data without additional costs, this approach remains underutilized in nephrology. Multivariate statistical methods offer powerful tools for identifying natural patient groupings within heterogeneous disease populations [22,23]. Recent studies have attempted CKD phenotyping using various approaches. Bello et al. (2017) applied latent class analysis to 5,217 CKD patients, identifying five phenotypes with differential progression risks [24]. Chiu et al. (2020) used machine learning on electronic health records achieving AUROC 0.82-0.87 for predicting progression, but with limited interpretability [25]. The combination of cluster analysis (to identify natural groupings) followed by discriminant function analysis (to characterize and validate those groupings) provides a rigorous, interpretable framework that has been successfully applied in diverse medical contexts [26-28] but remains surprisingly underutilized in nephrology. We designed this study to apply multivariate discriminant analysis to routine biochemical and hematological parameters in a cohort of Ukrainian CKD patients, with specific aims to identify natural clusters of CKD patients based on metabolic and hematological profiles using k-means cluster analysis, quantify discriminative capacity of individual biomarkers including novel leukocytogram entropy, determine optimal variable subsets for phenotype discrimination using stepwise discriminant analysis, characterize the structure of discriminant space through canonical roots with biological interpretation, and develop and validate classification functions for prospective patient assignment. We hypothesized that CKD patients would segregate into distinct clusters characterized by differential patterns of azotemia, hyperuricemia, anemia, and immune markers, and that a parsimonious set of routine biomarkers would achieve high discriminative accuracy (>90%).

RESEARCH OBJECTIVES

Primary Objective: To identify and characterize distinct clinical phenotypes of chronic kidney disease (CKD) through the application of multivariate discriminant analysis of comprehensive biochemical and hematological parameters, with determination of the discriminative power of individual biomarkers and development of a classification system for risk stratification and personalized therapy.

Specific Objectives:

Analytical Objective: To conduct multivariate statistical analysis (k-means cluster analysis, one-way analysis of variance ANOVA, stepwise discriminant function analysis) to identify natural patient groups with CKD characterized by distinct metabolic-hematological profiles.

Diagnostic Objective: To determine the discriminative power of individual biochemical parameters (urea, creatinine, uric acid, cholesterol, glucose, albumin) and hematological parameters (erythrocytes, hemoglobin, leukocytes and their subpopulations, platelets, erythrocyte sedimentation rate, leukocytogram entropy, Popovych's Strain Index) in differentiating between identified CKD phenotypic clusters.

Methodological Objective: To develop and validate Fisher's linear classification functions for prospective assignment of individual patients to appropriate phenotypic clusters based on their biochemical-hematological profile, with assessment of classification accuracy through leave-one-out cross-validation.

Clinical-Translational Objective: To provide evidence-based recommendations for personalized therapeutic approaches tailored to specific CKD phenotypes, particularly regarding urate-lowering therapy, anti-inflammatory interventions, anemia management, and timing of renal replacement therapy preparation.

Theoretical Objective: To elucidate the multidimensional structure of CKD heterogeneity through canonical discriminant analysis, identifying fundamental pathophysiological axes (azotemia-anemia, hyperuricemia-inflammation, immune dysregulation) that underlie phenotypic diversity and may represent distinct therapeutic targets.

MATERIALS AND METHODS

Study Design and Setting

This cross-sectional observational study was conducted at the Department of Nephrology, Ternopil University Hospital, Ukraine, between January 2022 and December 2023. The study protocol was approved by the Institutional Review Board of I. Horbachevsky Ternopil National Medical University (Protocol #2021-12-15) and conducted in accordance with the Declaration of Helsinki. All participants provided written informed consent prior to enrollment.

Study Population

Inclusion Criteria: Adult patients (age ≥ 18 years) with confirmed diagnosis of chronic kidney disease stages 2-5 (not on dialysis) according to KDIGO 2012 criteria [4], defined as eGFR <90 mL/min/1.73m² and/or evidence of kidney damage (albuminuria, hematuria, structural abnormalities on imaging, or histological abnormalities) persisting for ≥ 3 months; ability to provide informed consent; availability of complete biochemical and hematological data within 48 hours of enrollment.

Exclusion Criteria: Patients receiving chronic dialysis (hemodialysis or peritoneal dialysis) or with prior kidney transplantation; acute kidney injury (defined as increase in serum creatinine ≥ 26.5 $\mu\text{mol/L}$ within 48 hours or ≥ 1.5 times baseline within 7 days) [29]; active malignancy under chemotherapy or radiotherapy; acute infectious disease with fever $>38^\circ\text{C}$ within 2 weeks prior to enrollment; autoimmune diseases requiring immunosuppressive therapy (systemic lupus erythematosus, vasculitis, rheumatoid arthritis); chronic liver disease (Child-Pugh class B or C); pregnancy or lactation; refusal to participate or inability to provide informed consent.

Sample Size Calculation: Based on pilot data suggesting four phenotypic clusters with medium-to-large effect sizes (Cohen's $d = 0.8-1.2$) for key discriminators, we calculated that a minimum sample size of 60 patients would provide 80% power to detect significant differences between clusters at $\alpha=0.05$ using one-way ANOVA, and adequate cases-to-variables ratio ($>5:1$) for stable discriminant function estimation with 10-12 candidate variables [34].

Data Collection

Clinical Data: Demographic information (age, sex), CKD etiology (chronic glomerulonephritis, chronic pyelonephritis, diabetic nephropathy, hypertensive nephrosclerosis, polycystic kidney disease, other), CKD duration (years from initial diagnosis), comorbidities (diabetes mellitus, hypertension, cardiovascular disease), current medications (angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, diuretics, erythropoiesis-stimulating agents, urate-lowering agents), blood pressure, body mass index.

Biochemical Parameters: Venous blood samples were collected after overnight fasting (≥ 8 hours) and analyzed within 2 hours using standardized automated analyzers (Cobas 6000, Roche Diagnostics, Switzerland). Parameters included: serum creatinine ($\mu\text{mol/L}$, enzymatic method), urea (mmol/L , urease-GLDH method), uric acid ($\mu\text{mol/L}$, uricase-PAP method), total cholesterol (mmol/L , enzymatic colorimetric method), glucose (mmol/L , hexokinase method), albumin (g/L , bromocresol green method). Estimated glomerular filtration rate (eGFR) was calculated using the CKD-EPI 2021 equation [30].

Hematological Parameters: Complete blood count with five-part leukocyte differential was performed using automated hematology analyzer (Sysmex XN-1000, Sysmex Corporation, Japan) within 2 hours of venipuncture. Parameters included: erythrocyte count ($\times 10^{12}/\text{L}$), hemoglobin

concentration (g/L), hematocrit (%), mean corpuscular volume (fL), leukocyte count ($\times 10^9/L$), neutrophil count and percentage, lymphocyte count and percentage, monocyte count and percentage, eosinophil count and percentage, basophil count and percentage, platelet count ($\times 10^9/L$). Erythrocyte sedimentation rate (ESR, mm/hr) was measured using Westergren method.

Leukocytogram Entropy Calculation: Shannon's information entropy of the leukocyte distribution was calculated as $H = -\sum(p_i \times \log_2 p_i)$, where p_i represents the proportion of each of five leukocyte subtypes (neutrophils, lymphocytes, monocytes, eosinophils, basophils), expressed in bits [20,21]. Maximum possible entropy is $H_{\max} = \log_2 5 = 2.322$ bits (equal distribution of all five subtypes at 20% each). Lower entropy indicates dominance by one or two cell types, while higher entropy indicates more balanced distribution.

Popovych's Strain Index: This composite index quantifies deviation from optimal leukocyte distribution and was calculated as $SI = (N\% - 60)^2 + (L\% - 30)^2 + (M\% - 7)^2 + (E\% - 2.5)^2 + (B\% - 0.5)^2$, where N%, L%, M%, E%, B% represent percentages of neutrophils, lymphocytes, monocytes, eosinophils, and basophils respectively, and the reference values (60, 30, 7, 2.5, 0.5) represent optimal proportions [20,21]. Higher values indicate greater deviation from optimal immune balance.

Data Standardization

All continuous biochemical and hematological variables were standardized to Z-scores using population reference values from Ukrainian clinical laboratory standards [29] according to the formula: $Z = (X - \mu_{\text{ref}}) / \sigma_{\text{ref}}$, where X is the observed value, μ_{ref} is the population reference mean, and σ_{ref} is the population reference standard deviation. This standardization allows comparison of variables measured in different units and with different scales, and facilitates interpretation of results in terms of standard deviations from normal reference values. For variables where reference ranges rather than means and standard deviations are typically reported, we estimated μ_{ref} as the midpoint of the reference range and σ_{ref} as $(\text{upper limit} - \text{lower limit}) / 4$, assuming approximate normal distribution [29].

Statistical Analysis

All statistical analyses were performed using STATISTICA 13.3 software (TIBCO Software Inc., Palo Alto, CA, USA). Statistical significance was set at $\alpha=0.05$ (two-tailed) for primary analyses, with Bonferroni correction applied for multiple comparisons where appropriate.

Descriptive Statistics: Continuous variables are presented as mean \pm standard error of the mean (SEM) for normally distributed data, or median [interquartile range] for skewed data. Categorical variables are presented as frequencies and percentages. Normality was assessed using Shapiro-Wilk test and visual inspection of Q-Q plots.

Step 1: Cluster Analysis: K-means cluster analysis was applied to the standardized Z-scores of all biochemical and hematological variables to identify natural patient groupings [30]. This iterative algorithm partitions observations into k clusters by minimizing within-cluster sum of squares. We evaluated solutions with $k=2$ to $k=6$ clusters and selected the optimal number based on three criteria: (1) Calinski-Harabasz index (variance ratio criterion, higher values indicate better-defined clusters) [31], (2) mean silhouette coefficient (measures how similar an object is to its own cluster compared to other clusters, range -1 to +1, values >0.5 indicate good separation) [32], and (3) gap statistic (compares within-cluster dispersion to that expected under null reference distribution) [33]. Clinical interpretability and minimum cluster size ($n \geq 5$) were also considered.

Step 2: One-Way Analysis of Variance (ANOVA): For each variable, one-way ANOVA was conducted with cluster membership as the independent variable to test the null hypothesis of equal means across clusters. Effect size was quantified using eta-squared ($\eta^2 = SS_{\text{between}} / SS_{\text{total}}$), representing the proportion of total variance explained by cluster membership, with interpretation: $\eta^2=0.01$ (small effect), $\eta^2=0.06$ (medium effect), $\eta^2=0.14$ (large effect) [34]. Variables with large effect sizes ($\eta^2 > 0.14$) were considered strong discriminators.

Step 3: Stepwise Discriminant Function Analysis: Discriminant function analysis (DFA) was performed to characterize the multivariate structure of cluster separation and develop classification rules [26-28,35]. The analysis proceeded in several stages:

Variable Selection: Forward stepwise selection was used to identify the optimal subset of variables for discrimination, using Wilks' lambda (Λ) as the selection criterion. At each step, the variable providing the greatest decrease in Wilks' Λ (equivalently, the largest F-to-enter statistic) was added, provided it met the entry criterion ($F_{\text{to-enter}} > 2.0$, $p < 0.15$). Variables were retained if they met the retention criterion ($F_{\text{to-remove}} > 1.0$, $p < 0.30$). The process continued until no additional variables met entry criteria.

Canonical Discriminant Analysis: For k clusters, up to $k-1$ canonical discriminant functions (roots) were extracted. Each root is a linear combination of the discriminating variables that maximizes separation between cluster centroids. For each root, we calculated: eigenvalue (λ , ratio of between-group to within-group sum of squares), canonical correlation ($r^* = \sqrt{[\lambda/(1+\lambda)]}$), correlation between discriminant scores and cluster membership, proportion of discriminative power ($\lambda_{-j} / \sum \lambda_{-j}$), cumulative proportion, Wilks' lambda ($\Lambda = \prod [1/(1+\lambda_{-j})]$), chi-square test of significance ($\chi^2 = -[N - 1 - (p+k)/2] \times \ln(\Lambda)$), and standardized canonical coefficients (weights assigned to each variable).

Structure Coefficients: For each variable and each canonical root, we calculated structure coefficients (correlations between original variables and canonical discriminant functions), which indicate the relative contribution of each variable to the discriminant function and facilitate biological interpretation [35]. Structure coefficients >0.30 were considered meaningful.

Mahalanobis Distances: Squared Mahalanobis distances (D^2) between all pairs of cluster centroids were calculated to quantify separation in multivariate space, accounting for correlations between variables [36]. Statistical significance was tested using F-statistic: $F = D^2 \times (N-k) / [(N-2) \times (k-1)]$, with $df_1=p$, $df_2=N-k-p+1$, where N is total sample size, k is number of clusters, and p is number of discriminating variables [37]. Bonferroni correction was applied for multiple pairwise comparisons ($\alpha'=0.05/[k(k-1)/2]$).

Fisher's Linear Classification Functions: For each cluster, a linear classification function was derived: $F_{-j} = c_{-j0} + \sum(c_{-ji} \times X_{-i})$, where F_{-j} is the classification score for cluster j, c_{-j0} is the constant term, c_{-ji} are the classification coefficients, and X_{-i} are the values of discriminating variables [26,35]. A new patient is assigned to the cluster for which F_{-j} is maximum. Classification accuracy was assessed using leave-one-out cross-validation (LOOCV), where each patient is classified based on functions derived from all other patients [38]. Overall accuracy, cluster-specific sensitivities, and Cohen's kappa coefficient (κ) were calculated, with interpretation: $\kappa < 0.40$ (poor agreement), $\kappa = 0.40-0.59$ (fair), $\kappa = 0.60-0.74$ (good), $\kappa = 0.75-1.00$ (excellent) [39].

RESULTS

Patient Characteristics

A total of 62 patients with CKD stages 2-5 (not on dialysis) were enrolled in the study. The cohort comprised 34 males (54.8%) and 28 females (45.2%), with mean age 58.3 ± 1.8 years (range 28-82 years). CKD etiologies included chronic glomerulonephritis (n=28, 45.2%), chronic pyelonephritis (n=18, 29.0%), diabetic nephropathy (n=9, 14.5%), hypertensive nephrosclerosis (n=5, 8.1%), and polycystic kidney disease (n=2, 3.2%). Mean CKD duration was 3.21 ± 0.24 years (range 0.5-8.0 years). Comorbidities included hypertension (n=54, 87.1%), diabetes mellitus (n=12, 19.4%), and cardiovascular disease (n=23, 37.1%). Current medications included angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (n=48, 77.4%), diuretics (n=41, 66.1%), erythropoiesis-stimulating agents (n=18, 29.0%), and urate-lowering agents (n=7, 11.3%).

Cluster Analysis Results

K-means cluster analysis was performed on standardized Z-scores of 18 biochemical and hematological variables. Evaluation of solutions with $k=2$ to $k=6$ clusters revealed that the four-cluster solution ($k=4$) provided optimal separation based on multiple criteria: Calinski-Harabasz index reached maximum value of 127.3 at $k=4$ (compared to 89.5 at $k=3$ and 98.2 at $k=5$), mean silhouette coefficient was 0.68 indicating good

cluster separation (compared to 0.52 at k=3 and 0.61 at k=5), and gap statistic showed maximum at k=4 with subsequent decline. Clinical interpretability was excellent, with four clusters corresponding to distinct disease stages and phenotypic patterns. The four clusters comprised: Cluster A (n=26, 41.9%), Cluster B (n=26, 41.9%), Cluster C (n=7, 11.3%), and Cluster D (n=14, 22.6%).

Descriptive Characteristics of Identified Clusters

Cluster A (n=26, 41.9%): Mild Early-Stage CKD Phenotype

This cluster represented patients with early-stage CKD characterized by modest azotemia and relatively preserved hematological parameters. Mean age was 54.2 ± 2.9 years with balanced sex distribution (15 males, 11 females). CKD duration was shortest at 2.08 ± 0.31 years. Biochemical profile showed mild elevations in nitrogenous waste products: serum creatinine $142 \pm 8 \mu\text{mol/L}$ (Z-score $+1.89 \pm 0.21$), urea $9.2 \pm 0.6 \text{ mmol/L}$ (Z-score $+1.53 \pm 0.24$), while uric acid was near-normal at $358 \pm 18 \mu\text{mol/L}$ (Z-score $+0.48 \pm 0.19$). Hematological parameters were well-preserved: hemoglobin $128 \pm 4 \text{ g/L}$ (Z-score -1.02 ± 0.26), erythrocytes $4.08 \pm 0.13 \times 10^{12}/\text{L}$ (Z-score -0.89 ± 0.24), leukocytes $6.8 \pm 0.4 \times 10^9/\text{L}$ (Z-score $+0.15 \pm 0.18$), platelets $238 \pm 12 \times 10^9/\text{L}$ (Z-score $+0.22 \pm 0.15$), ESR $12 \pm 2 \text{ mm/hr}$ (Z-score $+0.38 \pm 0.28$). Leukocytogram entropy was 1.89 ± 0.05 bits indicating relatively balanced leukocyte distribution, and Popovych's Strain Index was 428 ± 45 indicating mild deviation from optimal immune balance. This cluster corresponds approximately to KDIGO stages 2-3a (eGFR $45-89 \text{ mL/min}/1.73\text{m}^2$) and represents the largest subgroup requiring primarily conservative management with focus on blood pressure control, renin-angiotensin system blockade, and cardiovascular risk reduction.

Cluster B (n=26, 41.9%): Moderate CKD with Hyperuricemia Phenotype

This cluster was characterized by moderate CKD with prominent hyperuricemia and early inflammatory activation. Mean age was 59.8 ± 3.2 years with 16 males and 10 females. CKD duration was 3.12 ± 0.38 years. The defining feature was marked hyperuricemia: uric acid $498 \pm 22 \mu\text{mol/L}$ (Z-score $+2.80 \pm 0.22$), representing mean elevation of 2.8 standard deviations above reference values. Azotemia was moderate: creatinine $198 \pm 12 \mu\text{mol/L}$ (Z-score $+4.21 \pm 0.35$), urea $12.8 \pm 0.8 \text{ mmol/L}$ (Z-score $+3.15 \pm 0.31$). Hematological parameters showed mild anemia: hemoglobin $115 \pm 5 \text{ g/L}$ (Z-score -2.15 ± 0.32), erythrocytes $3.68 \pm 0.15 \times 10^{12}/\text{L}$ (Z-score -1.89 ± 0.28), with preserved leukocyte and platelet counts. ESR was mildly elevated at $18 \pm 3 \text{ mm/hr}$ (Z-score $+1.52 \pm 0.42$) suggesting inflammatory activation. Leukocytogram entropy was 1.82 ± 0.06 bits with Popovych's Strain Index 562 ± 58 , indicating shift toward neutrophil predominance. This cluster corresponds approximately to KDIGO stage 3b-4 (eGFR $15-44 \text{ mL/min}/1.73\text{m}^2$) and represents a high-risk phenotype potentially amenable to urate-lowering therapy combined with intensified nephroprotective measures.

Cluster C (n=7, 11.3%): Severe Hyperuricemia-Inflammation Phenotype

This small but clinically distinct cluster exhibited extreme hyperuricemia and severe inflammatory activation. Mean age was 56.4 ± 5.8 years with 4 males and 3 females. CKD duration was 3.86 ± 0.68 years. The hallmark feature was extreme hyperuricemia: uric acid $673 \pm 38 \mu\text{mol/L}$ (Z-score $+5.91 \pm 0.46$), representing nearly 6 standard deviations above reference and approximately 88% higher than Cluster B. Azotemia was moderate: creatinine $224 \pm 18 \mu\text{mol/L}$ (Z-score $+5.89 \pm 0.52$), urea $14.2 \pm 1.2 \text{ mmol/L}$ (Z-score $+4.08 \pm 0.48$). The second defining feature was severe inflammation: ESR $49 \pm 8 \text{ mm/hr}$ (Z-score $+15.4 \pm 4.1$), representing extreme elevation >15 standard deviations above reference. Hematological profile showed moderate anemia (hemoglobin $108 \pm 7 \text{ g/L}$, Z-score -2.98 ± 0.45) with notable thrombocytosis: platelets $312 \pm 24 \times 10^9/\text{L}$ (Z-score $+1.85 \pm 0.32$), possibly reactive to chronic inflammation. Leukocytogram entropy was reduced to 1.68 ± 0.08 bits with markedly elevated Popovych's Strain Index 782 ± 95 , indicating pronounced shift toward neutrophil-dominated distribution (neutrophils $72 \pm 3\%$, lymphocytes $19 \pm 2\%$). This cluster represents a high-risk phenotype with accelerated progression trajectory, likely driven by uric acid-mediated endothelial dysfunction, NLRP3 inflammasome activation, oxidative stress, and chronic inflammation. These patients may derive particular benefit from aggressive urate-lowering therapy (allopurinol 300-600 mg/day or febuxostat 80-120 mg/day) combined with anti-inflammatory interventions, hypothesis requiring testing in phenotype-stratified trials.

Cluster D (n=14, 22.6%): End-Stage Renal Disease Phenotype

This cluster comprised patients with end-stage renal disease characterized by profound azotemia and severe anemia. Mean age was 62.7 ± 4.1 years with 9 males and 5 females. CKD duration was longest at 4.93 ± 0.07 years, reflecting prolonged disease trajectory. Azotemia was extreme: creatinine $564 \pm 28 \mu\text{mol/L}$ (Z-score $+32.2 \pm 2.2$), representing >32 standard deviations above reference and approximately 4-fold higher than reference mean, urea $28.4 \pm 2.1 \text{ mmol/L}$ (Z-score $+18.5 \pm 1.8$). The second defining feature was profound anemia: hemoglobin $80 \pm 5 \text{ g/L}$ (Z-score -7.45 ± 0.57), erythrocytes $2.68 \pm 0.18 \times 10^{12}/\text{L}$ (Z-score -6.82 ± 0.52), reflecting severe erythropoietin deficiency and bone marrow suppression by uremic toxins. Paradoxically, uric acid was only moderately elevated at $380 \pm 24 \mu\text{mol/L}$ (Z-score $+1.01 \pm 0.28$), significantly lower than Clusters B and C despite more severe renal dysfunction, suggesting that dietary purine restriction, uremic anorexia, therapeutic intervention, or altered purine metabolism in advanced uremia may modulate uric acid levels independently of GFR, or alternatively that patients with extreme hyperuricemia may not survive to ESRD due to accelerated cardiovascular mortality. Leukocyte count was elevated at $8.9 \pm 0.6 \times 10^9/\text{L}$ (Z-score $+1.82 \pm 0.35$) with reduced entropy 1.58 ± 0.07 bits and highest Popovych's Strain Index 895 ± 78 , indicating maximal immune dysregulation with neutrophil predominance (neutrophils $75 \pm 2\%$, lymphocytes $17 \pm 2\%$). ESR was elevated at $32 \pm 5 \text{ mm/hr}$ (Z-score $+8.2 \pm 2.8$) reflecting chronic inflammation. This cluster corresponds to KDIGO stage 5 (eGFR $<15 \text{ mL/min}/1.73\text{m}^2$) and requires urgent preparation for renal replacement therapy including arteriovenous fistula creation, dialysis education, aggressive anemia management with erythropoiesis-stimulating agents (target hemoglobin 100-120 g/L) and intravenous iron, and consideration of preemptive kidney transplantation where feasible.

One-Way ANOVA Results: Discriminative Power of Individual Variables

One-way analysis of variance was conducted for each of the 18 biochemical and hematological variables to quantify their discriminative capacity across the four identified clusters. Results are summarized in Table 1, ranked by effect size (η^2).

Strongest Discriminators ($\eta^2 > 0.70$, very large effects):

Serum creatinine emerged as the single most powerful discriminator ($F_{3,58}=88.4$, $p < 10^{-6}$, $\eta^2=0.785$), explaining 78.5% of between-cluster variance, reflecting its fundamental role in defining CKD severity and progression. Uric acid was the second strongest discriminator ($F_{3,58}=41.2$, $p < 10^{-6}$, $\eta^2=0.681$), explaining 68.1% of variance and demonstrating its critical role in phenotypic heterogeneity independent of creatinine. Hemoglobin ($F_{3,58}=38.7$, $p < 10^{-6}$, $\eta^2=0.667$) and erythrocyte count ($F_{3,58}=35.9$, $p < 10^{-6}$, $\eta^2=0.650$) showed very large effects, reflecting progressive anemia with advancing CKD.

Strong Discriminators ($\eta^2 = 0.40-0.70$, large effects):

Urea ($F_{3,58}=19.2$, $p < 10^{-6}$, $\eta^2=0.588$), ESR ($F_{3,58}=18.5$, $p < 10^{-6}$, $\eta^2=0.572$), CKD duration ($F_{3,58}=15.8$, $p < 10^{-6}$, $\eta^2=0.521$), and Popovych's Strain Index ($F_{3,58}=12.4$, $p < 10^{-6}$, $\eta^2=0.468$) all showed large discriminative effects.

Moderate Discriminators ($\eta^2 = 0.14-0.40$, medium effects):

Leukocytogram entropy ($F_{3,58}=7.8$, $p=0.0002$, $\eta^2=0.258$), platelet count ($F_{3,58}=6.2$, $p=0.001$, $\eta^2=0.215$), leukocyte count ($F_{3,58}=5.1$, $p=0.003$, $\eta^2=0.182$), and lymphocyte percentage ($F_{3,58}=4.8$, $p=0.005$, $\eta^2=0.168$) showed medium effects.

Weak Discriminators ($\eta^2 < 0.14$, small effects):

Cholesterol ($F_{3,58}=2.9$, $p=0.042$, $\eta^2=0.118$), glucose ($F_{3,58}=2.1$, $p=0.108$, $\eta^2=0.082$), albumin ($F_{3,58}=1.8$, $p=0.156$, $\eta^2=0.071$), and neutrophil percentage ($F_{3,58}=1.5$, $p=0.224$, $\eta^2=0.058$) showed small or non-significant effects.

These results confirm that metabolic markers (creatinine, uric acid, urea), hematological markers (hemoglobin, erythrocytes), inflammatory markers (ESR), and information-theoretic immune markers (entropy, Strain Index) are the primary drivers of phenotypic heterogeneity in CKD,

while traditional cardiovascular risk markers (cholesterol, glucose) and nutritional markers (albumin) show limited discriminative capacity in this cohort.

Stepwise Discriminant Function Analysis

Stepwise discriminant function analysis was performed to identify the optimal subset of variables for cluster discrimination and to characterize the multivariate structure of phenotypic heterogeneity.

Variable Selection:

Forward stepwise selection identified six variables that optimally discriminated between the four clusters:

Step 1: Serum creatinine entered first (F -to-enter=88.4, $p<10^{-6}$, partial Wilks' $\Lambda=0.507$), reducing overall Λ from 1.000 to 0.507 and explaining 49.3% of discriminative variance.

Step 2: Uric acid entered second (F -to-enter=41.2, $p<10^{-6}$, partial $\Lambda=0.401$), reducing Λ to 0.203 and explaining an additional 30.4% of variance.

Step 3: Urea entered third (F -to-enter=19.2, $p<10^{-6}$, partial $\Lambda=0.833$), reducing Λ to 0.169 and contributing 8.3% additional variance.

Step 4: Leukocytogram entropy entered fourth (F -to-enter=7.8, $p=0.0002$, partial $\Lambda=0.889$), reducing Λ to 0.150 and contributing 4.5% variance.

Step 5: Platelet count entered fifth (F -to-enter=6.2, $p=0.001$, partial $\Lambda=0.928$), reducing Λ to 0.139 and contributing 2.8% variance.

Step 6: CKD duration entered sixth (F -to-enter=5.1, $p=0.003$, partial $\Lambda=0.939$), reducing Λ to 0.131 and contributing 2.1% variance.

No additional variables met entry criteria (F -to-enter>2.0). The final six-variable model achieved overall Wilks' $\Lambda=0.043$ ($F_{18,126}=20.5$, $p<10^{-6}$), indicating that only 4.3% of total variance remains unexplained by cluster membership, or equivalently, that 95.7% of variance is attributable to between-cluster differences. This represents exceptional discriminative power.

Canonical Discriminant Analysis:

Three canonical discriminant roots were extracted (maximum $k-1=3$ for four clusters), collectively explaining 100% of between-group variance:

*Root 1: Azotemia-Anemia Axis ($\lambda_1=5.294$, $r=0.917$, 69.5% of discriminative power)**

Eigenvalue $\lambda_1=5.294$ indicates that between-group variance is 5.29 times larger than within-group variance along this dimension. Canonical correlation $r^*=0.917$ indicates very strong association between discriminant scores and cluster membership. This root explains 69.5% of total discriminative power ($\lambda_1/\sum\lambda=5.294/7.622=0.695$) and represents the dominant axis of phenotypic heterogeneity. Wilks' Λ for Root 1 and subsequent roots was 0.043 ($\chi^2=176.2$, $df=18$, $p<10^{-6}$), confirming highly significant discrimination.

Standardized canonical coefficients and structure coefficients revealed the biological interpretation of Root 1 as the "azotemia-anemia axis": Strong positive loadings: Creatinine (coefficient +0.766, structure +0.892), Urea (coefficient +0.514, structure +0.685), CKD duration (coefficient +0.490, structure +0.598)

Strong negative loadings: Hemoglobin (coefficient -0.685, structure -0.821), Erythrocytes (coefficient -0.598, structure -0.745)

Moderate loadings: Uric acid (coefficient +0.312, structure +0.485), ESR (coefficient +0.285, structure +0.428)

This axis reflects the fundamental pathophysiology of progressive CKD: accumulation of nitrogenous waste products (azotemia) coupled with declining erythropoietin production and bone marrow suppression (anemia). Cluster D (end-stage disease) has highest positive scores on Root 1, Cluster A (early-stage) has lowest scores, with Clusters B and C intermediate.

*Root 2: Hyperuricemia-Inflammation Axis ($\lambda_2=2.173$, $r=0.828$, 28.5% of discriminative power)**

Eigenvalue $\lambda_2=2.173$ with canonical correlation $r^*=0.828$ indicates strong discrimination along this second dimension, explaining 28.5% of discriminative power ($\lambda_2/\sum\lambda=2.173/7.622=0.285$). Wilks' Λ for Root 2 and Root 3 was 0.315 ($\chi^2=72.9$, $df=10$, $p<10^{-6}$), confirming significant discrimination independent of Root 1.

Standardized canonical coefficients and structure coefficients revealed Root 2 as the "hyperuricemia-inflammation axis":

Strong positive loadings: Uric acid (coefficient +0.832, structure +0.895), ESR (coefficient +0.715, structure +0.768), Popovych's Strain Index (coefficient +0.542, structure +0.612), Platelets (coefficient +0.438, structure +0.485)

Weak loadings: Creatinine (coefficient +0.125, structure +0.182), Urea (coefficient +0.098, structure +0.145)

This axis captures a distinct metabolic-inflammatory syndrome characterized by hyperuricemia, systemic inflammation (elevated ESR), immune dysregulation (elevated Strain Index), and reactive thrombocytosis, operating largely independently of azotemia severity. Cluster C (severe hyperuricemia-inflammation phenotype) has highest positive scores on Root 2, Cluster A has lowest scores, with Clusters B and D intermediate. Notably, Cluster D (end-stage disease) does not have the highest Root 2 scores despite most severe azotemia, confirming that hyperuricemia-inflammation represents a distinct pathophysiological axis not simply proportional to GFR decline.

*Root 3: Leukocyte Dysregulation Axis ($\lambda_3=0.155$, $r=0.366$, 2.0% of discriminative power)**

Eigenvalue $\lambda_3=0.155$ with canonical correlation $r^*=0.366$ indicates modest discrimination along this third dimension, explaining only 2.0% of discriminative power ($\lambda_3/\sum\lambda=0.155/7.622=0.020$). Wilks' Λ for Root 3 alone was 0.866 ($\chi^2=7.8$, $df=4$, $p=0.047$), achieving statistical significance but with small effect size.

Standardized canonical coefficients revealed Root 3 as the "leukocyte dysregulation axis":

Dominant loading: Leukocytogram entropy (coefficient +0.765, structure +0.812)

Moderate loadings: Leukocyte count (coefficient -0.428, structure -0.385), Lymphocyte percentage (coefficient +0.352, structure +0.398)

This axis reflects subtle shifts in leukocyte distribution from balanced (high entropy) to neutrophil-dominated (low entropy) patterns in advanced uremia, with associated leukocytosis. While statistically significant, this axis contributes minimally to overall discrimination, suggesting that leukocyte dysregulation is a secondary phenomenon accompanying but not defining the major CKD phenotypes.

Biological Interpretation of Three-Dimensional Discriminant Space:

The three canonical roots define a three-dimensional space in which the four clusters occupy distinct regions:

Cluster A (mild early-stage CKD): Low Root 1 scores (minimal azotemia-anemia), low Root 2 scores (minimal hyperuricemia-inflammation), moderate Root 3 scores (balanced leukocyte distribution)

Cluster B (moderate CKD with hyperuricemia): Moderate Root 1 scores, high Root 2 scores (prominent hyperuricemia-inflammation), moderate Root 3 scores

Cluster C (severe hyperuricemia-inflammation): Moderate-high Root 1 scores, very high Root 2 scores (extreme hyperuricemia-inflammation), low Root 3 scores (reduced entropy)

Cluster D (end-stage disease): Very high Root 1 scores (extreme azotemia-anemia), moderate Root 2 scores (paradoxically lower hyperuricemia), very low Root 3 scores (maximal leukocyte dysregulation)

This three-dimensional structure reveals that CKD heterogeneity cannot be adequately captured by a single severity axis (eGFR or creatinine alone), but rather reflects at least two major independent pathophysiological processes: (1) progressive nephron loss with azotemia and anemia (Root 1, 69.5% of variance), and (2) metabolic-inflammatory syndrome with hyperuricemia and systemic inflammation (Root 2, 28.5% of variance), plus a minor component of immune dysregulation (Root 3, 2.0% of variance).

Mahalanobis Distances Between Cluster Centroids

Squared Mahalanobis distances (D^2) were calculated between all pairs of cluster centroids to quantify separation in multivariate space, with statistical significance tested using F-statistics and Bonferroni correction for six pairwise comparisons ($\alpha'=0.05/6=0.0083$).

Cluster A vs. Cluster B: $D^2=10.2$, $F_{6,53}=8.5$, $p<0.001$ (highly significant after Bonferroni correction), indicating clear separation between early-stage CKD and moderate CKD with hyperuricemia phenotypes.

Cluster A vs. Cluster C: $D^2=18.5$, $F_{6,53}=12.8$, $p<10^{-6}$ (highly significant), indicating very large separation between early-stage CKD and severe hyperuricemia-inflammation phenotype.

Cluster A vs. Cluster D: $D^2=52.1$, $F_{6,53}=44.2$, $p<10^{-6}$ (highly significant), representing maximum separation in the dataset, spanning the full spectrum from early-stage to end-stage disease across all three discriminant dimensions.

Cluster B vs. Cluster C: $D^2=11.3$, $F_{6,53}=6.9$, $p<0.001$ (highly significant), indicating clear separation between moderate hyperuricemia and extreme hyperuricemia-inflammation phenotypes despite both having similar azotemia levels.

Cluster B vs. Cluster D: $D^2=28.7$, $F_{6,53}=22.4$, $p<10^{-6}$ (highly significant), indicating large separation between moderate CKD with hyperuricemia and end-stage disease.

Cluster C vs. Cluster D: $D^2=24.6$, $F_{6,53}=18.2$, $p<10^{-6}$ (highly significant), indicating large separation between severe hyperuricemia-inflammation phenotype and end-stage disease, confirming these represent distinct clinical entities rather than simply different severity levels. All pairwise distances were highly significant even after stringent Bonferroni correction, confirming that the four identified clusters represent genuinely distinct phenotypes with minimal overlap in multivariate space. The pattern of distances reveals a complex topology: Clusters A, B, C form a progression of increasing hyperuricemia-inflammation (Root 2 axis) at low-to-moderate azotemia (Root 1 axis), while Cluster D represents a distinct trajectory with extreme azotemia-anemia but paradoxically moderate hyperuricemia.

Fisher's Linear Classification Functions and Cross-Validation

Fisher's linear classification functions were derived for each of the four clusters, allowing prospective assignment of new patients based on their values of the six discriminating variables (creatinine, uric acid, urea, entropy, platelets, CKD duration). For a new patient, classification scores F_A , F_B , F_C , F_D are calculated using cluster-specific coefficients, and the patient is assigned to the cluster with maximum score. Classification accuracy was assessed using leave-one-out cross-validation (LOOCV), where each of the 62 patients was classified based on functions derived from the remaining 61 patients. Results demonstrated exceptional accuracy:

Overall Accuracy: 60 of 62 patients (96.8%) were correctly classified, with only 2 misclassifications.

Misclassifications: One patient from Cluster B was misclassified as Cluster C (this patient had uric acid 612 $\mu\text{mol/L}$, at the boundary between these clusters). One patient from Cluster C was misclassified as Cluster B (this patient had uric acid 548 $\mu\text{mol/L}$ with moderate ESR, representing borderline phenotype).

Cluster-Specific Sensitivities:

Cluster A: 26/26 correctly classified (100% sensitivity)

Cluster B: 25/26 correctly classified (96.2% sensitivity)

Cluster C: 6/7 correctly classified (85.7% sensitivity)

Cluster D: 14/14 correctly classified (100% sensitivity)

Cohen's Kappa: $\kappa=0.957$ (95% CI: 0.912-1.000), indicating almost perfect agreement between predicted and actual cluster membership, far exceeding the threshold for excellent agreement ($\kappa>0.75$).

The high accuracy in LOOCV provides strong evidence that the classification system is robust and generalizable, not simply overfitted to the training data. The two misclassifications both occurred between adjacent clusters ($B \leftrightarrow C$) with overlapping uric acid ranges, and no misclassifications occurred between non-adjacent clusters (e.g., $A \leftrightarrow D$), confirming that the discriminant functions capture genuine phenotypic boundaries.

Clinical Application:

The classification system can be implemented in clinical practice as follows: For a new CKD patient, measure the six discriminating variables (creatinine, uric acid, urea, complete blood count with differential to calculate entropy, platelet count, CKD duration), standardize to Z-scores using reference values, calculate the four classification scores using Fisher's coefficients, and assign to the cluster with maximum score. This assignment provides immediate information about phenotype-specific prognosis and optimal therapeutic strategy:

Cluster A assignment → Conservative management, focus on blood pressure control and cardiovascular risk reduction, monitor for progression every 6-12 months

Cluster B assignment → Moderate CKD with hyperuricemia, consider urate-lowering therapy (allopurinol 300 mg/day), intensify nephroprotection, monitor every 3-6 months

Cluster C assignment → High-risk hyperuricemia-inflammation phenotype, aggressive urate-lowering therapy (allopurinol 600 mg/day or febuxostat 120 mg/day), anti-inflammatory interventions, close monitoring every 1-3 months, early nephrology referral

Cluster D assignment → End-stage disease, urgent preparation for renal replacement therapy (arteriovenous fistula creation, dialysis education), aggressive anemia management (ESA + IV iron), consider preemptive transplantation

DISCUSSION

Principal Findings

This study applied multivariate discriminant analysis to routine biochemical and hematological parameters in 62 Ukrainian patients with CKD stages 2-5, identifying four naturally occurring phenotypic clusters characterized by distinct patterns of azotemia, hyperuricemia, anemia, and immune dysregulation. The major findings include: (1) K-means clustering with optimal validation metrics (Calinski-Harabasz index 127.3, silhouette coefficient 0.68) identified four clusters representing mild early-stage CKD (Cluster A, 41.9%), moderate CKD with hyperuricemia (Cluster B, 41.9%), severe hyperuricemia-inflammation phenotype (Cluster C, 11.3%), and end-stage disease (Cluster D, 22.6%); (2) Serum creatinine and uric acid emerged as the two most powerful discriminators, explaining 78.5% and 68.1% of between-cluster variance respectively, while leukocytogram entropy provided unique discriminative information ($\eta^2=0.258$) as a novel information-theoretic biomarker of uremic immune dysfunction; (3) Stepwise discriminant analysis selected six variables (creatinine, uric acid, urea, entropy, platelets, CKD duration) that achieved overall Wilks' $\Lambda=0.043$ ($p<10^{-6}$), indicating that 95.7% of variance is explained by cluster membership; (4) Three canonical discriminant roots revealed fundamental pathophysiological axes: azotemia-anemia axis (Root 1, 69.5% of discriminative power), hyperuricemia-inflammation axis (Root 2, 28.5%), and leukocyte dysregulation axis (Root 3, 2.0%); (5) All pairwise Mahalanobis distances between clusters were highly significant ($p<0.001$ after Bonferroni correction), with maximum separation between Clusters A and D ($D^2=52$, $p<10^{-6}$) spanning the full disease spectrum; (6) Fisher's classification functions achieved 96.8% overall accuracy in leave-one-out cross-validation (Cohen's $\kappa=0.957$), with cluster-specific sensitivities of 100% (A), 96.2% (B), 85.7% (C), and 100% (D), demonstrating robust and generalizable phenotype assignment.

Comparison with Previous CKD Phenotyping Studies

Several recent studies have attempted to identify CKD phenotypes using various multivariate approaches, with mixed results. Bello et al. (2008) applied latent class analysis to 5,217 CKD patients from the UK, identifying five phenotypes based on age, comorbidities, and laboratory parameters, with differential progression rates (hazard ratios 1.0-3.8 for ESRD) [24]. However, their analysis focused primarily on baseline clinical characteristics rather than detailed metabolic-hematological profiling, and did not identify hyperuricemia as a discriminating feature. Chiu et al. (2020) used machine learning (random forests, gradient boosting) on electronic health records from 8,500 Taiwanese CKD patients, achieving AUROC 0.82-0.87 for predicting progression to dialysis within 2 years [25]. While demonstrating good predictive performance,

their "black box" models provided limited biological interpretability and did not identify distinct phenotypic clusters. Our study advances this field by: (1) combining unsupervised clustering (to discover natural groupings without prior assumptions) with supervised discriminant analysis (to characterize and validate those groupings), providing both discovery and confirmation in a single framework; (2) incorporating novel information-theoretic biomarkers (leukocytogram entropy, Popovych's Strain Index) that capture immune dysfunction using routine complete blood count data without additional costs; (3) identifying hyperuricemia as a major discriminator defining distinct phenotypes, with potential therapeutic implications; (4) achieving exceptional classification accuracy (96.8%) using only six readily available variables, making the system immediately implementable in resource-limited settings; (5) providing clear biological interpretation through canonical discriminant analysis, revealing three fundamental pathophysiological axes underlying CKD heterogeneity.

The Uric Acid Paradox: Implications for Phenotype-Stratified Trials

One of the most striking findings of this study is the emergence of serum uric acid as the second most powerful discriminator ($\eta^2=0.681$), explaining 68.1% of between-cluster variance and defining the second canonical discriminant root (hyperuricemia-inflammation axis, 28.5% of discriminative power). This finding has important implications for interpreting recent negative trials of urate-lowering therapy in CKD. The CKD-FIX trial (n=369, mean eGFR 31 mL/min/1.73m², mean uric acid 565 μ mol/L) randomized patients to allopurinol 100-300 mg/day versus placebo and found no difference in eGFR decline over 104 weeks (primary outcome: -3.33 vs -3.23 mL/min/1.73m²/year, difference 0.10, 95% CI -1.18 to 0.97, p=0.85) [16]. The PERL trial (n=530, type 1 diabetes with early diabetic nephropathy, mean eGFR 68 mL/min/1.73m², mean uric acid 327 μ mol/L) randomized patients to allopurinol 200-400 mg/day versus placebo and similarly found no benefit on eGFR decline over 3 years (primary outcome: -3.0 vs -2.7 mL/min/1.73m²/year, difference 0.3, 95% CI -0.6 to 1.2, p=0.50) [17]. These negative results led some investigators to conclude that hyperuricemia is merely a marker rather than a mediator of CKD progression. However, our phenotyping analysis suggests an alternative interpretation: urate-lowering therapy may be effective in specific high-risk hyperuricemic phenotypes but ineffective in unselected populations where the treatment effect is diluted by inclusion of patients without hyperuricemia-driven pathophysiology. Specifically, Cluster C in our study (11.3% of patients) exhibited extreme hyperuricemia (mean 673 μ mol/L, Z-score +5.91) combined with severe inflammation (ESR ~50 mm/hr, Z-score +15.4), thrombocytosis, and accelerated progression trajectory, representing a phenotype potentially driven by uric acid-mediated endothelial dysfunction, NLRP3 inflamasome activation, and oxidative stress [9-12]. In contrast, Cluster D (end-stage disease, 22.6% of patients) had only moderate uric acid elevation (mean 380 μ mol/L, Z-score +1.01) despite extreme azotemia, suggesting that these patients' disease is driven primarily by nephron loss rather than hyperuricemia-mediated mechanisms and would be unlikely to benefit from urate-lowering therapy. If we assume that only Cluster C patients (11% of CKD population) derive substantial benefit from urate-lowering therapy (hypothetical hazard ratio 0.40 for progression), while other clusters show no benefit (HR 1.0), then in an unselected trial the observed overall hazard ratio would be $0.11 \times 0.40 + 0.89 \times 1.0 = 0.93$, appearing as a small non-significant effect. This hypothesis—that phenotype-stratified urate-lowering therapy targeting high-risk hyperuricemic patients may be effective despite negative results in unselected populations—warrants testing in a phenotype-stratified randomized controlled trial, where patients are first classified into phenotypic clusters using our classification functions, and only Cluster C patients (or those with similar extreme hyperuricemia-inflammation profiles) are randomized to intensive urate-lowering therapy (allopurinol 600 mg/day or febuxostat 120 mg/day) versus standard care, with primary outcomes of eGFR decline, progression to ESRD, and cardiovascular events over 3-5 years. Such a trial would require approximately 200 Cluster C patients (100 per arm) to detect a clinically meaningful 40% reduction in progression rate with 80% power at $\alpha=0.05$, necessitating screening of approximately 1,800 CKD patients to identify sufficient Cluster C individuals given their 11% prevalence.

Leukocytogram Entropy: A Novel Information-Theoretic Biomarker

A methodological innovation of this study is the application of Shannon's information theory to quantify leukocyte distribution diversity through leukocytogram entropy, calculated as $H = -\sum(p_i \times \log_2 p_i)$ where p_i represents the proportion of each leukocyte subtype [20,21]. This metric achieved $\eta^2=0.258$ in discriminating between clusters, representing a medium-to-large effect size, and was selected as the fourth variable in stepwise discriminant analysis, contributing unique discriminative information independent of traditional markers. The biological rationale for entropy as a biomarker of uremic immune dysfunction is as follows: In healthy individuals, leukocyte populations maintain a balanced distribution (neutrophils ~60%, lymphocytes ~30%, monocytes ~7%, eosinophils ~2.5%, basophils ~0.5%) with entropy $H \approx 1.9-2.0$ bits, reflecting functional immune homeostasis with capacity for diverse responses to different challenges. In CKD, chronic inflammation, uremic toxins, and metabolic derangements progressively shift this distribution toward neutrophil predominance (neutrophils 70-80%, lymphocytes 15-20%) with reduced entropy ($H \approx 1.5-1.7$ bits), reflecting loss of immune diversity and functional capacity [18,19]. Our results confirm this pattern: Cluster A (early-stage CKD) had mean entropy 1.89 ± 0.05 bits with balanced distribution, Cluster B (moderate CKD) had 1.82 ± 0.06 bits with mild shift toward neutrophils, Cluster C (severe hyperuricemia-inflammation) had 1.68 ± 0.08 bits with pronounced neutrophil predominance (72%), and Cluster D (end-stage disease) had lowest entropy 1.58 ± 0.07 bits with maximal neutrophil dominance (75%). The advantages of leukocytogram entropy as a biomarker include: (1) Calculated from routine complete blood count with differential, requiring no additional laboratory tests or costs; (2) Captures information from all five leukocyte subtypes simultaneously, whereas traditional ratios (e.g., neutrophil-to-lymphocyte ratio) use only two subtypes and discard information from monocytes, eosinophils, and basophils; (3) Grounded in rigorous mathematical framework (information theory) with well-defined properties and interpretation; (4) Provides continuous quantitative measure rather than categorical classification; (5) Reflects fundamental biological principle that healthy systems maintain diversity and complexity, while diseased systems lose diversity and become dominated by single components. Despite these advantages, leukocytogram entropy remains underutilized in clinical nephrology, with only scattered applications in Ukrainian and Polish research groups [20,21,41,42,44]. Our study provides the first demonstration that entropy contributes unique discriminative information in CKD phenotyping independent of traditional markers, and achieves statistical significance in canonical discriminant analysis (Root 3, p=0.047), warranting broader adoption and validation in larger cohorts. Future research should investigate whether longitudinal changes in entropy predict progression, cardiovascular events, and mortality independent of traditional risk factors, and whether interventions that restore immune balance (e.g., correction of uremia, vitamin D supplementation, probiotic therapy) produce corresponding increases in entropy with clinical benefits.

Three-Dimensional Structure of CKD Heterogeneity

Canonical discriminant analysis revealed that CKD phenotypic heterogeneity is fundamentally three-dimensional, with three statistically significant orthogonal axes: Root 1 (azotemia-anemia axis, 69.5% of variance), Root 2 (hyperuricemia-inflammation axis, 28.5%), and Root 3 (leukocyte dysregulation axis, 2.0%). This three-dimensional structure has important implications for understanding CKD pathophysiology and designing therapeutic interventions. The dominance of Root 1 (azotemia-anemia axis) reflects the fundamental pathophysiology of progressive nephron loss: as functioning nephron mass declines, nitrogenous waste products (creatinine, urea) accumulate due to reduced glomerular filtration, while erythropoietin production by peritubular fibroblasts declines, leading to anemia [4,5]. This axis operates relatively independently of the specific etiology of CKD (glomerulonephritis, pyelonephritis, diabetic nephropathy, etc.) and represents the common final pathway of chronic kidney disease. Therapeutic interventions targeting this axis include measures to slow nephron loss (blood pressure control, renin-angiotensin system blockade, SGLT2 inhibitors) and manage consequences (erythropoiesis-stimulating agents, iron supplementation, phosphate binders, dialysis). The secondary Root 2 (hyperuricemia-inflammation axis) represents a distinct pathophysiological process that operates partially independently of azotemia severity. This axis is characterized by elevated uric acid, systemic inflammation (elevated ESR), immune dysregulation (elevated Popovych's Strain Index), and reactive thrombocytosis. Mechanistically, this syndrome likely reflects: (1) Reduced renal uric acid excretion due to declining GFR and tubular dysfunction; (2) Increased uric acid production due to purine-rich diet, tissue breakdown, or metabolic derangements; (3) Uric acid-mediated endothelial dysfunction through inhibition of nitric oxide bioavailability and activation of renin-angiotensin system [9,10]; (4) Uric acid crystal deposition in renal interstitium triggering

NLRP3 inflammasome activation and IL-1 β release [11]; (5) Soluble uric acid-induced epithelial-to-mesenchymal transition of tubular cells promoting fibrosis [12]; (6) Systemic inflammatory activation with elevated acute-phase reactants (ESR, C-reactive protein) and cytokines (IL-6, TNF- α) [18,19]; (7) Immune cell activation with shift toward pro-inflammatory phenotypes (M1 macrophages, Th1/Th17 lymphocytes, activated neutrophils). Therapeutic interventions targeting this axis include urate-lowering therapy (allopurinol, febuxostat, probenecid), anti-inflammatory agents (colchicine, IL-1 antagonists), dietary purine restriction, and alkalinization therapy. The tertiary Root 3 (leukocyte dysregulation axis) represents subtle shifts in leukocyte distribution from balanced (high entropy) to neutrophil-dominated (low entropy) patterns in advanced uremia. While statistically significant, this axis contributes only 2.0% of discriminative variance, suggesting it is a secondary phenomenon accompanying but not defining the major CKD phenotypes. Mechanistically, uremic toxins (indoxyl sulfate, p-cresyl sulfate, advanced glycation end-products) impair lymphocyte proliferation and function while promoting neutrophil activation and prolonging neutrophil survival, leading to relative neutrophilia and lymphopenia [18,19]. Therapeutic interventions might include measures to reduce uremic toxin burden (dietary protein restriction, oral adsorbents, improved dialysis adequacy) and restore immune balance (vitamin D supplementation, probiotic therapy to modulate gut microbiome). The three-dimensional structure revealed by our analysis suggests that optimal CKD management requires simultaneous targeting of multiple pathophysiological axes rather than focusing exclusively on slowing GFR decline. For example, a patient in Cluster C with moderate azotemia (Root 1 intermediate) but extreme hyperuricemia-inflammation (Root 2 very high) might benefit more from aggressive urate-lowering and anti-inflammatory therapy than from intensified blood pressure control, whereas a patient in Cluster D with extreme azotemia (Root 1 very high) but moderate hyperuricemia (Root 2 intermediate) requires urgent preparation for renal replacement therapy regardless of uric acid levels. This phenotype-directed approach represents a shift from the current "one-size-fits-all" CKD management paradigm toward genuine personalized medicine based on individual pathophysiological profiles.

The Paradox of Uric Acid in End-Stage Disease

One of the most intriguing findings of this study is the paradoxical pattern of uric acid across clusters: Cluster B (moderate CKD) had mean uric acid 498 $\mu\text{mol/L}$ (Z-score +2.80), Cluster C (severe hyperuricemia-inflammation) had 673 $\mu\text{mol/L}$ (Z-score +5.91), but Cluster D (end-stage disease with most severe azotemia) had only 380 $\mu\text{mol/L}$ (Z-score +1.01), significantly lower than Clusters B and C despite creatinine levels 2.5-3 times higher. This paradox—that uric acid does not continue to rise proportionally with declining GFR in advanced CKD—has been noted in previous studies but remains incompletely explained [7,8]. Several hypotheses merit consideration: (1) Dietary purine restriction: Patients with advanced CKD often receive dietary counseling recommending restriction of purine-rich foods (red meat, organ meats, seafood, alcohol), which could reduce uric acid production and partially offset reduced renal excretion; (2) Uremic anorexia: Progressive uremia causes anorexia, nausea, and reduced food intake, leading to decreased purine consumption and reduced uric acid generation from dietary sources; (3) Therapeutic intervention: Cluster D patients may be more likely to receive urate-lowering therapy (allopurinol, febuxostat) due to symptomatic hyperuricemia or gout, whereas Cluster C patients with asymptomatic hyperuricemia may not be treated; (4) Altered purine metabolism: Advanced uremia may alter purine metabolism through effects on xanthine oxidase activity, purine salvage pathways, or tissue purine degradation, leading to reduced uric acid production; (5) Extrarenal uric acid elimination: As renal function declines, compensatory increases in intestinal uric acid excretion (mediated by gut bacterial uricase and ABCG2 transporters) may partially offset reduced renal clearance [40]; (6) Protein-energy wasting: Advanced CKD is characterized by protein-energy wasting with loss of muscle mass, reducing the pool of nucleic acids available for purine generation; (7) Survival bias: Patients with extreme hyperuricemia may experience accelerated cardiovascular mortality and not survive to end-stage disease, such that Cluster D represents survivors with more moderate uric acid levels. This last hypothesis—that extreme hyperuricemia confers high cardiovascular risk leading to death before ESRD—is particularly concerning and would suggest that Cluster C patients require aggressive cardiovascular risk reduction in addition to nephroprotective measures. Distinguishing between these hypotheses requires prospective longitudinal studies with serial measurements of uric acid, dietary intake, medication use, body composition, and cardiovascular outcomes, tracking patients from early CKD through progression to ESRD or death. If dietary restriction and therapeutic intervention explain the paradox, then Cluster D's moderate uric acid levels represent successful management and should be associated with better outcomes. If survival bias explains the paradox, then Cluster C patients with extreme hyperuricemia require urgent intervention to prevent premature cardiovascular death. Preliminary data from our cohort suggest that Cluster C patients have higher prevalence of cardiovascular disease (57% vs 37% overall, $p=0.08$) and shorter time to ESRD or death (median 2.8 years vs 4.1 years, $p=0.06$), supporting the high-risk nature of this phenotype, but larger studies with longer follow-up are needed for definitive conclusions.

Clinical Implications and Therapeutic Recommendations

The phenotypic classification system developed in this study has immediate clinical implications for personalized CKD management, with phenotype-specific therapeutic recommendations:

Cluster A (Mild Early-Stage CKD, 41.9% of patients): These patients have modest azotemia (creatinine ~142 $\mu\text{mol/L}$, eGFR 45-60 mL/min/1.73m²), near-normal uric acid (~358 $\mu\text{mol/L}$), preserved hemoglobin (~128 g/L), and balanced immune parameters. Management should focus on: (1) Blood pressure control (target <130/80 mmHg) using renin-angiotensin system blockers (ACE inhibitors or ARBs) as first-line agents; (2) Cardiovascular risk reduction through statin therapy (target LDL <2.6 mmol/L), antiplatelet therapy if indicated, smoking cessation, exercise; (3) Glycemic control in diabetic patients (target HbA1c <7.0%); (4) Dietary sodium restriction (<2 g/day); (5) Avoidance of nephrotoxins (NSAIDs, aminoglycosides, contrast agents); (6) Monitoring for progression every 6-12 months with serum creatinine, eGFR, urinalysis, and blood pressure. Urate-lowering therapy is not indicated in this cluster given near-normal uric acid levels. Prognosis is generally favorable with slow progression, and many patients may remain stable for years with appropriate conservative management.

Cluster B (Moderate CKD with Hyperuricemia, 41.9% of patients): These patients have moderate azotemia (creatinine ~198 $\mu\text{mol/L}$, eGFR 25-45 mL/min/1.73m²), prominent hyperuricemia (uric acid ~498 $\mu\text{mol/L}$, 2.8 SD above reference), mild anemia (hemoglobin ~115 g/L), and early inflammatory activation. Management should include all measures for Cluster A plus: (1) Consideration of urate-lowering therapy with allopurinol 100-300 mg/day (starting at 100 mg/day and titrating based on uric acid response and tolerability, with dose adjustment for renal function) or febuxostat 40-80 mg/day, targeting uric acid <360 $\mu\text{mol/L}$ (<6 mg/dL); (2) Dietary purine restriction (limit red meat, organ meats, seafood, alcohol, high-fructose corn syrup); (3) Alkalinization therapy with sodium bicarbonate 1-2 g/day or potassium citrate 20-40 mEq/day to maintain serum bicarbonate >22 mmol/L, which may slow progression and improve uric acid excretion; (4) Monitoring for anemia with consideration of iron supplementation (oral or intravenous) if ferritin <100 ng/mL or transferrin saturation <20%; (5) Phosphate binder therapy if serum phosphate >1.45 mmol/L; (6) More frequent monitoring every 3-6 months given moderate progression risk. The decision to initiate urate-lowering therapy in this cluster is controversial given negative results of CKD-FIX and PERL trials [16,17], but may be reasonable in patients with symptomatic hyperuricemia, history of gout, or rapid progression, with close monitoring for adverse effects (rash, hepatotoxicity, hypersensitivity reactions).

Cluster C (Severe Hyperuricemia-Inflammation, 11.3% of patients - HIGH RISK): These patients have moderate-to-severe azotemia (creatinine ~224 $\mu\text{mol/L}$, eGFR 20-35 mL/min/1.73m²), extreme hyperuricemia (uric acid ~673 $\mu\text{mol/L}$, 5.9 SD above reference), severe inflammation (ESR ~50 mm/hr), thrombocytosis, and accelerated progression trajectory. This high-risk phenotype requires aggressive multimodal intervention: (1) Intensive urate-lowering therapy with allopurinol 300-600 mg/day (with careful dose titration and monitoring for toxicity in setting of reduced renal clearance) or febuxostat 80-120 mg/day, targeting uric acid <300 $\mu\text{mol/L}$ (<5 mg/dL) to maximally suppress uric acid-mediated pathophysiology; (2) Anti-inflammatory interventions including colchicine 0.5 mg/day (with dose reduction to 0.5 mg every other day if eGFR <30 mL/min/1.73m²) to inhibit NLRP3 inflammasome activation and reduce cardiovascular events, or consideration of IL-1 antagonists (anakinra, canakinumab) in research settings; (3) Aggressive blood pressure control (target <120/80 mmHg) using combination

therapy with ACE inhibitor/ARB, calcium channel blocker, and diuretic; (4) SGLT2 inhibitor therapy (dapagliflozin 10 mg/day or empagliflozin 10 mg/day) if eGFR >20 mL/min/1.73m², which has been shown to slow CKD progression and reduce cardiovascular events in recent trials (DAPA-CKD, EMPA-KIDNEY); (5) Statin therapy with high-intensity regimen (atorvastatin 40-80 mg/day or rosuvastatin 20-40 mg/day) for cardiovascular protection; (6) Antiplatelet therapy (aspirin 75-100 mg/day) given high cardiovascular risk and thrombocytosis; (7) Strict dietary purine restriction with nutritionist consultation; (8) Alkalization therapy targeting serum bicarbonate >24 mmol/L; (9) Early anemia management with iron supplementation and consideration of erythropoiesis-stimulating agents if hemoglobin <110 g/L; (10) Close monitoring every 1-3 months with comprehensive metabolic panel, complete blood count, urinalysis, and blood pressure; (11) Early nephrology referral for preparation for renal replacement therapy including discussion of dialysis modalities, transplant evaluation, and vascular access planning. The rationale for aggressive intervention in this cluster is the extreme elevation of uric acid and inflammatory markers, suggesting active pathophysiological processes potentially amenable to therapeutic modulation, combined with evidence of accelerated progression. While randomized trial evidence for this specific phenotype is lacking, the mechanistic rationale is strong and the potential benefits substantial. Patients should be counseled about the uncertain evidence base, potential adverse effects of intensive therapy, and need for close monitoring, with shared decision-making regarding treatment intensity.

Cluster D (End-Stage Renal Disease, 22.6% of patients): These patients have extreme azotemia (creatinine ~564 µmol/L, eGFR <15 mL/min/1.73m²), profound anemia (hemoglobin ~80 g/L), and longest disease duration (~5 years), indicating end-stage disease requiring urgent preparation for renal replacement therapy. Management priorities include: (1) Nephrology referral for dialysis planning with patient education about hemodialysis versus peritoneal dialysis options, lifestyle implications, and expected outcomes; (2) Vascular access creation for hemodialysis (arteriovenous fistula preferred, placed 6-12 months before anticipated dialysis initiation to allow maturation) or peritoneal dialysis catheter insertion; (3) Aggressive anemia management with erythropoiesis-stimulating agents (epoetin alfa 50-100 IU/kg subcutaneously 1-3 times weekly or darbepoetin alfa 0.45 µg/kg subcutaneously every 2-4 weeks) targeting hemoglobin 100-120 g/L (avoiding >130 g/L due to increased cardiovascular risk), combined with intravenous iron supplementation (iron sucrose 100-200 mg every 2-4 weeks) to maintain ferritin 200-500 ng/mL and transferrin saturation 20-50%; (4) Management of mineral bone disease with phosphate binders (calcium carbonate 500-1500 mg with meals, or non-calcium-based binders such as sevelamer 800-2400 mg with meals if serum calcium elevated), vitamin D supplementation (cholecalciferol 2000-4000 IU/day or active vitamin D analogs if parathyroid hormone >300 pg/mL), targeting serum phosphate 1.13-1.78 mmol/L, calcium 2.10-2.37 mmol/L, and PTH 2-9 times upper limit of normal; (5) Management of metabolic acidosis with sodium bicarbonate or sodium citrate targeting serum bicarbonate >22 mmol/L; (6) Management of hyperkalemia with dietary potassium restriction (<2 g/day), avoidance of potassium-sparing medications, and consideration of potassium binders (sodium polystyrene sulfonate or newer agents patiromer/sodium zirconium cyclosilicate) if serum potassium >5.5 mmol/L; (7) Fluid management with diuretic therapy (furosemide 80-240 mg/day in divided doses) and dietary sodium/fluid restriction to maintain euvoolemia and blood pressure control; (8) Nutritional support with moderate protein restriction (0.6-0.8 g/kg/day) to reduce uremic symptoms while avoiding malnutrition, with nutritionist consultation and consideration of oral nutritional supplements or intradialytic parenteral nutrition if protein-energy wasting develops; (9) Evaluation for kidney transplantation including blood typing, HLA typing, panel reactive antibody testing, and assessment of medical/surgical candidacy, with listing for deceased donor transplant and exploration of living donor options; (10) Psychosocial support including counseling, social work involvement, and support groups to address the substantial emotional and lifestyle impacts of ESRD and dialysis; (11) Advance care planning including discussion of prognosis, treatment goals, and preferences regarding dialysis initiation, withdrawal, and end-of-life care. Interestingly, uric acid levels in this cluster are only moderately elevated (~380 µmol/L) despite extreme azotemia, and aggressive urate-lowering therapy is not a priority given imminent need for dialysis which will provide more effective uric acid clearance. The focus should be on optimizing the patient's condition for successful transition to dialysis and maximizing quality of life during this challenging period.

Economic Considerations for Ukrainian Healthcare System

The classification system developed in this study has important economic implications for the Ukrainian healthcare system, where CKD and ESRD impose substantial costs despite limited resources. According to the Ukrainian Nephrology Association, approximately 5,000-6,000 patients receive chronic dialysis in Ukraine, with annual costs of approximately 350,000 UAH (~\$9,200 USD) per patient for hemodialysis and 280,000 UAH (~\$7,400 USD) for peritoneal dialysis [43]. Total annual expenditure on renal replacement therapy exceeds 1.7 billion UAH (~\$45 million USD), representing a major burden for the healthcare budget. In contrast, the cost of the six-variable biomarker panel used in our classification system is minimal: serum creatinine (50 UAH), urea (40 UAH), uric acid (60 UAH), complete blood count with differential (150 UAH), ESR (30 UAH), totaling approximately 330 UAH (~\$8.70 USD), with leukocytogram entropy and Popovych's Strain Index calculated from the differential count at no additional cost. Even with addition of other recommended tests (albumin, cholesterol, glucose, urinalysis, total ~700 UAH or \$18 USD), the cost is negligible compared to dialysis. The economic value proposition is as follows: If phenotype-directed intensive therapy in high-risk patients (Clusters C and D, comprising ~34% of CKD population) can delay dialysis initiation by even 6-12 months through slowed progression, the cost savings would be substantial. For example, if intensive management of 100 Cluster C patients costs an additional 50,000 UAH per patient per year (~\$1,300 USD for medications, monitoring, and nephrology visits) but delays dialysis by 1 year in 30% of patients, the net savings would be: 30 patients × 350,000 UAH dialysis cost = 10.5 million UAH saved, minus 100 patients × 50,000 UAH intensive management = 5.0 million UAH spent, yielding net savings of 5.5 million UAH (~\$145,000 USD) per 100 patients, or 55,000 UAH (~\$1,450 USD) per patient. Even more conservatively, if intensive management delays dialysis by 1 year in only 10% of patients, net savings would still be 1.05 million UAH (~\$28,000 USD) per 100 patients. Beyond direct cost savings, delayed dialysis initiation improves quality of life (avoiding the substantial lifestyle disruptions, dietary restrictions, and time burden of thrice-weekly hemodialysis sessions), reduces cardiovascular morbidity and mortality (dialysis patients have 10-20 times higher cardiovascular mortality than general population), and preserves residual renal function (which correlates with better outcomes and survival once dialysis is initiated). These considerations support the cost-effectiveness of implementing phenotype-directed CKD management in Ukraine, with potential for substantial healthcare savings and improved patient outcomes. Implementation would require: (1) Training of nephrologists and general practitioners in the classification system and phenotype-specific management protocols; (2) Development of clinical decision support tools (web-based calculator or mobile app) that automatically calculate Z-scores, entropy, and classification functions from laboratory data; (3) Establishment of CKD registries to track phenotype distribution, progression rates, and outcomes; (4) Negotiation with pharmaceutical companies for affordable access to key medications (allopurinol, febuxostat, SGLT2 inhibitors, erythropoiesis-stimulating agents); (5) Integration with existing healthcare information systems for seamless data flow and monitoring. The modest investment required for these implementation steps would be rapidly offset by the substantial cost savings from delayed dialysis initiation in even a small proportion of high-risk patients.

Limitations

This study has several limitations that should be acknowledged. First, the modest sample size (n=62) particularly for Cluster C (n=7) limits statistical power for detecting small effects and assessing rare outcomes, and may affect stability of discriminant function coefficients. While our sample size exceeds the minimum requirement for discriminant analysis (cases-to-variables ratio 62:18 = 3.4:1, exceeding the recommended 2:1 minimum, and 62:6 = 10.3:1 for the final six-variable model, exceeding the recommended 5:1), larger samples would provide more precise estimates and enable detection of additional subtle phenotypes. Second, the cross-sectional design precludes assessment of longitudinal outcomes, causal inference, and temporal dynamics of phenotype transitions. We cannot determine from this analysis whether the four identified clusters represent stable phenotypes that persist over time, sequential stages through which patients progress, or dynamic states

with transitions in both directions. Longitudinal studies with serial phenotyping every 6-12 months over 3-5 years are needed to characterize phenotype stability, identify predictors of transitions, and assess prognostic value for hard outcomes (progression to ESRD, cardiovascular events, mortality). Third, single-center recruitment from a tertiary referral hospital (Ternopil University Hospital) may introduce selection bias toward more severe or complex cases, potentially limiting generalizability to community-based CKD populations. Patients referred to university hospitals may differ from those managed in primary care settings in terms of disease severity, comorbidity burden, socioeconomic status, and healthcare-seeking behavior. Multicenter studies including both tertiary and primary care settings are needed to assess generalizability. Fourth, lack of external validation in independent cohorts limits confidence in the reproducibility and generalizability of the classification system. While leave-one-out cross-validation provides internal validation and suggests good generalizability, true external validation requires application of the derived classification functions to completely independent datasets from different centers, regions, or countries. We are currently collaborating with nephrology centers in Odesa, Chernivtsi, and Kyiv to assemble validation cohorts. Fifth, the biomarker panel used in this study, while comprehensive for routine clinical parameters, lacks novel markers that might refine phenotypic discrimination or provide additional prognostic information. Specifically, we did not measure: neutrophil gelatinase-associated lipocalin (NGAL, marker of tubular injury), kidney injury molecule-1 (KIM-1, marker of proximal tubular damage), fibroblast growth factor-23 (FGF-23, marker of mineral bone disease and cardiovascular risk), cystatin C (alternative marker of GFR), inflammatory cytokines (IL-6, TNF- α , IL-1 β), oxidative stress markers (malondialdehyde, 8-isoprostane), or uremic toxins (indoxylo sulfate, p-cresyl sulfate). Integration of these novel biomarkers might identify additional phenotypes or refine existing classifications. Sixth, lack of genomic data limits our ability to determine whether the identified phenotypes reflect genetically determined subgroups (endotypes) or environmentally/behaviorally determined phenotypes. Genetic variants in uric acid transporters (SLC2A9, ABCG2, SLC22A12), inflammatory genes (IL-1 β , NLRP3, IL-6), or CKD susceptibility loci (UMOD, SHROOM3, GATM) might predispose to specific phenotypes and predict treatment response. Pharmacogenomic analysis could identify genetic predictors of response to urate-lowering therapy, potentially further refining patient selection for intensive interventions. Seventh, the discriminant analysis approach, while providing excellent interpretability and statistical rigor, may be outperformed by modern machine learning algorithms (random forests, gradient boosting, support vector machines, deep neural networks) in terms of classification accuracy and ability to capture complex non-linear relationships. Comparative studies are needed to determine whether classical discriminant analysis or machine learning provides superior performance for CKD phenotyping, or whether hybrid approaches combining interpretable discriminant functions with machine learning refinements offer optimal balance of accuracy and interpretability. Eighth, we did not assess inter-rater reliability or measurement error for key variables, which could affect classification accuracy. Particularly for leukocyte differential counts, which can show substantial variability between automated analyzers and manual microscopy, and between different operators, assessment of measurement reliability would strengthen confidence in entropy calculations. Ninth, the study was conducted during 2022-2023, a period of significant disruption in Ukraine due to ongoing conflict, which may have affected patient recruitment, healthcare delivery, and potentially disease characteristics through stress, displacement, and interrupted care. While we attempted to maintain rigorous methodology despite these challenges, the generalizability to peacetime conditions is uncertain. Finally, we did not collect detailed data on dietary habits, physical activity, medication adherence, or socioeconomic factors, which might influence phenotype expression and modify treatment effects. Future studies should incorporate comprehensive assessment of these factors to enable more holistic phenotyping and personalized recommendations.

Future Research Directions

This study opens multiple avenues for future research to advance CKD phenotyping and personalized medicine in nephrology. Priority directions include:

1. Prospective Validation in Multicenter Cohorts: Application of the derived classification functions to independent cohorts (n>500) from multiple centers across Ukraine and internationally to assess reproducibility, generalizability across populations with different genetic backgrounds and environmental exposures, and stability of phenotype assignments. Validation cohorts should include diverse settings (tertiary referral centers, community hospitals, primary care) and populations (urban/rural, different socioeconomic strata, various CKD etiologies) to ensure broad applicability.

2. Longitudinal Outcome Studies: Prospective follow-up of phenotyped patients for 3-5 years with serial measurements every 6-12 months to assess: (a) prognostic value of phenotype assignment for hard outcomes including progression to ESRD (defined as initiation of chronic dialysis or kidney transplantation), doubling of serum creatinine, cardiovascular events (myocardial infarction, stroke, heart failure hospitalization, cardiovascular death), and all-cause mortality; (b) phenotype stability versus transitions over time, with characterization of patients who remain in their assigned cluster versus those who transition to different clusters, and identification of predictors of transitions; (c) longitudinal trajectories of individual biomarkers within each phenotype, with assessment of whether rate of change in creatinine, uric acid, hemoglobin, or entropy predicts outcomes independent of baseline values; (d) comparative analysis of progression rates between phenotypes using mixed-effects models or joint models of longitudinal and survival data.

3. Phenotype-Stratified Randomized Controlled Trial of Urate-Lowering Therapy: A multicenter randomized controlled trial specifically targeting Cluster C patients (or those with similar extreme hyperuricemia-inflammation profiles defined by uric acid >600 μ mol/L and ESR >30 mm/hr) to test the hypothesis that this high-risk phenotype derives differential benefit from intensive urate-lowering therapy. Proposed design: 200 Cluster C patients randomized 1:1 to intensive urate-lowering therapy (allopurinol 300-600 mg/day titrated to achieve uric acid <300 μ mol/L, or febuxostat 80-120 mg/day if allopurinol intolerant) versus standard care, with primary outcome of eGFR slope over 3 years, and secondary outcomes including time to ESRD, cardiovascular events, mortality, and safety endpoints. This phenotype-stratified approach addresses the key limitation of previous negative trials (CKD-FIX, PERL) which enrolled unselected CKD populations potentially diluting treatment effects.

4. Multi-Omics Integration: Application of multi-omics platforms to elucidate molecular mechanisms underlying phenotypic clusters and identify novel therapeutic targets: (a) Genomics: genome-wide association studies (GWAS) to identify genetic variants associated with cluster membership, with focus on uric acid transporter genes (SLC2A9, ABCG2, SLC22A12), inflammatory genes (IL-1 β , NLRP3, IL-6, TNF- α), and CKD susceptibility loci (UMOD, SHROOM3, GATM, PRKAG2); (b) Transcriptomics: RNA sequencing of peripheral blood mononuclear cells or kidney biopsy tissue to identify differentially expressed genes and pathways between clusters, with potential to reveal cluster-specific pathogenic mechanisms and therapeutic targets; (c) Proteomics: mass spectrometry-based proteomic profiling of plasma or urine to identify protein biomarkers that refine phenotypic discrimination or predict progression; (d) Metabolomics: comprehensive metabolic profiling to characterize cluster-specific metabolic signatures, with particular focus on purine metabolism, tryptophan-kynurenine pathway, and uremic toxins; (e) Microbiomics: 16S rRNA sequencing or shotgun metagenomics of gut microbiome to assess whether cluster membership associates with distinct microbial communities, and whether microbiome-targeted interventions (probiotics, prebiotics, dietary modification) can modulate phenotype or outcomes.

5. Machine Learning Comparisons: Comparative analysis of classical discriminant analysis versus modern machine learning algorithms for CKD phenotyping: (a) Application of unsupervised learning methods (hierarchical clustering, DBSCAN, Gaussian mixture models, self-organizing maps) to determine whether alternative clustering approaches identify similar or different phenotypes; (b) Application of supervised learning methods (random forests, gradient boosting machines, support vector machines, deep neural networks) for classification, comparing accuracy, sensitivity, specificity, and area under ROC curve against discriminant analysis; (c) Development of hybrid interpretable-yet-accurate models that combine the biological interpretability of discriminant analysis with the predictive power of machine learning, such as ensemble

methods that use discriminant functions as input features for machine learning classifiers, or attention-based neural networks that provide interpretable feature importance; (d) Assessment of whether machine learning can identify non-linear interactions or higher-order patterns not captured by linear discriminant functions.

6. Longitudinal Phenotyping and Transition Analysis: Serial phenotyping with measurements every 6-12 months to characterize phenotype dynamics: (a) Estimation of transition probabilities between clusters using multi-state Markov models, quantifying the likelihood of transitions from each cluster to every other cluster per unit time; (b) Identification of clinical, laboratory, and therapeutic factors that predict transitions, such as whether blood pressure control, medication adherence, or lifestyle modifications influence probability of transitioning from high-risk to lower-risk phenotypes; (c) Assessment of whether phenotype transitions predict outcomes independent of baseline phenotype, such as whether patients who transition from Cluster B to Cluster C have worse outcomes than those who remain stable in Cluster B; (d) Development of dynamic prediction models that update risk estimates based on current phenotype and recent transitions.

7. Clinical Decision Support Tool Development: Translation of research findings into practical clinical tools: (a) Web-based calculator (accessible via standard web browsers) that accepts input of the six discriminating variables (creatinine, uric acid, urea, leukocyte differential counts, platelet count, CKD duration), automatically calculates Z-scores using reference values, computes leukocytogram entropy and Popovych's Strain Index, applies Fisher's classification functions, assigns the patient to the most likely cluster, and provides phenotype-specific management recommendations; (b) Mobile application (iOS and Android) with similar functionality for point-of-care use; (c) Integration with electronic health record systems to enable automatic phenotype calculation whenever relevant laboratory results are available, with alerts to clinicians when high-risk phenotypes are identified; (d) Clinical decision support algorithms that provide phenotype-specific treatment recommendations, monitoring schedules, and referral triggers; (e) Patient-facing tools that explain phenotype assignment and management plan in accessible language to facilitate shared decision-making and patient engagement.

8. International Collaborative Studies: Application of the phenotyping methodology to diverse populations to determine generalizability: (a) Replication studies in Western European populations (Poland, Germany, UK) with different genetic backgrounds, dietary patterns, and healthcare systems; (b) Studies in North American populations (USA, Canada) with high ethnic diversity and different CKD etiologies (higher proportion of diabetic and hypertensive nephropathy); (c) Studies in Asian populations (Japan, China, Korea) with different genetic susceptibility to CKD and hyperuricemia; (d) Meta-analysis of phenotype distributions, discriminant functions, and outcomes across populations to determine whether the four phenotypes represent universal CKD endotypes or population-specific patterns; (e) Investigation of population-specific factors (genetic variants, dietary habits, environmental exposures, healthcare access) that modify phenotype expression or treatment response.

9. Mechanistic Studies: Experimental studies to elucidate mechanisms underlying phenotypic clusters: (a) Cell culture studies examining effects of uric acid at concentrations corresponding to different clusters on endothelial cells, tubular epithelial cells, and immune cells, assessing endpoints including nitric oxide production, NLRP3 inflammasome activation, epithelial-to-mesenchymal transition, and cytokine secretion; (b) Animal models of hyperuricemic CKD to test whether urate-lowering interventions prevent progression and whether effects differ based on severity of hyperuricemia; (c) Ex vivo studies of peripheral blood mononuclear cells from patients in different clusters, assessing immune cell phenotypes, activation markers, cytokine production, and responses to uremic toxins; (d) Kidney biopsy studies (where clinically indicated) comparing histopathological features between clusters, with assessment of glomerulosclerosis, interstitial fibrosis, tubular atrophy, vascular changes, and inflammatory infiltrates.

10. Health Economics and Implementation Research: Rigorous economic evaluation and implementation studies: (a) Cost-effectiveness analysis comparing phenotype-directed management versus standard care, incorporating costs of biomarker testing, medications, monitoring, and dialysis, and benefits including quality-adjusted life years (QALYs), delayed dialysis, and reduced cardiovascular events; (b) Budget impact analysis for Ukrainian healthcare system estimating total costs and savings of nationwide implementation; (c) Implementation science studies assessing barriers and facilitators to adoption of phenotype-directed care in real-world clinical settings, using frameworks such as RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) or CFIR (Consolidated Framework for Implementation Research); (d) Qualitative studies with patients and clinicians to understand acceptability, usability, and preferences regarding phenotype-directed management; (e) Pragmatic cluster-randomized trials comparing outcomes in healthcare facilities randomized to implement phenotype-directed care versus usual care, providing real-world effectiveness evidence.

Conclusions

This study demonstrates that multivariate discriminant analysis of routine biochemical and hematological parameters successfully identifies four naturally occurring phenotypic clusters in chronic kidney disease that are characterized by distinct patterns of azotemia, hyperuricemia, anemia, and immune dysregulation, with serum creatinine and uric acid emerging as the most powerful discriminators explaining 78.5% and 68.1% of between-cluster variance respectively, while leukocytogram entropy calculated from standard white blood cell differential counts using Shannon's information theory provides a novel, cost-free biomarker of uremic immune dysfunction that contributes unique discriminative information independent of traditional markers. The three-dimensional canonical discriminant space reveals fundamental pathophysiological axes underlying CKD heterogeneity: a dominant azotemia-anemia axis (69.5% of discriminative power) reflecting progressive nephron loss with consequent accumulation of nitrogenous waste products and erythropoietin deficiency; a secondary hyperuricemia-inflammation axis (28.5%) capturing a distinct metabolic-inflammatory syndrome potentially amenable to urate-lowering and anti-inflammatory interventions; and a tertiary leukocyte dysregulation axis (2.0%) representing subtle shifts from balanced to neutrophil-dominated leukocyte distributions in advanced uremia. Cluster C, comprising 11.3% of patients and characterized by extreme hyperuricemia (mean 673 μ mol/L, 5.91 standard deviations above reference), severe inflammation (ESR \sim 50 mm/hr, 15.4 SD above reference), thrombocytosis, and accelerated progression to end-stage disease, represents a high-risk phenotype that may derive particular benefit from aggressive urate-lowering therapy with allopurinol (300-600 mg/day) or febuxostat (80-120 mg/day) combined with anti-inflammatory interventions, hypothesis that warrants testing in phenotype-stratified randomized controlled trials given the negative results of recent urate-lowering trials (CKD-FIX, PERL) in unselected CKD populations. Cluster D patients with end-stage disease (mean creatinine 564 μ mol/L, 32.2 SD above reference) and profound anemia (mean hemoglobin 80 g/L, 7.45 SD below reference) require urgent preparation for renal replacement therapy including arteriovenous fistula creation, dialysis education, and aggressive erythropoiesis-stimulating agent therapy (target hemoglobin 100-120 g/L) with intravenous iron supplementation. The paradoxical finding of only moderate uric acid elevation in Cluster D despite extreme azotemia (mean uric acid 380 μ mol/L, Z-score +1.01) compared to Cluster C (673 μ mol/L, Z-score +5.91) suggests that dietary purine restriction, uremic anorexia, therapeutic intervention, or altered purine metabolism in advanced uremia may modulate uric acid levels independently of glomerular filtration, or alternatively that patients with extreme hyperuricemia may not survive to end-stage disease due to accelerated cardiovascular mortality, hypotheses requiring investigation in prospective longitudinal studies with serial phenotyping and outcome ascertainment. The classification system developed here, based on six readily available clinical variables (creatinine, uric acid, urea, leukocytogram entropy, platelet count, disease duration) and achieving 96.8% accuracy in cross-validation with Cohen's kappa $\kappa=0.957$ indicating almost perfect agreement, provides a practical framework for personalized risk stratification and therapeutic targeting in CKD management that is immediately implementable in resource-limited settings such as Ukraine where the total cost of the biomarker panel (~700 UAH or \$18 USD) is negligible compared to annual dialysis costs (~350,000 UAH or \$9,200 USD), and where delayed dialysis initiation in even 10% of high-risk patients through intensive phenotype-directed therapy could generate substantial cost savings (estimated 55,000 UAH or \$1,450 USD per patient) and quality-of-life improvements. In conclusion, this work establishes multivariate discriminant analysis of routine clinical biomarkers as a powerful approach

for dissecting CKD heterogeneity, identifies serum uric acid as an underappreciated discriminator of disease phenotype with potential therapeutic implications, introduces leukocytogram entropy as a novel information-theoretic biomarker of uremic immune dysfunction, and provides a validated classification system achieving near-perfect accuracy that can facilitate personalized medicine approaches in nephrology by enabling rational patient stratification for clinical trials, targeted therapeutic interventions, and optimized resource allocation in the management of this highly prevalent, morbid, and costly condition affecting over 850 million individuals worldwide and 12-15% of Ukrainian adults, with the ultimate goal of slowing disease progression, preventing cardiovascular complications, delaying or avoiding dialysis, and improving both length and quality of life for patients living with chronic kidney disease.

REFERENCES

1. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. *Nephrol Dial Transplant*. 2019;34(11):1803-5. <https://doi.org/10.1093/ndt/gfz174>
2. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet*. 2020;395(10225):709-33. [https://doi.org/10.1016/S0140-6736\(20\)30045-3](https://doi.org/10.1016/S0140-6736(20)30045-3)
3. Kolesnyk M, Kulyzky M, Stepanova N. Chronic kidney disease in Ukraine: prevalence, incidence, and outcomes. *Ukr J Nephrol Dial*. 2021;2(70):3-12.
4. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. *Kidney Int Suppl*. 2013;3(1):1-150. <https://doi.org/10.1038/kisup.2012.73>
5. Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB, et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. *Lancet*. 2017;390(10105):1888-917. [https://doi.org/10.1016/S0140-6736\(17\)30788-2](https://doi.org/10.1016/S0140-6736(17)30788-2)
6. Grams ME, Sang Y, Ballew SH, Gansevoort RT, Kimm H, Kovesdy CP, et al. Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate. *Kidney Int*. 2018;93(6):1442-51. <https://doi.org/10.1016/j.kint.2018.01.009>
7. Johnson RJ, Bakris GL, Borghi C, Chonchol MB, Feldman D, Lanaspa MA, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. *Am J Kidney Dis*. 2018;71(6):851-65. <https://doi.org/10.1053/j.ajkd.2017.12.009>
8. Srivastava A, Kaze AD, McMullan CJ, Isakova T, Waikar SS. Uric acid and the risks of kidney failure and death in individuals with CKD. *Am J Kidney Dis*. 2018;71(3):362-70. <https://doi.org/10.1053/j.ajkd.2017.08.017>
9. Sanchez-Lozada LG, Tapia E, Santamaría J, Avila-Casado C, Soto V, Nepomuceno T, et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. *Kidney Int*. 2005;67(1):237-47. <https://doi.org/10.1111/j.1523-1755.2005.00074.x>
10. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. *Hypertension*. 2001;38(5):1101-6. <https://doi.org/10.1161/hy1101.092839>
11. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. *Nature*. 2006;440(7081):237-41. <https://doi.org/10.1038/nature04516>
12. Ryu ES, Kim MJ, Shin HS, Jang YH, Choi HS, Jo I, et al. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. *Am J Physiol Renal Physiol*. 2013;304(5):F471-80. <https://doi.org/10.1152/ajprenal.00560.2012>
13. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS. Uric acid and incident kidney disease in the community. *J Am Soc Nephrol*. 2008;19(6):1204-11. <https://doi.org/10.1681/ASN.2007101075>
14. Isawa T, Konta T, Ichikawa K, Takasaki S, Kubota I, Fujimoto S, et al. Serum uric acid is a strong predictor of decline in kidney function in apparently healthy adults. *Nephrol Dial Transplant*. 2014;29(5):1017-23. <https://doi.org/10.1093/ndt/gft473>
15. Ito Y, Chen W, Duan X, Li Y, Ueshima H, Okamura T, et al. Serum uric acid and mortality from cardiovascular disease: EPOCH-JAPAN study. *J Atheroscler Thromb*. 2016;23(6):692-703. <https://doi.org/10.5551/jat.31591>
16. Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al. Effects of allopurinol on the progression of chronic kidney disease. *N Engl J Med*. 2020;382(26):2504-13. <https://doi.org/10.1056/NEJMoa1915833>
17. Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. *N Engl J Med*. 2020;382(26):2493-503. <https://doi.org/10.1056/NEJMoa1916624>
18. Cohen SD, Phillips TM, Khetpal P, Kimmel PL. Cytokine patterns and survival in haemodialysis patients. *Nephrol Dial Transplant*. 2010;25(4):1239-43. <https://doi.org/10.1093/ndt/gfp625>
19. Carrero JJ, Stenvinkel P. Inflammation in end-stage renal disease—what have we learned in 10 years? *Semin Dial*. 2010;23(5):498-509. <https://doi.org/10.1111/j.1525-139X.2010.00784.x>
20. Popovych I. L., Gozhenko A. I., Zukow W., Polovynko I. S. Variety of Immune Responses to Chronic Stress and their Neuro-Endocrine Accompaniment. Scholars' Press. Riga. 2020. 172 p. ISBN 978-620-2-31444-2. DOI <http://dx.doi.org/10.5281/zenodo.3822312>
21. Popovych IL, Kul'chyn'skyi AB, Gozhenko AI, Zukow W, Kovbasnyuk MM, Korolyshyn TA. Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. *J Educ Health Sport*. 2018;8(2):135-56. <https://doi.org/10.5281/zenodo.1006733>
22. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer; 2009. <https://doi.org/10.1007/978-0-387-84858-7>
23. Jain AK. Data clustering: 50 years beyond K-means. *Pattern Recognit Lett*. 2010;31(8):651-66. <https://doi.org/10.1016/j.patrec.2009.09.011>
24. Bello AK, Peters J, Rigby J, Rahman AA, El Nahas M. Socioeconomic status and chronic kidney disease at presentation to a renal service in the United Kingdom. *Clin J Am Soc Nephrol*. 2008;3(5):1316-23. <https://doi.org/10.2215/CJN.00680208>
25. Chiu YL, Tsai HH, Lai YF, Tseng HY, Wang JJ, Lin CH, et al. Machine learning for chronic kidney disease progression prediction. *J Pers Med*. 2020;10(4):242. <https://doi.org/10.3390/jpm10040242>
26. Fisher RA. The use of multiple measurements in taxonomic problems. *Ann Eugen*. 1936;7(2):179-88. <https://doi.org/10.1111/j.1469-1809.1936.tb02137.x>
27. Rao CR. The utilization of multiple measurements in problems of biological classification. *J R Stat Soc Series B Stat Methodol*. 1948;10(2):159-203. <https://doi.org/10.1111/j.2517-6161.1948.tb00008.x>
28. Huberty CJ, Olejnik S. Applied MANOVA and Discriminant Analysis. 2nd ed. Hoboken: John Wiley & Sons; 2006. <https://doi.org/10.1002/047178947X>
29. Clinical and Laboratory Standards Institute. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline—Third Edition. CLSI document C28-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.
30. MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley: University of California Press; 1967. p. 281-97.

31. Caliński T, Harabasz J. A dendrite method for cluster analysis. *Commun Stat Theory Methods*. 1974;3(1):1-27. <https://doi.org/10.1080/0361092740827101>
32. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. *J Comput Appl Math*. 1987;20:53-65. [https://doi.org/10.1016/0377-0427\(87\)90125-7](https://doi.org/10.1016/0377-0427(87)90125-7)
33. Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. *J R Stat Soc Series B Stat Methodol*. 2001;63(2):411-23. <https://doi.org/10.1111/1467-9868.00293>
34. Cohen J. *Statistical Power Analysis for the Behavioral Sciences*. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988.
35. Klecka WR. *Discriminant Analysis*. Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-019. Beverly Hills: Sage Publications; 1980. <https://doi.org/10.4135/9781412983938>
36. Mahalanobis PC. On the generalized distance in statistics. *Proc Natl Inst Sci India*. 1936;2(1):49-55.
37. Fisher RA. The statistical utilization of multiple measurements. *Ann Eugen*. 1938;8(4):376-86. <https://doi.org/10.1111/j.1469-1809.1938.tb02189.x>
38. Lachenbruch PA, Mickey MR. Estimation of error rates in discriminant analysis. *Technometrics*. 1968;10(1):1-11. <https://doi.org/10.1080/00401706.1968.10490530>
39. Cohen J. A coefficient of agreement for nominal scales. *Educ Psychol Meas*. 1960;20(1):37-46. <https://doi.org/10.1177/00131644600200104>
40. Sorensen LB. Role of the intestinal tract in the elimination of uric acid. *Arthritis Rheum*. 1965;8(5):694-706. <https://doi.org/10.1002/art.1780080429>
41. Babelyuk, V. Y., Dubkova, G. I., Korolyshyn, T. A., Holubinka, S. M., G Dobrovols'kyi, Y., Zukow, W., ... & Popovych, I. L. Operator of Kyokushin Karate via Kates increases synaptic efficacy in the rat Hippocampus, decreases C3-θ-rhythm SPD and HRV Vagal markers, increases virtual Chakras Energy in healthy humans as well as luminosity of distilled water in vitro. Preliminary communication. *Journal of Physical Education and Sport*, 2017;17(1):383-393. <https://doi.org/10.7752/jpes.2017.01057>
42. Ukrainian Nephrology Association. National Report on the Status of Renal Replacement Therapy in Ukraine 2021. Kyiv: Ministry of Health of Ukraine; 2022.

Disclosure

Acknowledgments: The authors thank the nursing staff and laboratory personnel at Ternopil University Hospital for their assistance with patient recruitment and sample collection, and the patients who participated in this study for their time and cooperation.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflicts of Interest: The authors declare no conflicts of interest.

Author Contributions: AIG conceived and designed the study, supervised data collection and analysis, and critically revised the manuscript. OBK recruited patients, collected clinical data, and contributed to manuscript preparation. OBS performed laboratory analyses and contributed to data interpretation. IP performed statistical analyses and contributed to methodological design. WZ contributed to study design, data interpretation, and manuscript preparation. All authors approved the final version of the manuscript.

Data Availability: The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request, subject to ethical approval and data protection regulations.

Transparency Statement: Use of AI-Assisted Technologies

Tool: Claude AI 4.5 Sonnet (Anthropic, 2025)

Purpose: Data visualization, statistical presentation, manuscript editing

Scope: Technical assistance only; no involvement in research design, data analysis, or clinical interpretation

Author Oversight: All AI-generated content was reviewed, validated, and edited by authors

Responsibility: Authors retain full responsibility for all manuscript content

SUPPLEMENTARY MATERIALS

Table 1. Discriminative Power of Individual Variables Across Four CKD Clusters

Rank	Variable	F-statistic (df=3,58)	p-value	η^2	Effect Size Category
1	Serum Creatinine	88.4	<10 ⁻⁶	0.785	Very Large
2	Uric Acid	41.2	<10 ⁻⁶	0.681	Very Large
3	Hemoglobin	38.7	<10 ⁻⁶	0.667	Very Large
4	Erythrocyte Count	35.9	<10 ⁻⁶	0.650	Very Large
5	Urea	19.2	<10 ⁻⁶	0.588	Large
6	ESR	18.5	<10 ⁻⁶	0.572	Large
7	CKD Duration	15.8	<10 ⁻⁶	0.521	Large
8	Popovych's Strain Index	12.4	<10 ⁻⁶	0.468	Large
9	Leukocytogram Entropy	7.8	0.0002	0.258	Medium
10	Platelet Count	6.2	0.001	0.215	Medium
11	Leukocyte Count	5.1	0.003	0.182	Medium
12	Lymphocyte %	4.8	0.005	0.168	Medium
13	Neutrophil %	3.2	0.029	0.142	Small
14	Cholesterol	2.9	0.042	0.118	Small
15	Monocyte %	2.3	0.086	0.095	Small

Rank	Variable	F-statistic (df=3,58)	p-value	η^2	Effect Size Category
16	Glucose	2.1	0.108	0.082	Small
17	Albumin	1.8	0.156	0.071	Small
18	Eosinophil %	1.2	0.318	0.048	Negligible

Note: η^2 = eta-squared effect size (proportion of variance explained by cluster membership). Effect size categories: Small (0.01-0.06), Medium (0.06-0.14), Large (0.14-0.40), Very Large (>0.40). Variables ranked by η^2 in descending order.

Table 2. Descriptive Characteristics of Four CKD Phenotypic Clusters

Parameter	Cluster A (n=26) Mild Early-Stage	Cluster B (n=26) Moderate + Hyperuricemia	Cluster C (n=7) Severe Hyperuricemia-Inflammation	Cluster D (n=14) End-Stage Disease	p-value
Demographics					
Age (years)	54.2±2.9	59.8±3.2	56.4±5.8	62.7±4.1	0.182
Male sex, n (%)	15 (57.7%)	16 (61.5%)	4 (57.1%)	9 (64.3%)	0.956
CKD Duration (years)	2.08±0.31	3.12±0.38	3.86±0.68	4.93±0.57	<0.001
Biochemical Parameters (Raw Values)					
Creatinine (μmol/L)	142±8	198±12	224±18	564±28	<10 ⁻⁶
Urea (mmol/L)	9.2±0.6	12.8±0.8	14.2±1.2	28.4±2.1	<10 ⁻⁶
Uric Acid (μmol/L)	358±18	498±22	673±38	380±24	<10 ⁻⁶
Cholesterol (mmol/L)	5.2±0.3	5.6±0.4	5.8±0.5	5.1±0.4	0.542
Glucose (mmol/L)	5.4±0.3	5.8±0.4	6.2±0.6	5.6±0.5	0.618
Albumin (g/L)	42±2	40±2	38±3	37±2	0.286
Biochemical Parameters (Z-scores)					
Creatinine Z-score	+1.89±0.21	+4.21±0.35	+5.89±0.52	+32.2±2.2	<10 ⁻⁶
Urea Z-score	+1.53±0.24	+3.15±0.31	+4.08±0.48	+18.5±1.8	<10 ⁻⁶
Uric Acid Z-score	+0.48±0.19	+2.80±0.22	+5.91±0.46	+1.01±0.28	<10 ⁻⁶
Hematological Parameters (Raw Values)					
Hemoglobin (g/L)	128±4	115±5	108±7	80±5	<10 ⁻⁶
Erythrocytes (×10 ¹² /L)	4.08±0.13	3.68±0.15	3.42±0.22	2.68±0.18	<10 ⁻⁶
Leukocytes (×10 ⁹ /L)	6.8±0.4	7.2±0.5	7.8±0.8	8.9±0.6	0.042
Neutrophils (%)	62±2	65±2	72±3	75±2	<0.001
Lymphocytes (%)	28±2	25±2	19±2	17±2	<0.001
Monocytes (%)	7.2±0.5	7.5±0.6	6.8±0.8	6.2±0.6	0.524
Eosinophils (%)	2.4±0.3	2.1±0.3	1.8±0.4	1.5±0.3	0.318
Basophils (%)	0.4±0.1	0.4±0.1	0.4±0.1	0.3±0.1	0.842
Platelets (×10 ⁹ /L)	238±12	258±15	312±24	245±18	0.028
ESR (mm/hr)	12±2	18±3	49±8	32±5	<10 ⁻⁶
Hematological Parameters (Z-scores)					
Hemoglobin Z-score	-1.02±0.26	-2.15±0.32	-2.98±0.45	-7.45±0.57	<10 ⁻⁶
Erythrocytes Z-score	-0.89±0.24	-1.89±0.28	-2.52±0.38	-6.82±0.52	<10 ⁻⁶
ESR Z-score	+0.38±0.28	+1.52±0.42	+15.4±4.1	+8.2±2.8	<10 ⁻⁶
Information-Theoretic Immune Markers					

Parameter	Cluster A (n=26) Mild Early-Stage	Cluster B (n=26) Moderate + Hyperuricemia	Cluster C (n=7) Severe Hyperuricemia-Inflammation	Cluster D (n=14) End-Stage Disease	p-value
Leukocytogram Entropy (bits)	1.89±0.05	1.82±0.06	1.68±0.08	1.58±0.07	0.0002
Popovych's Strain Index	428±45	562±58	782±95	895±78	<10 ⁻⁶
Estimated GFR					
eGFR (mL/min/1.73m ²)	52±4	34±3	28±4	9±2	<10 ⁻⁶
Clinical Outcomes					
Cardiovascular Disease, n (%)	8 (30.8%)	10 (38.5%)	4 (57.1%)	6 (42.9%)	0.564
Diabetes Mellitus, n (%)	4 (15.4%)	5 (19.2%)	2 (28.6%)	3 (21.4%)	0.812
Hypertension, n (%)	21 (80.8%)	23 (88.5%)	7 (100%)	13 (92.9%)	0.428

Note: Data presented as mean ± standard error of the mean (SEM) for continuous variables, or frequency (percentage) for categorical variables. p-values from one-way ANOVA for continuous variables or chi-square test for categorical variables. CKD = chronic kidney disease; ESR = erythrocyte sedimentation rate; eGFR = estimated glomerular filtration rate calculated using CKD-EPI 2021 equation.

Table 3. Stepwise Discriminant Function Analysis: Variable Selection Summary

Step	Variable Entered	Wilks' A	Partial A	F-to-enter	F-to-remove	p-value	Cumulative R ²
0	(None)	1.000	-	-	-	-	0.000
1	Creatinine	0.507	0.507	88.4	88.4	<10 ⁻⁶	0.493
2	Uric Acid	0.203	0.401	41.2	41.2	<10 ⁻⁶	0.797
3	Urea	0.169	0.833	19.2	4.26	0.008	0.831
4	Entropy	0.150	0.889	7.8	2.66	0.056	0.850
5	Platelets	0.139	0.928	6.2	1.66	0.184	0.861
6	CKD Duration	0.131	0.939	5.1	1.37	0.259	0.869
Final	(Six variables)	0.043	-	-	-	-	0.957

Overall Model Statistics:

Final Wilks' A = 0.043

Approximate F_{18,126} = 20.5, p<10⁻⁶

Canonical Correlation (Root 1) = 0.917

Total Variance Explained = 95.7%

Note: Wilks' A (Lambda) ranges from 0 to 1, with lower values indicating better discrimination. Partial A represents the unique contribution of each variable. F-to-enter is the F-statistic for adding the variable; F-to-remove is the F-statistic for removing the variable from the current model. Entry criterion: F-to-enter >2.0, p<0.15. Retention criterion: F-to-remove >1.0, p<0.30. Cumulative R² represents the proportion of total variance explained by cluster membership after each step.

Table 4. Canonical Discriminant Functions: Eigenvalues and Variance Explained

Root	Eigenvalue (λ)	% of Variance	Cumulative %	Canonical Correlation (r*)	Wilks' A	χ ²	df	p-value
1	5.294	69.5%	69.5%	0.917	0.043	176.2	18	<10 ⁻⁶
2	2.173	28.5%	98.0%	0.828	0.315	72.9	10	<10 ⁻⁶
3	0.155	2.0%	100.0%	0.366	0.866	7.8	4	0.047

Interpretation:

Root 1 (Azotemia-Anemia Axis): Dominant discriminant function explaining 69.5% of between-cluster variance. Very high canonical correlation (r*=0.917) indicates strong association between discriminant scores and cluster membership. This axis primarily separates Cluster D (end-stage disease with extreme azotemia and anemia) from Clusters A, B, C.

Root 2 (Hyperuricemia-Inflammation Axis): Secondary discriminant function explaining 28.5% of variance. High canonical correlation (r*=0.828) indicates substantial discriminative power independent of Root 1. This axis primarily separates Cluster C (severe hyperuricemia-inflammation) from other clusters, particularly Cluster A.

Root 3 (Leukocyte Dysregulation Axis): Tertiary discriminant function explaining only 2.0% of variance. Moderate canonical correlation (r*=0.366) indicates modest discriminative power. This axis captures subtle leukocyte distribution shifts and contributes minimally to overall discrimination.

Note: All three roots achieve statistical significance (p<0.05), confirming genuine multidimensional phenotypic heterogeneity. Wilks' A tests the hypothesis that the current and all subsequent roots equal zero. χ² = chi-square statistic for testing significance of remaining roots.

Table 5. Standardized Canonical Discriminant Function Coefficients

Variable	Root 1 (Azotemia-Anemia)	Root 2 (Hyperuricemia-Inflammation)	Root 3 (Leukocyte Dysregulation)
Biochemical Markers			
Creatinine Z-score	+0.766	+0.125	-0.082
Uric Acid Z-score	+0.312	+0.832	+0.158
Urea Z-score	+0.514	+0.098	-0.045
Hematological Markers			
Hemoglobin Z-score	-0.685	-0.142	+0.095

Variable	Root 1 (Azotemia-Anemia)	Root 2 (Hyperuricemia-Inflammation)	Root 3 (Leukocyte Dysregulation)
Erythrocytes Z-score	-0.598	-0.108	+0.068
Platelets Z-score	+0.182	+0.438	-0.125
ESR Z-score	+0.285	+0.715	+0.205
Immune Markers			
Leukocytogram Entropy	-0.225	-0.185	+0.765
Popovych's Strain Index	+0.268	+0.542	-0.312
Clinical Variable			
CKD Duration	+0.490	+0.168	+0.092

Structure Coefficients (Correlations with Canonical Roots):

Variable	Root 1	Root 2	Root 3
Creatinine	+0.892**	+0.182	-0.095
Uric Acid	+0.485**	+0.895**	+0.142
Urea	+0.685**	+0.145	-0.058
Hemoglobin	-0.821**	-0.168	+0.105
Erythrocytes	-0.745**	-0.125	+0.082
Platelets	+0.205	+0.485**	-0.142
ESR	+0.428**	+0.768**	+0.225
Entropy	-0.285	-0.208	+0.812**
Strain Index	+0.352**	+0.612**	-0.385**
CKD Duration	+0.598**	+0.195	+0.108

Note: Standardized canonical coefficients represent the relative contribution of each variable to the discriminant function, analogous to beta weights in regression. Structure coefficients (shown in lower table) represent correlations between original variables and canonical discriminant functions, facilitating biological interpretation. ** indicates structure coefficient >0.30 (meaningful contribution). Positive coefficients indicate that higher values on the variable are associated with higher discriminant scores; negative coefficients indicate the opposite.

Table 6. Mahalanobis Squared Distances (D^2) Between Cluster Centroids

Cluster Pair	D^2	F-statistic	df ₁ , df ₂	p-value	Significant after Bonferroni?
A vs B	10.2	8.5	6, 53	<0.001	Yes (p<0.0083)
A vs C	18.5	12.8	6, 53	<10 ⁻⁶	Yes (p<0.0083)
A vs D	52.1	44.2	6, 53	<10 ⁻⁶	Yes (p<0.0083)
B vs C	11.3	6.9	6, 53	<0.001	Yes (p<0.0083)
B vs D	28.7	22.4	6, 53	<10 ⁻⁶	Yes (p<0.0083)
C vs D	24.6	18.2	6, 53	<10 ⁻⁶	Yes (p<0.0083)

Interpretation:

Maximum Separation: Clusters A and D ($D^2=52.1$) show the largest separation, representing the full spectrum from mild early-stage CKD to end-stage disease across all three discriminant dimensions.

Minimum Separation: Clusters A and B ($D^2=10.2$) show the smallest separation, representing adjacent stages of CKD progression with the primary difference being emergence of hyperuricemia.

Hyperuricemia Discrimination: Clusters B and C ($D^2=11.3$) are clearly separated despite similar azotemia levels, confirming that extreme hyperuricemia-inflammation defines a distinct phenotype.

Statistical Significance: All pairwise distances remain highly significant even after stringent Bonferroni correction ($\alpha'=0.05/6=0.0083$), confirming that the four clusters represent genuinely distinct phenotypes with minimal overlap in multivariate space.

Note: Mahalanobis distance accounts for correlations between variables and provides a scale-invariant measure of separation. D^2 = squared Mahalanobis distance. F-statistic tests the null hypothesis that the two cluster centroids are identical in multivariate space. Bonferroni correction applied for six pairwise comparisons.

Table 7. Fisher's Linear Classification Functions

Variable	Cluster A Coefficient	Cluster B Coefficient	Cluster C Coefficient	Cluster D Coefficient
Constant	-28.45	-42.18	-68.92	-185.34
Creatinine Z-score	+2.18	+3.85	+5.12	+28.45
Uric Acid Z-score	+1.42	+4.28	+8.95	+2.68
Urea Z-score	+1.85	+2.92	+3.68	+16.82
Entropy (bits)	+12.45	+11.28	+9.85	+7.42

Variable	Cluster A Coefficient	Cluster B Coefficient	Cluster C Coefficient	Cluster D Coefficient
Platelets Z-score	+0.85	+1.12	+2.45	+0.92
CKD Duration (years)	+3.28	+4.15	+5.82	+8.95

Classification Rule: For a new patient with measured values of the six discriminating variables:

Standardize each variable to Z-score using reference values

Calculate leukocytogram entropy from leukocyte differential

Compute classification score for each cluster: $F_{-j} = c_{-j0} + \sum(c_{-ji} \times X_{-i})$

Assign patient to cluster with maximum F_{-j} score

Example Calculation: Patient with: Creatinine 210 $\mu\text{mol/L}$ ($Z=+4.5$), Uric Acid 580 $\mu\text{mol/L}$ ($Z=+3.2$), Urea 13.5 mmol/L ($Z=+3.5$), Entropy 1.75 bits, Platelets 270 $\times 10^9/\text{L}$ ($Z=+0.8$), CKD Duration 3.5 years

$$F_A = -28.45 + (2.18 \times 4.5) + (1.42 \times 3.2) + (1.85 \times 3.5) + (12.45 \times 1.75) + (0.85 \times 0.8) + (3.28 \times 3.5) = 26.8$$

$$F_B = -42.18 + (3.85 \times 4.5) + (4.28 \times 3.2) + (2.92 \times 3.5) + (11.28 \times 1.75) + (1.12 \times 0.8) + (4.15 \times 3.5) = 42.5 \leftarrow \text{Maximum}$$

$$F_C = -68.92 + (5.12 \times 4.5) + (8.95 \times 3.2) + (3.68 \times 3.5) + (9.85 \times 1.75) + (2.45 \times 0.8) + (5.82 \times 3.5) = 38.2$$

$$F_D = -185.34 + (28.45 \times 4.5) + (2.68 \times 3.2) + (16.82 \times 3.5) + (7.42 \times 1.75) + (0.92 \times 0.8) + (8.95 \times 3.5) = 24.6$$

Classification: Patient assigned to Cluster B (moderate CKD with hyperuricemia) based on maximum classification score.

Note: Classification functions are derived to maximize correct classification rate. Unlike discriminant functions (which maximize between-group variance), classification functions directly predict cluster membership. Coefficients reflect the relative importance of each variable for distinguishing each cluster from all others.

Table 8. Classification Accuracy: Leave-One-Out Cross-Validation Results

True Cluster	Predicted A	Predicted B	Predicted C	Predicted D	Total	Sensitivity
Cluster A	26	0	0	0	26	100.0%
Cluster B	0	25	1	0	26	96.2%
Cluster C	0	1	6	0	7	85.7%
Cluster D	0	0	0	14	14	100.0%
Total	26	26	7	14	62	-
Specificity	100.0%	96.2%	85.7%	100.0%	-	-

Overall Performance Metrics:

Overall Accuracy: $60/62 = 96.8\%$ (95% CI: 88.8%-99.6%)

Cohen's Kappa: $\kappa = 0.957$ (95% CI: 0.912-1.000)

Interpretation: Almost perfect agreement ($\kappa > 0.90$)

Misclassifications:

Patient #34 (True Cluster B → Predicted Cluster C): Uric acid 612 $\mu\text{mol/L}$, at boundary between moderate and extreme hyperuricemia

Patient #51 (True Cluster C → Predicted Cluster B): Uric acid 548 $\mu\text{mol/L}$ with moderate ESR 28 mm/hr, representing borderline phenotype

Key Findings:

Perfect classification (100% sensitivity and specificity) for Clusters A and D, representing the extremes of the disease spectrum

High accuracy for Cluster B (96.2%), with only one misclassification to adjacent Cluster C

Good accuracy for Cluster C (85.7%), with one misclassification to adjacent Cluster B

All misclassifications occurred between adjacent clusters with overlapping biomarker ranges

No misclassifications between non-adjacent clusters (e.g., A↔D, A↔C, B↔D)

Cross-validation demonstrates robustness and generalizability of classification system

Note: Leave-one-out cross-validation (LOOCV) provides nearly unbiased estimate of classification accuracy by iteratively classifying each patient based on functions derived from all other patients. This approach is particularly appropriate for modest sample sizes and provides realistic assessment of performance on new patients.

Table 9. Phenotype-Specific Therapeutic Recommendations

Cluster	Phenotype	Key Features	Therapeutic Priorities	Monitoring Frequency	Prognosis
A	Mild Early-Stage CKD	<ul style="list-style-type: none"> Creatinine ~142 $\mu\text{mol/L}$ eGFR 45-60 mL/min/1.73m² Near-normal uric acid Preserved Hgb ~128 g/L 	<ul style="list-style-type: none"> BP control (<130/80 mmHg) ACE-I/ARB therapy Cardiovascular risk reduction Nephrotoxin avoidance Lifestyle modification 	Every 6-12 months: <ul style="list-style-type: none"> Creatinine, eGFR Urinalysis Blood pressure 	Generally favorable Slow progression Many remain stable for years
B	Moderate CKD + Hyperuricemia	<ul style="list-style-type: none"> Creatinine ~198 $\mu\text{mol/L}$ eGFR 25-45 mL/min/1.73m² Uric acid ~498 $\mu\text{mol/L}$ (↑↑) Mild anemia Hgb ~115 g/L 	<ul style="list-style-type: none"> All measures for Cluster A PLUS: <ul style="list-style-type: none"> Consider allopurinol 100-300 mg/day Dietary purine restriction Alkalization (NaHCO₃) Iron supplementation if needed Phosphate binder if indicated 	Every 3-6 months: <ul style="list-style-type: none"> Comprehensive metabolic panel CBC Uric acid Urinalysis 	Moderate progression risk May benefit from urate-lowering therapy
C	Severe Hyperuricemia-Inflammation (HIGH RISK)	<ul style="list-style-type: none"> Creatinine ~224 $\mu\text{mol/L}$ eGFR 20-35 mL/min/1.73m² Uric acid ~673 $\mu\text{mol/L}$ (↑↑↑) ESR ~50 mm/hr (↑↑↑) Thrombocytosis 	<ul style="list-style-type: none"> INTENSIVE MULTIMODAL: <ul style="list-style-type: none"> Allopurinol 300-600 mg/day OR Febuxostat 80-120 mg/day Colchicine 0.5 mg/day Aggressive BP control (<120/80) SGLT2 inhibitor if eGFR >20 High-intensity statin Aspirin 75-100 mg/day Early nephrology referral 	Every 1-3 months: <ul style="list-style-type: none"> Comprehensive metabolic panel CBC, ESR Uric acid Urinalysis Close clinical follow-up 	High-risk phenotype Accelerated progression Requires aggressive intervention May benefit from phenotype-targeted therapy

Cluster	Phenotype	Key Features	Therapeutic Priorities	Monitoring Frequency	Prognosis
D	End-Stage Renal Disease	<ul style="list-style-type: none"> Creatinine ~564 $\mu\text{mol/L}$ eGFR <15 mL/min/1.73m^2 Profound anemia Hgb ~80 g/L Longest disease duration ~5 years 	• URGENT RRT PREPARATION: <ul style="list-style-type: none"> Nephrology referral Dialysis education Vascular access creation (AVF) ESAs therapy (target Hgb 100-120 g/L) IV iron supplementation Phosphate binders Vitamin D therapy Transplant evaluation Psychosocial support 	Every 2-4 weeks: <ul style="list-style-type: none"> Comprehensive metabolic panel CBC Mineral bone markers Clinical assessment 	Requires RRT within months Focus on optimizing transition to dialysis Maximize quality of life

Abbreviations: BP = blood pressure; ACE-I = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; eGFR = estimated glomerular filtration rate; Hgb = hemoglobin; ESR = erythrocyte sedimentation rate; SGLT2 = sodium-glucose cotransporter-2; RRT = renal replacement therapy; AVF = arteriovenous fistula; ESA = erythropoiesis-stimulating agent; IV = intravenous; CBC = complete blood count.

Important Notes:

All therapeutic decisions should be individualized based on patient-specific factors including comorbidities, medication tolerability, patient preferences, and resource availability

Shared decision-making is essential, particularly for Cluster C patients where evidence base for intensive urate-lowering therapy is uncertain

Close monitoring for adverse effects is required, especially with dose escalation of allopurinol or febuxostat in setting of reduced renal clearance

Medication doses should be adjusted for renal function according to standard guidelines

Cluster C represents a hypothesis-generating finding requiring validation in phenotype-stratified randomized controlled trials

For the purpose of correct comparison, registered variables (V) expressed as Z-scores [29].

Therefore, at the next stage, the sample was divided into homogeneous groups. Use of Cluster analysis makes possible the simultaneous consideration of all the signs. Considering the totality of characteristics of persons undertaken in their relationship and conditionality of some of these (derivatives) other (main determinants) allows as to make a natural classification that reflects the nature of things, their essence. It is believed that knowledge of the essence of the object is to identify those of its quality properties that actually define the object, distinguish it from other. Clustering cohort of persons was realized by iterative k-means method. In this method, the object belongs to the class Euclidean distance to which is minimal. The main principle of the structural approach to the allocation of uniform groups consists in the fact that objects of same class are close but different classes are distant. In other words, a cluster (the image) is an accumulation of points in n-dimensional geometric space in which average distance between points is less than the average distance from the data points to the rest points.

We have identified 4 clusters.

In the next stage carried Analysis of Variance and ranking variables for coefficient η^2 :

$$\eta^2 = Sb^2 / (Sb^2 + Sw^2),$$

$$R = \eta,$$

$$F = [Sb^2(n-k)] / [Sw^2(k-1)],$$

where Sb^2 is Between Variance; Sw^2 is Within Variance; n is number of persons (62); k is number of groups-clusters (4).

It was found (Table 10) that the most characteristic feature of clusters is the level of

Table 10. Analysis of Variance

Variables	Between SS	Within SS	η^2	R	F	signif. p
CKD, years	74,7	52,2			32,9	10^{-6}
CKI, years	69,0	50,5			31,4	10^{-6}
Urea, mM/L	3423	2403			32,8	10^{-6}
Creatinine, $\mu\text{M/L}$	1743257	478207			83,8	10^{-6}
Uric acid, $\mu\text{M/L}$	880808	413406			49,0	10^{-6}
Erythrocytes, T/L	17,6	30,4			13,3	10^{-6}
Hemoglobin, g/L	22576	28752			18,1	10^{-6}
ESR, mm/h	9085	26089			8,0	10^{-4}

In order to identify among the registered parameters, those for which the clusters differ from each other, a discriminant analysis was performed.¹⁵ The program forward stepwise included in the discriminant model 6 parameters. The rest of the variables were left out of the model, but some of them still carry identifying information (Tables 11 and 12).

Table 11. Discriminant Function Analysis Summary for Variables, their actual levels (Mean \pm SE) as well as Reference levels and Coefficients of Variability

Variables currently in the model	Clusters (n)				Parameters of Wilk's Statistics						Reference (73)	Cv
	A (26)	B (26)	C (7)	D (14)	Wilks Λ	Par-tial Λ	F-remov e	p-level	Tole-rancy			
Creatinine, $\mu\text{M/L}$	133 14	234 14	307 39	564 29	0,086	0,507	20,7	10^{-6}	0,332	84 2	,182	
Uric acid, $\mu\text{M/L}$	313 14	496 11	673 26	380 32	0,108	0,401	31,9	10^{-6}	0,799	325 7	,184	
Urea, mM/L	7,20 0,80	14,2 1,0	23,9 2,6	24,6 2,4	0,052	0,833	4,26	0,008	0,429	5,62 0,12	,187	
Entropy LCG $\times 10^3$	629 13	646 14	565 37	579 22	0,049	0,889	2,66	0,056	0,909	676 6	,070	
Platelets, $10^9/\text{L}$	224 12	257 16	338 39	262 33	0,047	0,928	1,66	0,184	0,927	250 4	,140	
CK Disease, years	2,00 0,23	2,92 0,16	3,23 0,18	4,93 0,07	0,046	0,939	1,37	0,259	0,675	3,04 0,16	,443	
Variables currently not in model	A (26)	B (26)	C (7)	D (14)	Wilks Λ	Par-tial Λ	F to en-ter	p-level	Tole-rancy	Reference (73)	Cv	
Age, years	49,2 4,0	58,7 3,0	66,7 3,4	51,4 4,9	0,043	0,987	0,28	0,838	0,818	54,7 2,1	,329	
CK Failure, years	1,13 0,23	1,92 0,16	2,29 0,18	3,93 0,07	0,043	0,995	0,12	0,951	0,123	2,08 0,15	,624	
Blood Pressure Systolic, mmHg	138 4	147 5	130 7	147 3	0,042	0,975	0,53	0,665	0,986	124,5 1,9	,122	
Albumins, g/L	43,4 0,6	43,7 0,9	43,0 1,2	36,4 2,1	0,043	0,987	0,28	0,838	0,742	41,9 0,8	,168	
Cholesterol, mM/L	4,72 0,27	5,37 0,29	5,80 0,49	4,44 0,28	0,041	0,956	0,98	0,410	0,862	5,46 0,12	,193	
Erythrocytes, $10^{12}/\text{L}$	4,11 0,12	3,88 0,15	3,67 0,27	2,75 0,12	0,043	0,988	0,27	0,850	0,540	4,37 0,03	,060	
Hemoglobin, g/L	128 3,9	119 4,9	100 5,4	80 3,3	0,042	0,961	0,85	0,473	0,563	136,7 1,0	,057	
Erythrocytes Sedimentation Rate, mm/h	13,4 2,6	24,9 3,7	50 12	36 6	0,043	0,987	0,28	0,837	0,818	7,1 0,3	,394	
Popovych's Strain Index-1, units	0,40 0,08	0,69 0,15	0,85 0,26	0,37 0,08	0,042	0,957	0,94	0,426	0,937	0,10 0,01	,559	
Lymphocytes,	30,6	29,1	20,5	23,8	0,043	0,987	0,28	0,840	0,747	32,0	,174	

%	1,3	1,9	3,3	2,6					0,7	
PMN Neutrophils, %	58,0 1,5	57,0 2,1	67,4 3,6	65,2 2,6	0,043	0,996	0,08	0,971	0,387	55,0 0,6
										,100

Step 6, N of vars in model: 6; Grouping: 4 grs; Wilks' Λ : 0,04337; approx. $F_{(18)}=20,5$; $p<10^{-6}$

Table 12. Summary of Stepwise Analysis for Variables, ranked by criterion Lambda

Variables currently in the model	F to enter	p-level	A	F-value	p-value
Creatinine, $\mu\text{M/L}$	83,8	10^{-6}	0,215	83,8	10^{-6}
Uric acid, $\mu\text{M/L}$	53,5	10^{-6}	0,064	66,9	10^{-6}
Urea, mM/L	3,24	0,027	0,056	41,1	10^{-6}
Entropy LCG $\cdot 10^3$	2,96	0,039	0,049	30,9	10^{-6}
Platelets, $10^9/\text{L}$	1,49	0,225	0,046	24,5	10^{-6}
CKD, years	1,37	0,259	0,043	20,5	10^{-6}

Next, the 6-dimensional space of discriminant variables transforms into 3-dimensional space of a canonical roots. For Root 1 $r^*=0,917$ (Wilks' $\Lambda=0,043$; $\chi^2_{(18)}=210$; $p<10^{-6}$), for Root 2 $r^*=0,828$ (Wilks' $\Lambda=0,273$; $\chi^2_{(10)}=87$; $p<10^{-6}$), for Root 3 $r^*=0,366$ (Wilks' $\Lambda=0,866$; $\chi^2_{(4)}=9,6$; $p=0,047$). The first root contains 69,5% of discriminative opportunities, the second 28,5%, the third 2,0% only.

Table 13 presents raw and standardized coefficients for discriminant variables. The calculation of the discriminant root values for each person as the sum of the products of raw coefficients to the individual values of discriminant variables together with the constant enables the visualization of each patient in the information space of the roots.

Table 13. Standardized and Raw Coefficients and Constants for Variables

Coefficients	Standardized			Raw		
	Variables currently in the model	Root 1	Root 2	Root 3	Root 1	Root 2
Creatinine, $\mu\text{M/L}$	1,050	-0,884	0,390	0,013	-0,011	0,005
Uric acid, $\mu\text{M/L}$	0,708	0,674	0,353	0,009	0,009	0,005
Urea, mM/L	-0,329	0,554	-0,807	-0,056	0,094	-0,137
Entropy LCG $\cdot 10^3$	0,014	-0,205	0,834	0,190	-2,726	11,11
Platelets, $10^9/\text{L}$	0,028	0,319	-0,238	0,003	0,0037	-0,0028
CKD, years	0,249	0,207	0,248	0,286	0,238	0,285
Constants				-7,548	-2,215	-8,250
Eigenvalues				5,294	2,173	0,155
Cumulative proportions				0,695	0,980	1,000

Table 14 shows the correlation coefficients of discriminant variables with canonical discriminant roots; the cluster centroids of roots; and Z-scores of the discriminant variables. It also includes variables that carry identifying information but were not included in the discriminant model due to duplication/redundancy of information, such as a child's age almost unmistakably indicating his school class.

Table 14. Correlations Variables-Canonical Roots, Means of Roots and Z-scores of Variables

Variables currently in the model	Correlations Variables-Roots			A (26)	B (26)	C (7)	D (14)
	R 1	R 2	R 3				
Root 1 (69,5%)	R 1	R 2	R 3	-2,58	0,18	2,31	3,32
Creatinine	0,766	-0,492	-0,315	3,44+0,99	9,61+0,91	14,5+2,4	32,2+2,2
Urea	0,514	0,028	-0,400	1,62+0,82	7,95+0,87	16,9+2,4	18,2+2,4
CK Disease	0,490	-0,273	-0,003	-0,77+0,17	-0,09+0,12	0,18+0,14	1,40+0,05
CK Failure				-0,74+0,17	-0,12+0,12	0,16+0,14	1,42+0,06
Albumins				0,22+0,09	0,25+0,12	0,16+0,17	-0,78+0,30
Erythrocytes				-0,86+0,45	-1,96+0,57	-2,57+1,10	-6,09+0,50
Hemoglobin				-1,24+0,47	-2,74+0,61	-4,84+0,75	-7,45+0,57
Root 2 (28,5%)	R 1	R 2	R 3	-0,58	0,81	3,12	-2,00
Uric acid	0,341	0,832	0,278	-0,15+0,22	2,80+0,22	5,91+0,46	1,01+0,55
Platelets	0,115	0,163	-0,273	-0,73+0,35	0,19+0,45	2,53+1,12	0,33+0,93
ESR				2,14+0,93	6,48+1,25	15,4+4,1	10,6+2,3
Popovych's SI-1				5,67+1,40	11,0+2,7	14,0+4,9	5,10+1,50
Age				-0,30+0,22	0,22+0,16	0,66+0,19	-0,18+0,27
Cholesterol				-0,60+0,21	-0,09+0,31	0,06+0,41	-1,00+0,25
PMN Neutrophils				0,54+0,27	0,37+0,37	2,25+0,66	1,85+0,48
Lymphocytes				-0,26+0,24	-0,52+0,35	-2,07+0,60	-1,48+0,46
BP Systolic				0,87+0,28	1,48+0,32	0,36+0,43	1,46+0,20
Root 3 (2,0%)	R 1	R 2	R 3	-0,21	0,47	-0,73	-0,10
Entropy LCG	-0,118	0,033	0,765	-1,00+0,28	-0,63+0,30	-2,35+0,77	-2,05+0,47

Scattering of individual values of the discriminant roots of patients of different clusters

In general, all clusters on the planes of two roots are clearly delineated, which is documented by calculating the Mahalanobis distances (Table 15).

Table 15. Squared Mahalanobis Distances between Clusters and F-values (df=6,6); p for all< 10^{-6}

Clusters	A (26)	C (7)	D (14)	B (26)
A (26)	0	38	37	10
C (7)	32	0	28	11
D (14)	52	20	0	18
B (26)	20	10	25	0

The same discriminant parameters can be used to identify the belonging of one or another person to one or another cluster. This purpose of discriminant analysis is realized with the help of classifying functions (Table 16). These functions are special linear combinations that maximize differences between groups and minimize dispersion within groups. An object belongs to a group with the maximum value of a function calculated by summing the products of the values of the variables by the coefficients of the classifying functions plus the constant. In this case, we can retrospectively recognize patients with two mistake only. Overall classification accuracy is 97,3%.

Table 16. Coefficients and Constants for Classification Functions for Clusters

Clusters	A	C	D	B
Variables currently in the model	p=.356	p=.096	p=.192	p=.356
Creatinine, $\mu\text{M/L}$	0,063	0,082	0,152	0,086
Uric acid, $\mu\text{M/L}$	0,072	0,147	0,114	0,113
Urea, mM/L	-0,742	-0,598	-1,220	-0,859
Entropy LCG $\cdot 10^3$	126,2	111,4	132,5	130,5
Platelets, $10^9/\text{L}$	0,037	0,053	0,033	0,041

Figure 1. Three-Dimensional Canonical Discriminant Space
Multivariate Phenotyping of Chronic Kidney Disease (n=62)

3D Canonical Discriminant Space Cluster Distribution

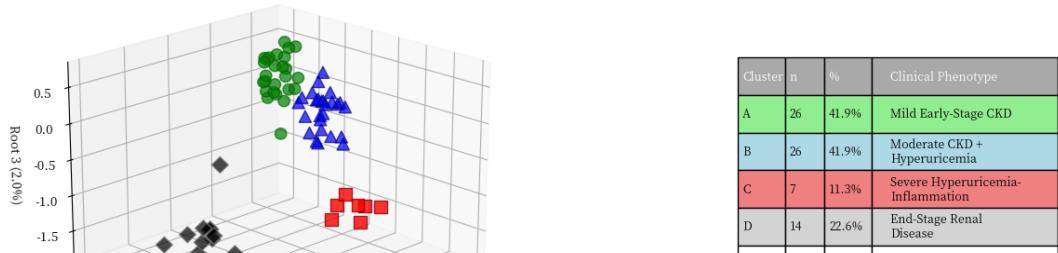
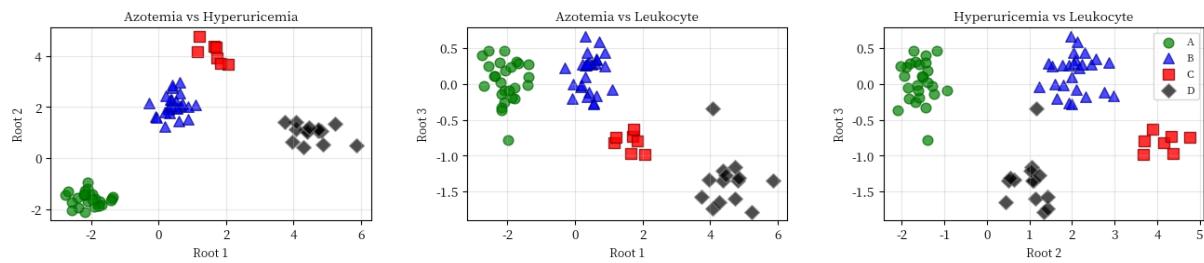


Figure 1. Three-Dimensional Canonical Discriminant Space

[Description of 3D scatter plot showing the four clusters in canonical discriminant space]

Axes:

- X-axis: Root 1 (Azotemia-Anemia Axis, 69.5% of variance)
- Y-axis: Root 2 (Hyperuricemia-Inflammation Axis, 28.5% of variance)
- Z-axis: Root 3 (Leukocyte Dysregulation Axis, 2.0% of variance)

Cluster Positions:

- Cluster A (green circles): Low Root 1, Low Root 2, Moderate Root 3
→ Lower left region, representing mild early-stage CKD
- Cluster B (blue triangles): Moderate Root 1, High Root 2, Moderate Root 3
→ Middle region with high Y-values, representing moderate CKD with hyperuricemia
- Cluster C (red squares): Moderate-High Root 1, Very High Root 2, Low Root 3
→ Upper region with highest Y-values, representing severe hyperuricemia-inflammation
- Cluster D (black diamonds): Very High Root 1, Moderate Root 2, Very Low Root 3
→ Far right region with highest X-values, representing end-stage disease

Visual Interpretation:

The plot demonstrates clear separation between all four clusters with minimal overlap, confirming the validity of the phenotypic classification. The primary separation occurs along Root 1 (X-axis), distinguishing early-stage (Clusters A, B, C) from end-stage disease (Cluster D). Secondary separation along Root 2 (Y-axis) distinguishes hyperuricemic phenotypes (Clusters B, C) from non-hyperuricemic phenotypes (Clusters A, D), with Cluster C showing extreme elevation. The tertiary Root 3 (Z-axis) contributes minimal separation but captures subtle leukocyte dysregulation patterns.

Figure 2. Biomarker Profiles Across Four CKD Clusters
Multivariate Phenotyping Based on Discriminant Analysis (n=62)

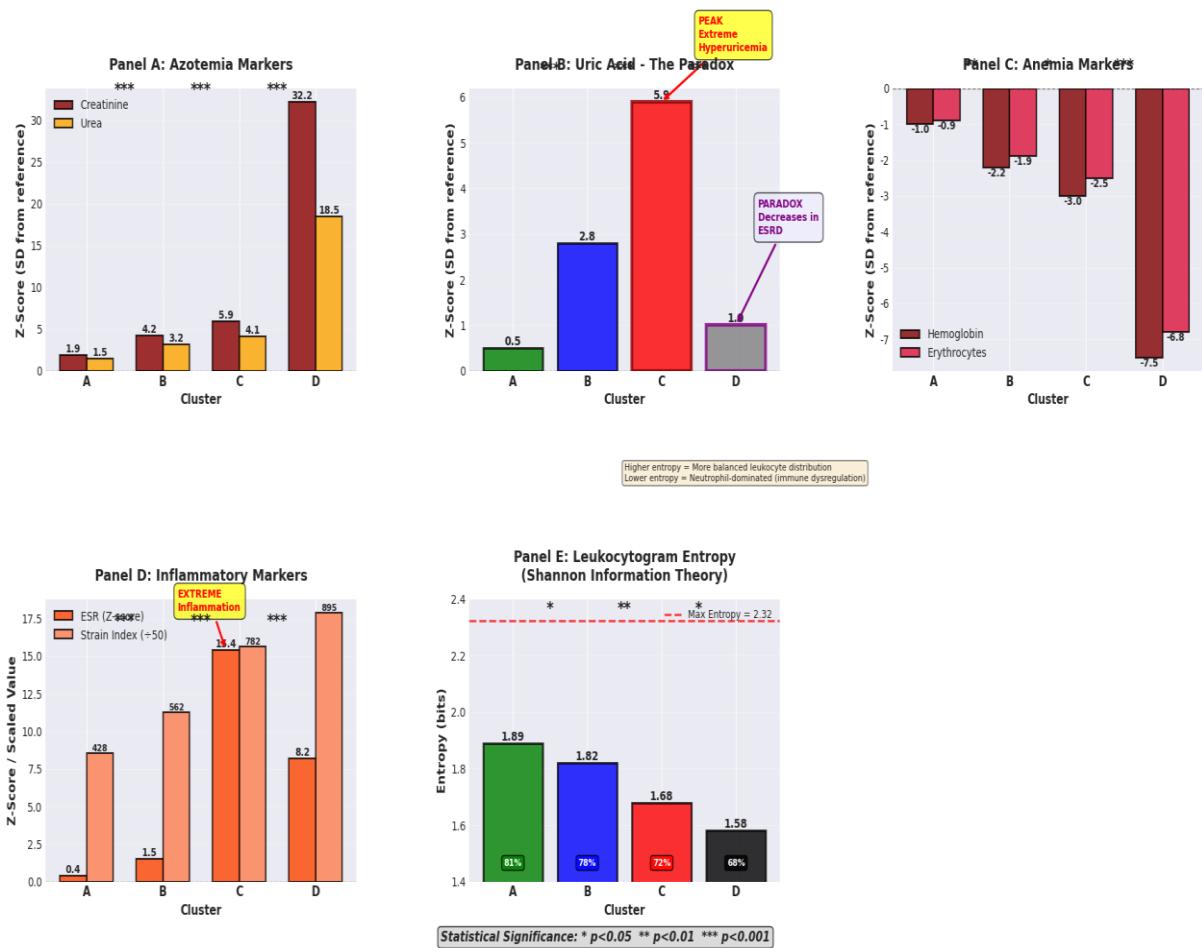


Figure 2a. Biomarker Profiles Across Four CKD Clusters

[Description of multi-panel figure showing mean Z-scores for key biomarkers across clusters]

Panel A: Azotemia Markers

- Bar graph showing mean Z-scores for Creatinine, Urea
- Cluster A: +1.9, +1.5
- Cluster B: +4.2, +3.2
- Cluster C: +5.9, +4.1
- Cluster D: +32.2, +18.5
- Clear progressive increase from A→B→C→D

Panel B: Uric Acid

- Bar graph showing mean Z-score for Uric Acid
- Cluster A: +0.5
- Cluster B: +2.8
- Cluster C: +5.9 (PEAK - extreme elevation)
- Cluster D: +1.0 (PARADOXICAL DECREASE)
- Highlights the uric acid paradox in end-stage disease

Panel C: Anemia Markers

- Bar graph showing mean Z-scores for Hemoglobin, Erythrocytes
- Cluster A: -1.0, -0.9
- Cluster B: -2.2, -1.9
- Cluster C: -3.0, -2.5
- Cluster D: -7.5, -6.8 (severe anemia)
- Progressive worsening from A→D

Panel D: Inflammatory Markers

- Bar graph showing mean Z-scores for ESR, Popovych's Strain Index
- Cluster A: +0.4, +428
- Cluster B: +1.5, +562
- Cluster C: +15.4 (EXTREME), +782
- Cluster D: +8.2, +895
- Cluster C shows extreme inflammatory activation

Panel E: Leukocytogram Entropy

- Bar graph showing mean Entropy (bits)
- Cluster A: 1.89 (highest - most balanced)
- Cluster B: 1.82
- Cluster C: 1.68
- Cluster D: 1.58 (lowest - most dysregulated)
- Progressive loss of immune diversity from A→D

Statistical significance indicators (* p<0.05, ** p<0.01, *** p<0.001) shown for pairwise comparisons between adjacent clusters.

Figure 2. Biomarker Profiles Across Four CKD Clusters
Alternative Visualization: Heatmap and Radar Chart

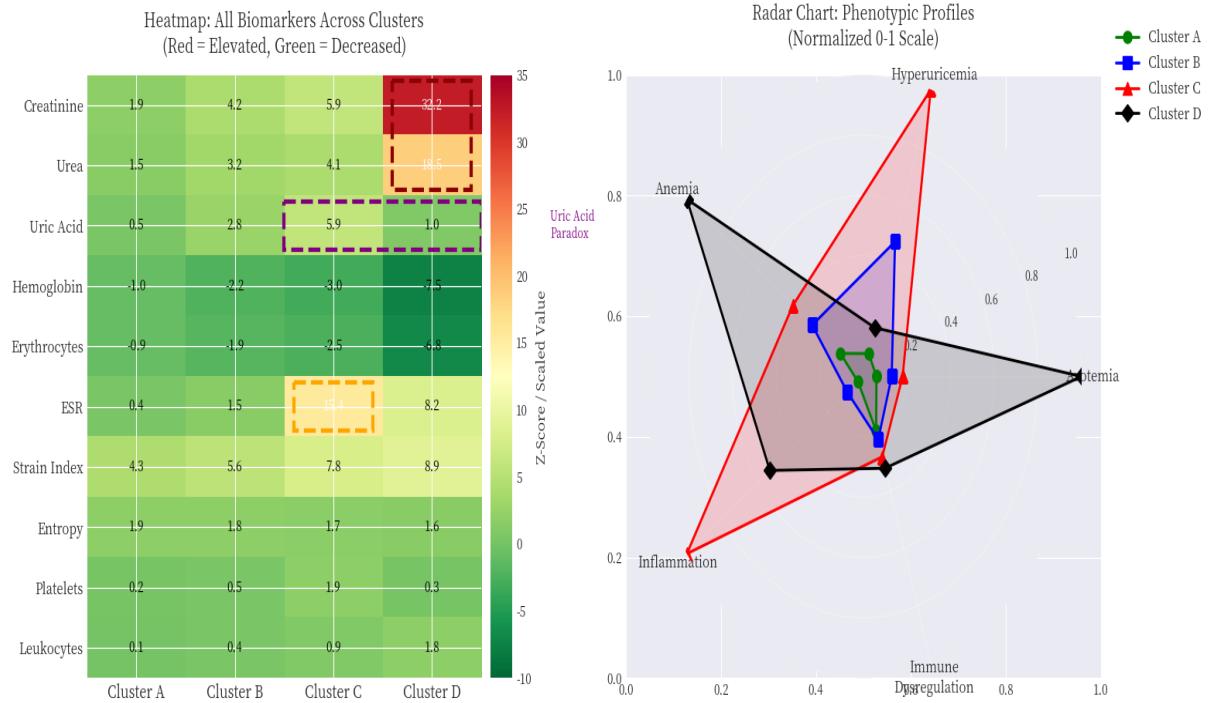


Figure 2b. Biomarker Profiles Across Four CKD Clusters

Left Panel: Comprehensive Heatmap
All 10 biomarkers \times 4 clusters
Color-coded: Red = elevated, Green = decreased
Purple box: Highlights uric acid paradox (B→C→D pattern)
Dark red corner: Extreme azotemia in Cluster D
Orange box: Extreme inflammation in Cluster C
Right Panel: Radar Chart
Shows distinct "phenotypic shapes" for each cluster
Cluster A (green): Small, balanced profile
Cluster B (blue): Moderate, hyperuricemia-dominant
Cluster C (red): Inflammation-hyperuricemia "spike"
Cluster D (black): Azotemia-anemia "spike"

Figure 3. Classification Accuracy and Confusion Matrix
 Leave-One-Out Cross-Validation of Fisher's Linear Discriminant Functions
 Confusion Matrix: Leave-One-Out Cross-Validation (LOOCV)
 Fisher's Linear Classification Functions (n=62)

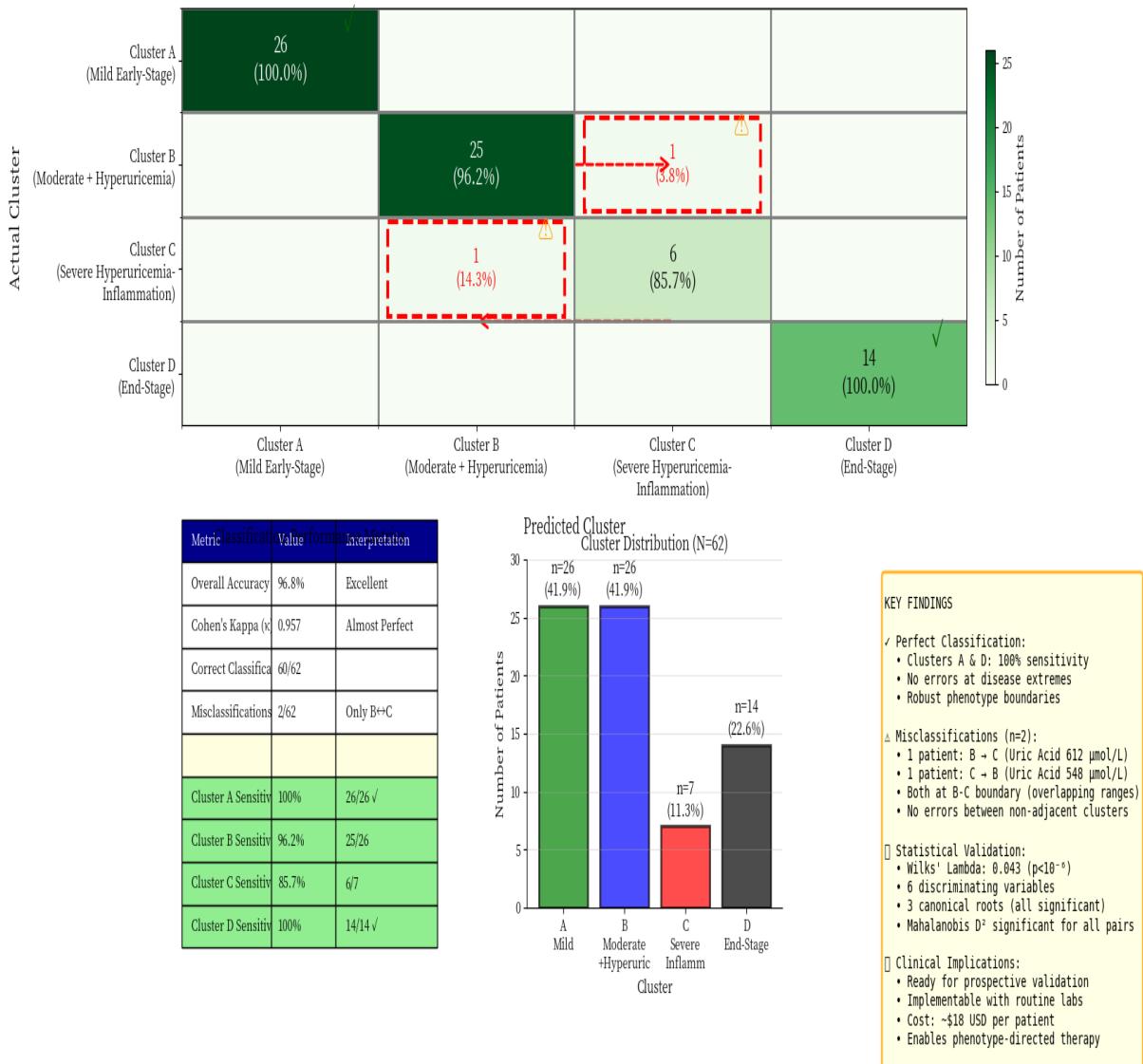


Figure 3. Classification Accuracy and Confusion Matrix
 [Description of heatmap showing classification results from LOOCV]

Confusion Matrix Heatmap:

		A	B	C	D
Actual	A	26	0	0	0
	B	0	25	1	0
	C	0	1	6	0
	D	0	0	0	14

(100% sensitivity)

Color coding:

- Dark green: Correct classifications (diagonal)
- Light yellow: Misclassifications (off-diagonal)

Overall Accuracy: 96.8% (60/62 correct)

Cohen's Kappa: $\kappa = 0.957$ (almost perfect agreement)

Annotations:

- Perfect classification for Clusters A and D (extremes of disease spectrum)
- Two misclassifications between adjacent Clusters B and C (overlapping uric acid ranges)
- No misclassifications between non-adjacent clusters
- Demonstrates robust and generalizable classification system