Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • Język Polski
    • English
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • Język Polski
  • English

Medical and Biological Sciences

Repository of images for reverse engineering and medical simulation purposes
  • Home
  • /
  • Repository of images for reverse engineering and medical simulation purposes
  1. Home /
  2. Archives /
  3. Vol. 30 No. 3 (2016) /
  4. ORIGINAL ARTICLES

Repository of images for reverse engineering and medical simulation purposes

Authors

  • Marek Macko Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University in Bydgoszcz
  • Emilia Mikołajewska Department of Physiotherapy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń; Neurocognitive Laboratory, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń
  • Zbigniew Szczepański Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University in Bydgoszcz;
  • Beata Augustyńska Department of Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń
  • Dariusz Mikołajewski Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University in Bydgoszcz; Neurocognitive Laboratory, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń

DOI:

https://doi.org/10.12775/MBS.2016.020

Keywords

3D printing, reverse engineering, medical imaging, repository, artificial tissue, assistive technology

Abstract

Novel technologies such as 3D printing (additive manufacturing), 3D scanning and reverse engineering may significantly improve application of the principles of medicine in current clinical practice. This paper aims at presentation of the own concept of the repository of medical images based on 3D printing and reverse engineering technology. The proposed concept of the repository can constitute a beginning of the novel family of commercial techniques needed for development and optimization of reverse engineering toward printing the fully clinically functional solutions.

References

Garbayo L., Stahl J. Simulation as an ethical imperative and epistemic responsibility for the implementation of medical guidelines in health care. Med Health Care Philos. 2016; DOI: 10.1007/s11019-016-9719-0.

Abas T., Juma F.Z. Benefits of simulation training in medical education. Adv Med Educ Pract. 2016;7:399-400.

Koh J., Dubrowski A. Merging problem-based learning with simulation-based learning in the medical undergraduate curriculum: The PAIRED framework for enhancing lifelong learning. Cureus. 2016;8(6):e647.

Ploch C.C., Mansi C.S., Jayamohan J., Kuhl E. Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg. 2016;90:668-74.

Ryan J.R., Almefty KK, Nakaji P., Frakes D.H. Cerebral aneurysm clipping surgery simulation using patient-specific 3D printing and silicone casting. World Neurosurg. 2016;88:175-81.

Cheung C.L., Looi T., Lendvay T.S., Drake J.M., Farhat W.A. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ. 2014;71(5):762-7.

Ballyns J.J., Gleghorn J.P., Niebrzydowski V., et al. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A. 2008;14(7):1195-202.

Bezgin G., Reid A.T., Schubert D., Kötter R. Matching spatial with ontological brain regions using Java tools for visualization, database access, and integrated data analysis. Neuroinformatics. 2009;7(1):7-22.

Radenkovic D., Solouk A., Seifalian A. Personalized development of human organs using 3D printing technology. Med Hypotheses. 2016;87:30-3.

Niebuhr N.I., Johnen W., Güldaglar T., Runz A., Echner G., Mann P., Möhler C., Pfaffenberger A., Jäkel O., Greilich S. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys. 2016;43(2):908.

Bauermeister A.J., Zuriarrain A., Newman M.I. Three-Dimensional Printing in Plastic and Reconstructive Surgery: A Systematic Review. Ann Plast Surg. 2015; DOI: 10.1097/SAP.0000000000000671.

Gao Q., He Y., Fu J.Z., Liu A., Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203-15.

Boland T., Mironov V., Gutowska A., Roth E.A., Markwald R.R. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(2):497-502.

Markwald R. Desktop organ printing. Anat Rec B New Anat. 2003;273(1):120-1.

Boland T., Xu T., Damon B., Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1(9):910-7.

Wilson W.C. Jr, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(2):491-6.

Ringeisen B.R., Othon C.M., Barron J.A., Young D., Spargo B.J. Jet-based methods to print living cells. Biotechnol J. 2006;1(9):930-48.

Kundu J., Shim J.H., Jang J., Kim S.W., Cho D.W. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-97.

Koch L., Deiwick A., Schlie S., et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109(7):1855-63.

Zhang Y., Yu Y., Akkouch A., Dababneh A., Dolati F., Ozbolat I.T. In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits. Biomater Sci. 2015;3(1):134-43.

Mannoor M.S., Jiang Z., James T., et al. 3D printed bionic ears. Nano Lett. 2013;13(6):2634-9.

Jones D.B., Sung R., Weinberg C., Korelitz T., Andrews R. Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice. Surg Innov. 2015; 29. pii: 1553350615607641.

Kennedy D.N., Haselgrove C., Riehl J., Preuss N., Buccigrossi R. The NITRC image repository. Neuroimage. 2016;124:1069-73.

Bellec P., Chu C., Chouinard-Decorte F., Benhajali Y, Margulies D.S., Craddock R.C. The Neuro Bureau ADHD-200 Preprocessed repository. Neuroimage. 2016; DOI: 10.1016/j.neuroimage.2016.06.034.

Matthews P.M., Hampshire A. Clinical Concepts Emerging from fMRI Functional Connectomics. Neuron. 2016;91(3):511-28.

Mevel K., Fransson P. The functional brain connectome of the child and autism spectrum disorders. Acta Paediatr. 2016; DOI: 10.1111/apa.13484.

Steffens D, Alvarenga Rezende R, et al. 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells. J Appl Biomater Funct Mater. 2015; doi: 10.5301/jabfm.5000252.

Jakus AE, Rutz AL, Shah RN. Advancing the field of 3D biomaterial printing. Biomed Mater. 2016;11(1):014102.

Ko H.C., Milthorpe B.K., McFarland C.D. Engineering thick tissues - the vascularisation problem. Eur Cell Mater. 2007;14:1-18; discussion 18-9.

Gao G, Cui X. Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett. 2015; 38(2):203-11.

Hoy M.B. 3D printing: making things at the library. Med Ref Serv Q. 2013;32(1):94-9.

Lee W., Pinckney J., Lee V., et al. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport. 2009;20(8):798-803.

Rankin T.M., Giovinco N.A., Cucher D.J., Watts G., Hurwitz B., Armstrong D.G. Three-dimensional printing surgical instruments: are we there yet? J Surg Res. 2014 Jun 15;189(2):193-7.

Yoo S.S. 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat. 2015;25(5):507-11.

Medical and Biological Sciences

Downloads

  • PDF

Published

2016-12-19

How to Cite

1.
MACKO, Marek, MIKOŁAJEWSKA, Emilia, SZCZEPAŃSKI, Zbigniew, AUGUSTYŃSKA, Beata and MIKOŁAJEWSKI, Dariusz. Repository of images for reverse engineering and medical simulation purposes. Medical and Biological Sciences. Online. 19 December 2016. Vol. 30, no. 3, pp. 23-29. [Accessed 15 May 2025]. DOI 10.12775/MBS.2016.020.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 30 No. 3 (2016)

Section

ORIGINAL ARTICLES

Stats

Number of views and downloads: 381
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • Język Polski
  • English

Tags

Search using one of provided tags:

3D printing, reverse engineering, medical imaging, repository, artificial tissue, assistive technology
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop