@article{Moretti_2010, title={The critics of paraconsistency and of many-valuedness and the geometry of oppositions}, volume={19}, url={https://apcz.umk.pl/LLP/article/view/LLP.2010.004}, DOI={10.12775/LLP.2010.004}, abstractNote={In 1995 Slater argued both against Priest’s paraconsistent system LP (1979) and against paraconsistency in general, invoking the fundamental opposition relations ruling the classical logical square. Around 2002 Béziau constructed a double defence of paraconsistency (logical and philosophical), relying, in its philosophical part, on Sesmat’s (1951) and Blanche’s (1953) “logical hexagon”, a geometrical, conservative extension of the logical square, and proposing a new (tridimensional) “solid of opposition”, meant to shed new light on the point raised by Slater. By using n-opposition theory (NOT) we analyse Beziau’s anti-Slater move and show both its right intuitions and its technical limits. Moreover, we suggest that Slater’s criticism is much akin to a well-known one by Suszko (1975) against the conceivability of many-valued logics. This last criticism has been addressed by Malinowski (1990) and Shramko and Wansing (2005), who developed a family of tenable logical counter-examples to it: trans-Suszkian systems are radically many-valued. This family of new logics has some strange logical features, essentially: each system has more than one consequence operator. We show that a new, deeper part of the aforementioned geometry of logical oppositions (NOT), the “logical poly-simplexes of dimension m”, generates new logical-geometrical structures, essentially many-valued, which could be a very natural (and intuitive) geometrical counterpart to the “strange”, new, non-Suszkian logics of Malinowski, Shramko and Wansing. By a similar move, the geometry of opposition therefore sheds light both on the foundations of paraconsistent logics and on those of many-valued logics.}, number={1-2}, journal={Logic and Logical Philosophy}, author={Moretti, Alessio}, year={2010}, month={Jun.}, pages={63–94} }