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Abstract. In this paper, we consider modal multilattices with Tarski, Ku-
ratowski, and Halmos closure and interior operators as well as the corre-
sponding logics which are multilattice versions of the modal logics MNT4,
S4, and S5, respectively. The former modal multilattice logic is a new one.
The latter two modal multilattice logics have been already mentioned in
the literature, but algebraic completeness results have not been established
for them before. We present a multilattice version of MNT4 in a form of
a sequent calculus and prove the algebraic and neighbourhood complete-
ness theorems for it. We extend the algebraic completeness result for the
multilattice versions of S4 and S5 as well.
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1. Introduction

Shramko [24] introduced the multilattice logic MLn in order to gen-
eralize frameworks of Arieli and Avron’s bilattice logic [1], Shramko
and Wansing’s trilattice logic [25], and Zaitsev’s tetralattice logic [26].
Later on Kamide and Shramko extended MLn by adding quantifiers
[13], Kamide, Shramko, and Wansing [15] explored bi-intuitionistic and
connexive modifications of MLn, Kamide [11, 12] combined MLn with
linear logic, Kamide and Shramko [14] presented the modal multilattice
logic MMLn. This logic was supposed to be a multilattice version of S4.
However, as argued in [6, 7], this point is a bit problematic. Namely,
Kamide and Shramko exploited an incomplete S4 sequent calculus for
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the embedding purposes. In particular, this calculus does not allow for
the construction of a proof for formulas representing the interdefinability
of necessity and possibility operators. As a result, their sequent calculus
for MMLn lacks the multilattice analogues of interdefinability theorems
(this fact can be easily checked due to the backward embedding from S4
into MMLn proved in [14]). It has motivated us to present a logic MMLS4

n

(see [6]) which provides the proofs of interdefinability formulas. Never-
theless, the primary aim of [6] was to introduce a multilattice version of
S5 (which we call MMLS5

n following the established tradition). However,
we have not set up the algebraic completeness results for MMLS4

n and
MMLS5

n . Thus, one of the aims of the current paper is to introduce modal
multilattices with Kuratowski and Halmos operators and show that they
determine MMLS4

n and MMLS5
n , respectively.

Let us notice that although Kamide and Shramko introduced the
notion of a modal multilattice, they have not proved an algebraic com-
pleteness theorem for MMLn. It was proven in [7], but with respect to
the structure which we call a De Morgan modal multilattice. It appears
that Kamide and Shramko’s original algebraic structure is too weak for
MMLn. First, it does not have some postulates for the inversions of
closure and interior operators. Second, the closure and interior oper-
ators introduced by Kamide and Shramko are multilattice versions of
Tarski operators (which are suitable for a weaker logic MNT4), but not
Kuratowski operators (which are actually needed for S4). It has inspired
us to take a new look at the multilattices equipped with Tarski operators
and explore a multilattice version of MNT4. Thus, yet another aim of
this paper is to introduce such a logic (we denote it as MMLMNT4

n ). We
prove an algebraic completeness theorem for MMLMNT4

n , present a se-
quent calculus for it, prove syntactical and semantic embedding theorems
from MMLMNT4

n into MNT4, and develop a neighbourhood semantics for
MMLMNT4

n .
The paper is structured in the following way. In Section 2, we make

some preliminary remarks regarding multilattices and their logics as well
as introduce the notions of modal multilattices with Tarski, Kuratowski,
and Halmos operators. Section 3 contains preliminaries regarding se-
quent and hypersequent calculi for MNT4, S4, and S5. In Section 4, we
introduce a sequent calculus for MMLMNT4

n , recall a sequent calculus for
MMLS4

n and a hypersequent calculus for MMLS5
n from [6]. In Section 5,

we prove the algebraic completeness theorems for MMLMNT4
n , MMLS4

n ,
and MMLS5

n . In Section 6, we present a neighbourhood semantics for
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MMLMNT4
n , prove syntactic and semantic embeddings from MMLMNT4

n

into MNT4 and as a consequence obtain the neighbourhood complete-
ness and cut elimination theorems for MMLMNT4

n . Section 7 contains
concluding remarks.

2. Preliminaries I: multilattices

Definition 2.1 (Languages). Let n > 1 and 1 ¬ j ¬ n. P = {pi, qi, ri |
i ∈ N} is a set of propositional variables; Pj = {pj | p ∈ P} is a set
of indexed propositional variables; P∗ =

⋃i=n
i=1 P

i; C = {¬,�,♦,∧,∨,→,
←}; C∗ =

⋃i=n
i=1{¬i,∧i,∨i,→i,←i}; C⋆ =

⋃i=n
i=1{�i,♦i}. Let us fix three

languages which we are going to use in what follows.

• L is the language of the modal logics MNT4, S4, and S5. It has the
alphabet 〈P,P∗, C, (, )〉.

• LN is the language of multilattice logic MLn. It has the alphabet
〈P, C∗, (, )〉.

• LM is the language of the modal multilattice logics MMLMNT4
n ,

MMLS4
n , and MMLS5

n . It has the alphabet 〈P, C∗, C⋆, (, )〉.

The sets F , FN, and FM, respectively, of all L -, LN-, and LM-formulas
are defined in a standard inductive way.

Now we introduce the notion of a multilattice as it has been given in
a number of papers, thus respecting an established tradition, although
this concept may be found a bit confusing since a set of unary j-inversion
operations is incorporated into the structure of a multilattice.

Definition 2.2 (Multilattice; 14, p. 319, Definitions 2.1 and 2.2). A
multilattice (or n-dimensional multilattice or n-lattice) is a structure
Mn = 〈S,≤1, . . . ,≤n〉, where n > 1, S 6= ∅, ≤1, . . . , ≤n are partial
orders such that 〈S,≤1〉, . . . , 〈S,≤n〉 are lattices with the correspond-
ing pairs of meet and join operations 〈∩1,∪1〉, . . . , 〈∩n,∪n〉 as well as
the corresponding j-inversion operations −1, . . . , −n which satisfy the
following conditions, for each j ¬ n, k ¬ n, j 6= k and x, y ∈ S:

x ≤j y implies −j y ≤j −jx; (anti)

x ≤k y implies −j x ≤k −jy; (iso)

−j −j x = x. (per2)
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Definition 2.3 (Distributive multilattice; 14, p. 319, Definition 2.1). A
multilatticeMn = 〈S,≤1, . . . ,≤n〉 is called distributive iff all 2(2n2−n)
distributive laws hold, i.e. x⊗(y⊕z) = (x⊗y)⊕(x⊗z), where x, y, z ∈ S,
⊗,⊕ ∈ {∪1,∩1, . . . ,∪n,∩n}, and ⊗ 6= ⊕.

Definition 2.4. A multilattice Mn = 〈S,≤1, . . . ,≤n〉 is bounded if it
has greatest and zero elements (denoted as 1j and 0j correspondingly)
for each order.

Definition 2.5 (Classical multilattice). A multilattice Mn = 〈S,≤1,
. . . ,≤n〉 is called j-classical iff −k−j is a complementation with respect
to the j-th order, i.e. 0j = x ∩j −k −j x and 1j = x ∪j −k −j x, for each
x ∈ S and j, k ¬ n such that j 6= k. A multilatice is called classical if it
is j-classical for all j ¬ n.

Remark 2.1. In what follows, referring to multilattices, we tacitly sup-
pose them to be distributive and classical. ⊣

Definition 2.6 (Ultralogical multilattice; 14, p. 319, Definitions 2.3
and 2.4). A pair 〈Mn,Un〉 is called an ultralogical multilattice iffMn =
〈S,≤1, . . . ,≤n〉 is a multilattice and Un ( S satisfies the following con-
ditions, for each j, k ¬ n, j 6= k, and x, y ∈ S:

• x ∩j y ∈ Un iff x ∈ Un and y ∈ Un (Un is a multifilter (n-filter) on
Mn);

• x ∪j y ∈ Un iff x ∈ Un or y ∈ Un (Un is a prime multifilter on Mn);
• x ∈ Un iff −j −k x 6∈ Un (Un is an ultramultifilter (n-ultrafilter) on
Mn).

Remark 2.2 (See 6, Definition 2.4; 7, Observation 1). Let 〈Mn,Un〉
be an ultralogical multilattice. Then we can introduce for the lattices
〈S,≤1〉, . . . , 〈S,≤n〉 the corresponding pseudo-complement and pseudo-
difference operations ⊃1, . . . ,⊃n and ⊂1, . . . ,⊂n, respectively, as follows,
for any x, y ∈ S, j ¬ n, and some fixed k ¬ n such that j 6= k:

x ⊃j y = −k −j x ∪j y,

x ⊂j y = x ∩j −k −j y. ⊣

Definition 2.7 (Standard valuation; 24, Definition 4.5; 6, Definition
2.5). Let Mn = 〈S,≤1, . . . ,≤n〉 be a multilattice. A function v from P
to S is called a standard valuation and is extended for any ϕ, ψ ∈ FN as
follows:
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(1) v(¬jϕ) = −jv(ϕ);
(2) v(ϕ ∧j ψ) = v(ϕ) ∩j v(ψ);
(3) v(ϕ ∨j ψ) = v(ϕ) ∪j v(ψ);
(4) v(ϕ→j ψ) = v(ϕ) ⊃j v(ψ);
(5) v(ϕ←j ψ) = v(ϕ) ⊂j v(ψ).

Remark 2.3. In [7, Definition 2.10], the notion of a paraconsistent valu-
ation was also introduced (defined as a mapping from P ∪ {¬jp | p ∈ P,
for all j ¬ n} to S). It was shown [7, Theorem 3.6] by the algebraic
embedding theorem that MLn is sound and complete with respect to
multilattices with paraconsistent valuations. However, for the purposes
of this paper it should be enough to consider the standard valuations
only. In what follows, when we deal with multilattices, we mean by a
valuation a standard one. ⊣

Definition 2.8 (Entailment for MLn; cf. 24, Definitions 4.7 and 5.3).
The entailment relation in MLn is defined as follows, for all Γ,∆ ⊆ FN

and ϕ, ψ ∈ FN:

(1) ϕ |=j ψ iff for each multilattice Mn and each valuation v, it holds
that v(ϕ) ≤j v(ψ).

(2) Γ |=MLn
∆ iff for each ultralogical multilattice 〈Mn,Un〉 and each

valuation v, it holds that if v(γ) ∈ Un for each γ ∈ Γ , then v(δ) ∈ Un

for some δ ∈ ∆.

Lemma 2.1. Γ |=MLn
∆ iff for all v and j ¬ n, v(

∧
j Γ ) |=j v(

∨
j ∆).

Proof. 1. Assume that Γ |=MLn
∆ and for some valuation v, v(γ) ∈

Un for each γ ∈ Γ . This means that v(
∧

j Γ ) ∈ Un. On the other
hand, v(δ) ∈ ∆ for some δ ∈ ∆, so v(

∨
j ∆) ∈ Un. Next suppose that

v(
∧

j Γ ) 6|=j v(
∨

j ∆) for some j. By the definition of |=j , v(
∧

j Γ ) 6≤j

v(
∨

j ∆). But then v(
∧

j Γ ) 6≤j −k−jv(
∨

j ∆), otherwise −k−jv(
∨

j ∆) ∈
Un, since Un is closed under each of the relations. Clearly, v(

∧
j Γ ) 6≤j

v(
∨

j ∆) ∪j −k −j v(
∨

j ∆) = 1j which is impossible (since 1j ∈ Un and
for each x ∈ Un, x ≤j 1j).

2. For the other direction suppose that v(
∧

j Γ ) ∈ Un. Hence, for any
j, x ∈ S, if v(

∧
j Γ ) ≤j x, then x ∈ Un. In particular, take x = v(

∨
j ∆).

It follows from the definition of |=j that v(
∧

j Γ ) ≤j v(
∨

j ∆) for all j,
so v(

∨
j ∆) ∈ Un, thus v(δ) ∈ Un for some δ ∈ ∆ by the primness of

Un. It remains to notice that v(γ) ∈ Un for each γ ∈ Γ . Consequently,
Γ |=MLn

∆. ⊣
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To embed a modal toolkit into the structure of a multilattice we make
use of lattice closure and interior operations. Their additional properties
influence the type of modal multilattice we obtain.

Definition 2.9 (14, p. 320, Definition 2.5). A multilattice Mn = 〈S,
≤1, . . . ,≤n〉 is said to be modal if it is equipped with unary operations
of interior Ij and closure Cj for each j ¬ n, that is operations satisfying
the following conditions (for x, y ∈ S):

Ij(x) ≤j x; (decreasing)

Ij(x) = IjIj(x); (I-idempotent)

Ij(x ∩j y) ≤j Ij(x) ∩j Ij(y); (sub-multiplicative)

x ≤j Cj(x); (increasing)

Cj(x) = CjCj(x); (C-idempotent)

Cj(x) ∪j Cj(y) ≤j Cj(x ∪j y). (sub-additive)

Remark 2.4. As Kamide and Shramko note [14], they supply multilat-
tices with Tarski interior and closure operators, following the lines of
Cattaneo and Ciucci’s work [4]. In the next definition, we add to a modal
multilattice the postulates regarding the inversions of the interior and
closure operators as well as the postulates (1j is open) and (0j is closed)
which should be present in the definition of the operators in question,
according to [4, p. 44–46]. ⊣

Definition 2.10 (Tarski multilattice). A modal multilatticeMn = 〈S,
≤1, . . . ,≤n〉 is said to be Tarski multilattice (or a modal multilattice
with Tarski operators) iff for each j ¬ n operations Ij and Cj satisfy the
following condition:

Ij(1j) = 1j ; (1j is open)

Cj(0j) = 0j ; (0j is closed)

−jIj(x) = Cj(−jx); (−jIj-definition)

−jCj(x) = Ij(−jx); (−jCj-definition)

−kIj(x) = Ij(−kx); (−kIj-definition)

−kCj(x) = Cj(−kx); (−kCj-definition)

Ij(x) = −j −k Cj(−j −k x); (I-definition)

Cj(x) = −j −k Ij(−j −k x). (C-definition)
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In the subsequent definitions, we introduce the required conditions
for Kuratowski and Halmos operators, following [4, pp. 48 and 57].

Definition 2.11 (Kuratowski multilattice). A Tarski multilatticeMn =
〈S,≤1, . . . ,≤n〉 is said to be Kuratowski (or a modal multilattice with
Kuratowski operators) iff for each j ¬ n operations Ij and Cj satisfy the
following condition:

Ij(x ∩j y) = Ij(x) ∩j Ij(y); (multiplicative)

Cj(x) ∪j Cj(y) = Cj(x ∪j y). (additive)

Definition 2.12 (Halmos multilattice). A Kuratowski multilatticeMn

= 〈S,≤1, . . . ,≤n〉 is said to be Halmos (or a modal multilattice with
Halmos operators) iff for each j ¬ n operations Ij and Cj satisfy the
following condition:

Ij(−k −j Ij(x)) = −k −j Ij(x); (interior interconnection)

Cj(−k −j Cj(x)) = −k −j Cj(x). (closure interconnection)

Fact 2.1. Each Tarski (and hence Kuratowski and Halmos) multilattice

has the following properties:

x ≤j y implies Ij(x) ≤j Ij(y); (I-monotonicity)

x ≤j y implies Cj(x) ≤j Cj(y). (C-monotonicity)

Proof. If x ≤j y, then Ij(x) = Ij(x ∩j y) ≤j Ij(x) ∩j Ij(y) ≤j Ij(y).
If x ≤j y, then Cj(x) ≤j Cj(x) ∪j Cj(y) ≤j Cj(x ∪j y) = Cj(y). ⊣

Definition 2.13. Let Mn = 〈S,≤1, . . . ,≤n〉 be a Tarski (resp. Kura-
towski, Halmos) multilattice and v be a valuation introduced in Defini-
tion 2.7. Then we extend it for the modal formulas as follows:

(1) v(�jϕ) = Ijv(ϕ),
(2) v(♦jϕ) = Cjv(ϕ).

The definition of an entailment relation for the case of a modal mul-
tilattice logic L ∈ {MMLS4

n ,MMLMNT4
n ,MMLS5

n } is almost the same as
for the MLn case. The only difference concerns with a type (Tarski, Ku-
ratowski or Halmos) of a corresponding ultralogical multilattice. Thus
we presume that Γ |=MMLMNT4

n

∆ (Γ |=MMLS4
n

∆, Γ |=MMLS5
n

∆) iff for each
Tarski (Kuratowski, Halmos) ultralogical multilattice 〈Mn,Un〉 and each
valuation v, it holds that if v(γ) ∈ Un for each γ ∈ Γ , then v(δ) ∈ Un for
some δ ∈ ∆.
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3. Preliminaries II: (hyper)sequent calculi for MNT4, S4, and S5

Definition 3.1 (Sequent). A sequent is an ordered pair written as fol-
lows: Γ ⇒ ∆, where Γ and ∆ are finite sets of L-formulas (L ∈ {L ,
LN,LM}). A sequent is called valid for L ∈ {MLn,MMLS4

n ,MMLS5
n ,

MMLMNT4
n } iff Γ |=L ∆ holds (the case when both Γ and ∆ are not

empty). When Γ ⇒ ∆ is valid for L, we write L |= Γ ⇒ ∆. When
Γ = ∅, L |= ⇒ ∆ iff v(δ) = 1j for some δ ∈ ∆ and j ¬ n; when ∆ = ∅,
L |= Γ ⇒ iff v(γ) = 0j for all γ ∈ Γ and some j ¬ n.

Let us introduce Indrzejczak’s [8, 9] cut-free sequent calculus for
MNT4. The only axiom is as follows (for any p ∈ P ∪ P∗):

(Ax) p⇒ p

The structural rules are as follows:

(Cut)
Γ ⇒ ∆,ϕ ϕ,Θ⇒ Λ

Γ,Θ ⇒ ∆,Λ
(W⇒)

Γ ⇒ ∆

ϕ, Γ ⇒ ∆

(⇒W)
Γ ⇒ ∆

Γ ⇒ ∆,ϕ

The non-modal logical rules are as follows:

(∧⇒)
ϕ, ψ, Γ ⇒ ∆

ϕ ∧ ψ, Γ ⇒ ∆
(⇒∧)

Γ ⇒ ∆,ϕ Γ ⇒ ∆,ψ

Γ ⇒ ∆,ϕ ∧ ψ

(∨⇒)
ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆

ϕ ∨ ψ, Γ ⇒ ∆
(⇒∨)

Γ ⇒ ∆,ϕ, ψ

Γ ⇒ ∆,ϕ ∨ ψ

(→⇒)
Γ ⇒ ∆,ϕ ψ,Θ⇒ Λ

ϕ→ ψ, Γ,Θ⇒ ∆,Λ
(⇒→)

ϕ, Γ ⇒ ∆,ψ

Γ ⇒ ∆,ϕ→ ψ

(←⇒)
ϕ, Γ ⇒ ∆,ψ

ϕ← ψ, Γ ⇒ ∆
(⇒←)

Γ ⇒ ∆,ϕ ψ,Θ ⇒ Λ

Γ,Θ⇒ ∆,Λ, ϕ← ψ

(¬⇒)
Γ ⇒ ∆,ϕ

¬ϕ, Γ ⇒ ∆
(⇒¬)

ϕ, Γ ⇒ ∆

Γ ⇒ ∆,¬ϕ

The modal logical rules are as follows:

(M�)
ϕ⇒ ψ

�ϕ⇒ �ψ
(N�)

⇒ ϕ

⇒ �ϕ

(4)
�ϕ⇒ ψ

�ϕ⇒ �ψ
(�⇒)

ϕ, Γ ⇒ ∆

�ϕ, Γ ⇒ ∆

The rule (M�) is derivable due to (4) and (�⇒).
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Now we present yet another sequent calculus for MNT4 in the lan-
guage with both � and ♦. For the modal rules below we use the following
convention: the letter γ stands for the empty set or a one element set
{�ψ}, the letter δ stands for the empty set or a one element set {♦ψ}.
This sequent calculus is obtained from Indrzejczak’s one by a replace-
ment of the rules (M�), (N�), and (4) with the following ones:

(⇒�)
γ ⇒ ♦Λ, ϕ

γ ⇒ ♦Λ,�ϕ
(♦⇒)

ϕ,�Λ⇒ δ

♦ϕ,�Λ⇒ δ
(⇒♦)

Γ ⇒ ∆,ϕ

Γ ⇒ ∆,♦ϕ

The rules (4), (M�), (M♦), (N�), (N♦) are derivable in this calculus,
where (M♦) and (N♦) are presented below:

(M♦)
ϕ⇒ ψ

♦ϕ⇒ ♦ψ
(N♦)

ϕ⇒

♦ϕ⇒

If one replaces γ and δ in the rules (⇒�) and (♦⇒) with the sets
of formulas (possibly, empty, but not necessarily one element ones) �Γ
and ♦∆, respectively, then one obtains a cut-free sequent calculus for S4
[16]. If in the rule (⇒�) one replaces γ with �Γ and puts δ = ∅ as well
as in the rule (♦⇒) puts γ = ∅ and replaces δ with ♦∆, then one gets
an incomplete version of S4 [16] (although its restrictions for the �-free
and ♦-free languages are complete [19]), since the sequents �ϕ⇒ ¬♦¬ϕ,
¬♦¬ϕ ⇒ �ϕ, ¬�¬ϕ ⇒ ♦ϕ and ♦ϕ ⇒ ¬�¬ϕ are unprovable in it
[16]. We mention the latter fact, because Kamide and Shramko used
this incomplete version of S4 sequent calculus as a basis of their logic
MMLn. As a result (which can be checked by the use of Kamide and
Shramko’s embedding theorems [14]), in the system MMLn the sequents
�jϕ ⇒ ¬k¬j♦j¬k¬jϕ, ¬k¬j♦j¬k¬jϕ ⇒ �jϕ, ¬k¬j�j¬k¬jϕ ⇒ ♦jϕ
and ♦jϕ⇒ ¬k¬j�j¬k¬jϕ are not provable. In [6], the authors presented
the logic MMLS4

n which extends MMLn by these sequents. Similarly to
the case of S4, in MNT4 we need �Λ and ♦Λ in the rules (⇒�) and
(♦⇒), respectively, to make the sequents �ϕ ⇒ ¬♦¬ϕ, ¬♦¬ϕ ⇒ �ϕ,
¬�¬ϕ⇒ ♦ϕ and ♦ϕ⇒ ¬�¬ϕ provable.

Notice that although Indrzejczak’s sequent calculus for MNT4 in the
�-language is cut-free, our calculus for MNT4 in the language with both
� and ♦, unfortunately, seems to be non-cut-free. Consider the following
application of cut (D1 and D2 stand for the derivations; see fig. 1).

Providing Gentzen-style constructive cut elimination proof, we could
try to apply cut at earlier stage reducing the height of the derivation
(see fig. 2).
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D1

�ψ ⇒ ♦χ, ϕ
(⇒�)

�ψ ⇒ ♦χ,�ϕ

D2

χ,�ω ⇒ ♦π
(♦⇒)

♦χ,�ω ⇒ ♦π

�ψ,�ω⇒ �ϕ,♦π

Figure 1.

D1

�ψ ⇒ ♦χ, ϕ

D2

χ,�ω⇒ ♦π
(♦⇒)

♦χ,�ω ⇒ ♦π

�ψ,�ω ⇒ ϕ,♦π

Figure 2.

But, unfortunately, we cannot apply the rule (⇒�) at this step to
obtain �ψ,�ω ⇒ �ϕ,♦π, since we have two formulas with � in the
antecedent of the sequent (it is not a problem for S4, but here we have a
restriction for the rule (⇒�)). We leave as a task for future research to
present a cut-free sequent calculus for MNT4 in the language with both
� and ♦.

A standard S5 sequent calculus [19, 20] is known to be not-cut-free.
There are various attempts to present cut-free non-standard versions of
sequent calculi (in particular, hypersequent calculi). A survey of these
attempts (focusing mainly on hypersequent calculi) may be found in
Bednarska and Indrzejczak’s paper [3]. We mention only the pioneering
works by Mints [17, 18], Pottinger [22], and Avron [2] as well as the latest
one by Indrzejczak [10] who introduced a bisequent calculus for S5. In
what follows, we will use Restall’s hypersequent calculus for S5 [23], since
a MMLS5

n hypersequent calculus was presented on its basis in [6].

Definition 3.2 (Hypersequent). A hypersequent is a finite multiset of
sequents written as follows: H := Γ1 ⇒ ∆1 | . . . | Γm ⇒ ∆m. A
hypersequent is called valid iff at least one of its sequents is valid.

In Restall’s calculus, the (internal) structural and logical rules of
classical logic are in the hypersequent form. For example, the rules for
conjunction are as follows (here and below H and G are hypersequents):

(∧⇒)
ϕ, ψ, Γ ⇒ ∆ | H

ϕ ∧ ψ, Γ ⇒ ∆ | H
(⇒∧)

Γ ⇒ ∆,ϕ | H Γ ⇒ ∆,ψ | G

Γ ⇒ ∆,ϕ ∧ ψ | H | G
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Restall’s calculus has several external structural rules:

(EW⇒)
H

ϕ⇒ | H
(⇒EW)

H

⇒ ϕ | H

(Merge)
Γ ⇒ ∆ | Θ⇒ Λ | H

Γ,Θ⇒ ∆,Λ | H

Finally, it has modal logical rules:

(�⇒)
ϕ, Γ ⇒ ∆ | H

�ϕ⇒ | Γ ⇒ ∆ | H
(⇒�)

⇒ ϕ | H

⇒ �ϕ | H

(♦⇒)
ϕ⇒ | H

♦ϕ⇒ | H
(⇒♦)

Γ ⇒ ∆,ϕ | H

Γ ⇒ ∆ | ⇒ ♦ϕ | H

The rules for ♦ were added to Restall’s system in [6]. Fortunately, the
sequents �ϕ ⇒ ¬♦¬ϕ, ¬♦¬ϕ ⇒ �ϕ, ♦ϕ ⇔ ¬�¬ϕ, and ¬�¬ϕ ⇒ ♦ϕ
are provable in this calculus without any changes of the shape of the
modal rules.

4. (Hyper)sequent calculi for modal multilattice logics

The sequent calculus for MMLMNT4
n is as follows. Consider the axioms

(p ∈ P):

(Ax) p⇒ p (Ax¬) ¬jp⇒ ¬jp

The structural rules are as follows: (Cut), (W⇒), and (⇒W). The non-
negated logical rules are presented below:

(∧j⇒)
ϕ, ψ, Γ ⇒ ∆

ϕ ∧j ψ, Γ ⇒ ∆
(⇒∧j)

Γ ⇒ ∆,ϕ Γ ⇒ ∆,ψ

Γ ⇒ ∆,ϕ ∧j ψ

(∨j⇒)
ϕ, Γ ⇒ ∆ ψ, Γ ⇒ ∆

ϕ ∨j ψ, Γ ⇒ ∆
(⇒∨j)

Γ ⇒ ∆,ϕ, ψ

Γ ⇒ ∆,ϕ ∨j ψ

(→j⇒)
Γ ⇒ ∆,ϕ ψ,Θ ⇒ Λ

ϕ→j ψ, Γ,Θ⇒ ∆,Λ
(⇒→j)

ϕ, Γ ⇒ ∆,ψ

Γ ⇒ ∆,ϕ→j ψ

(←j⇒)
ϕ, Γ ⇒ ∆,ψ

ϕ←j ψ, Γ ⇒ ∆
(⇒←j)

Γ ⇒ ∆,ϕ ψ,Θ⇒ Λ

Γ,Θ ⇒ ∆,Λ, ϕ←j ψ
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The jj-negated logical rules are as follows:

(¬j∧j⇒)
¬jϕ, Γ ⇒ ∆ ¬jψ, Γ ⇒ ∆

¬j(ϕ ∧j ψ), Γ ⇒ ∆
(⇒¬j∧j)

Γ ⇒ ∆,¬jϕ,¬jψ

Γ ⇒ ∆,¬j(ϕ ∧j ψ)

(¬j∨j⇒)
¬jϕ,¬jψ, Γ ⇒ ∆

¬j(ϕ ∨j ψ), Γ ⇒ ∆
(⇒¬j∨j)

Γ ⇒ ∆,¬jϕ Γ ⇒ ∆,¬jψ

Γ ⇒ ∆,¬j(ϕ ∨j ψ)

(¬j→j⇒)
¬jψ, Γ ⇒ ∆,¬jϕ

¬j(ϕ→j ψ), Γ ⇒ ∆
(⇒¬j→j)

Γ ⇒ ∆,¬jψ ¬jϕ,Θ ⇒ Λ

Γ,Θ⇒ ∆,Λ,¬j(ϕ→j ψ)

(¬j←j⇒)
Γ ⇒ ∆,¬jψ ¬jϕ,Θ⇒ Λ

¬j(ϕ←j ψ), Γ, Θ⇒ ∆,Λ
(⇒¬j←j)

¬jψ, Γ ⇒ ∆,¬jϕ

Γ ⇒ ∆,¬j(ϕ←j ψ)

(¬j¬j⇒)
ϕ, Γ ⇒ ∆

¬j¬jϕ, Γ ⇒ ∆
(⇒¬j¬j)

Γ ⇒ ∆,ϕ

Γ ⇒ ∆,¬j¬jϕ

The kj-negated logical rules as follows:

(¬k∧j⇒)
¬kϕ,¬kψ, Γ ⇒ ∆

¬k(ϕ ∧j ψ), Γ ⇒ ∆
(⇒¬k∧j)

Γ ⇒ ∆,¬kϕ Γ ⇒ ∆,¬kψ

Γ ⇒ ∆,¬k(ϕ ∧j ψ)

(¬k∨j⇒)
¬kϕ, Γ ⇒ ∆ ¬kψ, Γ ⇒ ∆

¬k(ϕ ∨j ψ), Γ ⇒ ∆
(⇒¬k∨j)

Γ ⇒ ∆,¬kϕ,¬kψ

Γ ⇒ ∆,¬k(ϕ ∨j ψ)

(¬k→j⇒)
Γ ⇒ ∆,¬kϕ ¬kψ,Θ⇒ Λ

¬k(ϕ→j ψ), Γ, Θ⇒ ∆,Λ
(⇒¬k→j)

¬kϕ, Γ ⇒ ∆,¬kψ

Γ ⇒ ∆,¬k(ϕ→j ψ)

(¬k←j⇒)
¬kϕ, Γ ⇒ ∆,¬kψ

¬k(ϕ←j ψ), Γ ⇒ ∆
(¬k←j⇒)

Γ ⇒ ∆,¬kϕ ¬kψ,Θ⇒ Λ

Γ,Θ⇒ ∆,Λ,¬k(ϕ←j ψ)

(¬k¬j⇒)
Γ ⇒ ∆,ϕ

¬k¬jϕ, Γ ⇒ ∆
(⇒¬k¬j)

ϕ, Γ ⇒ ∆

Γ ⇒ ∆,¬k¬jϕ

For the modal logical rules below we adopt the following convention:
the letter π denotes a set which is empty or consists of exactly one
formula from the list of formulas �jψ,¬j♦jψ,¬k�jψ, where k 6= j; the
letter δ denotes a set which is empty or consists of exactly one formula
from the list ♦jψ,¬j�jψ,¬k♦jψ, where k 6= j; the letter Λ♯ stands for
the set (possibly, empty) {�jΛ1,¬j♦jΛ2,¬k�jΛ3}, where k 6= j; and the
letter Λ♭ stands for the set (possibly, empty) {♦jΛ1,¬j�jΛ2,¬k♦jΛ3},
where again k 6= j.

The non-negated modal rules:

(�j⇒)
ϕ, Γ ⇒ ∆

�jϕ, Γ ⇒ ∆
(⇒�j)

π ⇒ Λ♭, ϕ

π ⇒ Λ♭,�jϕ

(♦j⇒)
ϕ,Λ♯ ⇒ δ

♦jϕ,Λ♯ ⇒ δ
(⇒♦j)

Γ ⇒ ∆,ϕ

Γ ⇒ ∆,♦jϕ
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The jj-negated modal logical rules:

(¬j�j⇒)
¬jϕ,Λ

♯ ⇒ δ

¬j�jϕ,Λ♯ ⇒ δ
(⇒¬j�j)

Γ ⇒ ∆,¬jϕ

Γ ⇒ ∆,¬j�jϕ

(¬j♦j ⇒)
¬jϕ, Γ ⇒ ∆

¬j♦jϕ, Γ ⇒ ∆
(⇒¬j♦j)

π ⇒ Λ♭,¬jϕ

π ⇒ Λ♭,¬j♦jϕ

The kj-negated modal logical rules:

(¬k�j⇒)
¬kϕ, Γ ⇒ ∆

¬k�jϕ, Γ ⇒ ∆
(⇒¬k�j)

π ⇒ Λ♭,¬kϕ

π ⇒ Λ♭,¬k�jϕ

(¬k♦j⇒)
¬kϕ,Λ

♯ ⇒ δ

¬k♦jϕ,Λ♯ ⇒ δ
(⇒¬k♦j)

Γ ⇒ ∆,¬kϕ

Γ ⇒ ∆,¬k♦jϕ

Remark 4.1. One can obtain a sequent calculus for MMLS4
n [6] from the

set of above rules replacing in each of modal rule the letters π and δ,
respectively, with the sets {�jΓ1,¬j♦jΓ2,¬k�jΓ3} and {♦j∆1,¬j�j∆2,
¬k♦j∆3}, where k 6= j. ⊣

One can obtain a hypersequent calculus for MMLS5
n [6] from the se-

quent calculus for MMLMNT4
n or MMLS4

n as follows: (1) all the (internal)
structural and logical non-modal rules should be presented into the hy-
persequent form; (2) one should add the rules (EW⇒), (⇒EW), and
(Merge); (3) one should replace all the modal rules with the following
ones. The non-negated modal rules:

(�j⇒)
ϕ, Γ ⇒ ∆ | H

�jϕ⇒ | Γ ⇒ ∆ | H
(⇒�j)

⇒ ϕ | H

⇒ �jϕ | H

(♦j⇒)
ϕ⇒ | H

♦jϕ⇒ | H
(⇒♦j)

Γ ⇒ ∆,ϕ | H

Γ ⇒ ∆ | ⇒ ♦jϕ | H

The jj-negated modal rules:

(¬j�j⇒)
¬jϕ⇒ | H

¬j�jϕ⇒ | H
(⇒¬j�j)

Γ ⇒ ∆,¬jϕ | H

Γ ⇒ ∆ | ⇒ ¬j�jϕ | H

(¬j♦j⇒)
¬jϕ, Γ ⇒ ∆ | H

¬j♦jϕ⇒ | Γ ⇒ ∆ | H
(⇒¬j♦j)

⇒ ¬jϕ | H

⇒ ¬j♦jϕ | H

The kj-negated modal rules:

(¬k�j⇒)
¬kϕ, Γ ⇒ ∆ | H

¬k�jϕ⇒ | Γ ⇒ ∆ | H
(⇒¬k�j)

⇒ ¬kϕ | H

⇒ ¬k�jϕ | H
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(¬k♦j⇒)
¬kϕ⇒ | H

¬k♦jϕ⇒ | H
(⇒¬k♦j)

Γ ⇒ ∆,¬kϕ | H

Γ ⇒ ∆ | ⇒ ¬k♦jϕ | H

5. Algebraic completeness

5.1. Soundness

Lemma 5.1. All the rules of the sequent calculus MMLMNT4
n are sound

with respect to modal multilattices with Tarskian operators.

Proof. Propositional cases do not present difficulties and are proved
in the usual way [see, e.g., 7]. We consider some representative modal
instances.

Ad (⇒�j). Suppose that MMLMNT4
n |= π ⇒ Λ♭, ϕ. For concreteness

assume that π is of the form ¬j♦jψ, Λ♭ is non-empty and consists of the
formula λ♭. So, v(¬j♦jψ) ∈ Un implies v(λ♭) ∈ Un or v(ϕ) ∈ Un. Let
v(¬j♦jψ) ∈ Un, hence v(λ♭) ∈ Un or v(ϕ) ∈ Un, and we have to show
that v(λ♭) ∈ Un or v(�jϕ) ∈ Un.

First of all, let us prove that v(¬j♦jψ) ≤j v(ϕ) implies v(¬j♦jψ) ≤j

v(�jϕ). Let v(¬j♦jψ) ≤j v(ϕ). By Definition 2.13, −jCj(v(ψ)) ≤j

v(ϕ). By (−jCj-definition), Ij(−jv(ψ)) ≤j v(ϕ). By (I-monotonicity),
Ij(Ij(−jv(ψ))) ≤j Ij(v(ϕ)). Therefore, by (I-idempotent), Ij(−jv(ψ))
≤j Ij(v(ϕ)). Hence, by (−jCj-definition) and Definition 2.13, v(¬j♦jψ)
≤j v(�jϕ).

Recall that v(λ♭) ∈ Un or v(ϕ) ∈ Un. Assume that v(λ♭) ∈ Un.
Then v(λ♭) ∈ Un or v(�jϕ) ∈ Un. Hence, v(¬j♦jψ) ∈ Un implies
v(λ♭) ∈ Un or v(�jϕ) ∈ Un, i.e. MMLMNT4

n |= π ⇒ Λ♭,�jϕ. Suppose
that v(ϕ) ∈ Un. Then v(¬j♦jψ) ∈ Un implies v(ϕ) ∈ Un. Therefore,
v(¬j♦jψ) ≤j v(ϕ) which, as we already know, implies v(¬j♦jψ) ≤j

v(�jϕ). Hence, v(¬j♦jψ) ∈ Un implies v(�jϕ) ∈ Un. Since v(¬j♦jψ) ∈
Un, we have v(�jϕ) ∈ Un, and so v(λ♭) ∈ Un or v(�jϕ) ∈ Un. Therefore,
MMLMNT4

n |= π ⇒ Λ♭,�jϕ.
Other instances of π are treated similarly.
Ad (⇒¬j�j). Assume that MMLMNT4

n |= Γ ⇒ ∆,¬jϕ. Then for any
valuation v, v(ψ) ∈ Un for all ψ ∈ Γ implies v(ξ) ∈ Un for some ξ ∈ ∆ or
v(¬jϕ) ∈ Un. The first of the disjuncts directly yields MMLMNT4

n |= Γ ⇒
∆,¬j�jϕ, while the second gives v(¬j�jϕ) ∈ Un. Indeed, v(¬jϕ) ≤j

Cj(v(¬jϕ)) by increasing. But Cj(v(¬jϕ)) = v(♦j¬jϕ) ∈ Un by Defini-
ton 2.13 and since Un is a filter. Thus, v(¬j�jϕ) ∈ Un.
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Ad (⇒¬k�j). Using the similar conventions and general scheme
of reasoning as in case (⇒�j), we need to show MMLMNT4

n |= π ⇒
λ♭,¬k�jϕ under the assumption MMLMNT4

n |= π ⇒ λ♭,¬kϕ. So, suppose
that λ♭ ∈ Un or ¬kϕ ∈ Un. Let us consider only the crucial sub-case
¬kϕ ∈ Un. This time we need to show that v(¬j♦jψ) ≤j v(¬kϕ) implies
v(¬j♦jψ) ≤j v(¬k�jϕ). It is done similarly to the case of (⇒�j), but
with the use of (−kIj-definition). Then, applying (I-monotonicity) and
(I-idempotent), we get Ij(v(¬jψ)) ≤j Ij(v(¬kϕ)). Thus, Ij(v(¬kϕ)) =
−kIj(v(ϕ)) ∈ Un, by Definition 2.10 and, finally, v(¬k�jϕ) ∈ Un, by
Definition 2.13. Hence, MMLMNT4

n |= π ⇒ λ♭,¬k�jϕ.
Ad (♦j⇒). Suppose that MMLMNT4

n |= ϕ,Λ♯ ⇒ δ. For concreteness
assume that δ is of the form ¬j�jψ, Λ♯ is non-empty and consists of the
formula λ♯. Thus, if v(ϕ) ∈ Un and v(λ♯) ∈ Un, then v(¬j�jψ) ∈ Un.

Let us show that v(ϕ) ≤j v(¬j�jψ) implies v(♦jϕ) ≤j v(¬j�jψ).
Assume that v(ϕ) ≤j v(¬j�jψ), i.e. v(ϕ) ≤j −jIj(v(ψ)). Then, by
(−jIj-definition), v(ϕ) ≤j Cj(−jv(ψ)). By (C-monotonicity), Cj(v(ϕ))
≤j Cj(Cj(−jv(ψ))). By (C-idempotent), Cj(v(ϕ)) ≤j Cj(−jv(ψ)).
Then Cj(v(ϕ)) ≤j −jIj(v(ψ)), i.e. v(♦jϕ) ≤j v(¬j�jψ).

Suppose v(♦jϕ) ∈ Un and v(λ♯) ∈ Un. Assume that v(ϕ) ∈ Un. Then
v(ϕ) ∈ Un and v(λ♯) ∈ Un. Hence, v(¬j�jψ) ∈ Un. Therefore, v(ϕ) ∈
Un implies v(¬j�jψ) ∈ Un. Thus, v(ϕ) ≤j v(¬j�jψ) which gives us
v(♦jϕ) ≤j v(¬j�jψ). Consequently, v(♦jϕ) ∈ Un implies v(¬j�jψ) ∈
Un. Since v(♦jϕ) ∈ Un, we have v(¬j�jψ) ∈ Un. Finally, we get if
v(♦jϕ) ∈ Un and v(λ♯) ∈ Un, then v(¬j�jψ) ∈ Un, i.e. MMLMNT4

n |=
♦jϕ,Λ

♯ ⇒ δ.
The other instances of δ are treated similarly.
Ad (⇒♦j). Suppose that MMLMNT4

n |= Γ ⇒ ∆,ϕ. Then if v(χ) ∈ Un

for each χ ∈ Γ , then v(ω) ∈ Un for some ω ∈ ∆ or v(ϕ) ∈ Un. Assume
that v(χ) ∈ Un for each χ ∈ Γ . Then v(ω) ∈ Un for some ω ∈ ∆ or
v(ϕ) ∈ Un. The former disjunct straightforwardly implies MMLMNT4

n |=
Γ ⇒ ∆,♦jϕ. So v(ϕ) ∈ Un. By (increasing), v(ϕ) ≤j Cj(v(ϕ)). Thus,
v(♦jϕ) ∈ Un which gives us MMLMNT4

n |= Γ ⇒ ∆,♦jϕ. ⊣

Lemma 5.2. All the rules of the sequent calculus MMLS4
n are sound with

respect to modal multilattices with Kuratowski operators.

Proof. Recall that each Kuratowski multilattice is a Tarski multilat-
tice and that the sequent calculus for MMLS4

n differs from the one for
MMLMNT4

n by the formulation of the rules (⇒�j), (♦j⇒), (¬j�j⇒),
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(⇒¬j♦j), (⇒¬k�j), and (¬k♦j⇒). Thus, we need to consider only
these rules.

Ad (⇒�j). This proof is a generalization of the proof of soundness
of the right rule for �j of MMLn with respect to De Morgan modal
multilattices presented in [7, Lemma 5.4]. Suppose that

MMLS4
n |= �jΓ1,¬j♦jΓ2,¬k�jΓ3 ⇒ ♦jΛ1,¬j�jΛ2,¬k♦jΛ3, ϕ.

We leave it to the reader to show that MMLS4
n |= �jΓ1,¬j♦jΓ2,¬k�jΓ3,

¬j¬k♦jΛ1,¬j¬k¬j�jΛ2,¬k¬j¬k♦jΛ3 ⇒ ϕ. For simplicity we assume
that Γ1, Γ2and Γ3 consist of the formulas γ1, γ2 and γ3, respectively,
and Λ1, Λ2 and Λ3 consist of the formulas λ1, λ2 and λ3, respectively.
By Definitions 2.8 and 2.13, we have Φ1 ∩j Φ2 ≤j v(ϕ), where Φ1 =
Ij(v(γ1)) ∩j −jCj(v(γ2)) ∩j −kIj(v(γ3)) and Φ2 = −j−kCj(v(λ1)) ∩j

−j−k−jIj(v(λ2)) ∩j −j−k−kCj(v(λ3)).
Using Definition 2.11, we modify Φ1 as follows:

Φ1 = Ij(v(γ1)) ∩j Ij(−jv(γ2)) ∩j Ij(−kv(γ3)).

By Definition 2.11, −j−k−jIj(v(λ2)) = −j−kCj(−jv(λ2)). Using this
Definition again, we have:

−j−kCj(v(λ1)) = −j−k−j−kIj(−j−kv(λ1)),

−j−k−jIj(v(λ2)) = −j−k−j−kIj(−j−k−jv(λ2)),

−j−k−kCj(v(λ3)) = −k−j−k−j−kIj(−j−kv(λ3)).

We leave it to the reader to prove that −j−k−j−kv(ψ) = v(ψ) and
−k−j−k−jv(ψ) = v(ψ), for each ψ ∈ FM. We modify Φ2 as follows:

Φ2 = Ij(−j−kv(λ1)) ∩j Ij(−j−k−jv(λ2)) ∩j −kIj(−j−kv(λ3)).

Using Definition 2.11, we modify the last conjunct of Φ2:

Φ2 = Ij(−j−kv(λ1)) ∩j Ij(−j−k−jv(λ2)) ∩j Ij(−k−j−kv(λ3)).

Using Definition 2.11 (the property (multiplicative)), we have:

Φ1 = Ij

(
v(γ1) ∩j −jv(γ2) ∩j −kv(γ3)

)
,

Φ2 = Ij

(
−j−kv(λ1) ∩j −j−k−jv(λ2) ∩j −k−j−kv(λ3)

)
.

Let us introduce two new abbreviations:

Ψ1 := v(γ1) ∩j −jv(γ2) ∩j −kv(γ3),

Ψ2 := −j−kv(λ1) ∩j −j−k−jv(λ2) ∩j −k−j−kv(λ3).
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We have Φ1 = Ij(Ψ1) and Φ2 = Ij(Ψ2). Then Φ1 ∩j Φ2 = Ij(Ψ1) ∩j

Ij(Ψ2). Using (multiplicative) once again, we have Ij(Ψ1) ∩j Ij(Ψ2) =
Ij(Ψ1 ∩j Ψ2). Therefore, Ij(Ψ1 ∩j Ψ2) ≤j v(ϕ). By I-monotonicity,
Ij(Ij(Ψ1 ∩j Ψ2)) ≤j Ij(v(ϕ)). By Definition 2.11 (I-idempotent),
Ij(Ψ1 ∩j Ψ2) ≤j Ij(v(ϕ)). Then Ij(Ψ1)∩j Ij(Ψ2) ≤j Ij(v(ϕ)), i.e. Φ1 ∩j

Φ2 ≤j Ij(v(ϕ)). By Definition 2.13, MMLS4
n |= �jΓ1,¬j♦jΓ2,¬k�jΓ3,

¬j¬k♦jΛ1,¬j¬k¬j�jΛ2,¬k¬j¬k♦jΛ3 ⇒ �jϕ. The latter fact implies
the required one:

MMLS4
n |= �jΓ1,¬j♦jΓ2,¬k�jΓ3 ⇒ ♦jΛ1,¬j�jΛ2,¬k♦jΛ3,�jϕ.

The other cases are proved similarly. ⊣

In order to simplify a soundness proof for MMLS5
n we need the fol-

lowing definition [see 21 for the translations of hypersequents and tree-
hypersequents to formulas].

Definition 5.1. A transtation τ of hypersequents to LM-formulas is
inductively defined as follows:

• τ(Γ ⇒ ∆) =
∧

j Γ →j

∨
j ∆,1

• τ(Γ1 ⇒ ∆1 | . . . | Γm ⇒ ∆m) = �jτ(Γ1 ⇒ ∆1) ∨j · · · ∨j �jτ(Γm ⇒
∆m).

Proposition 5.1. A hypersequent H is valid in MMLS5
n iff the formula

τ(H) is valid in MMLS5
n .

Proof. Suppose that a hypersequent H = Γ1 ⇒ ∆1 | . . . | Γm ⇒ ∆m

is valid in MMLS5
n . Then there is at least one i such that 1 ¬ i ¬ m

and Γi ⇒ ∆i is valid. Thus, if v(ϕ) ∈ Un for all ϕ ∈ Γi, then v(ψ) ∈
Un for some ψ ∈ ∆i. Since Un is a prime multifilter, we have that if
v(

∧
j Γi) ∈ Un, then v(

∨
j ∆i) ∈ Un. Thus, v(

∧
j Γi →j

∨
j ∆i) ∈ Un.

Therefore, 1j ≤j v(
∧

j Γi →j

∨
j ∆i). By (I-monotonicity), Ij(1j) ≤j

Ij

(
v(

∧
j Γi →j

∨
j ∆i)

)
. By (1j is open), 1j ≤j Ij

(
v(

∧
j Γi →j

∨
j ∆i)

)
.

So Ij

(
v(

∧
j Γi →j

∨
j ∆i)

)
∈ Un, i.e. v

(
�j(

∧
j Γi →j

∨
j ∆i)

)
∈ Un. Since

Un is prime, v
(
�j(

∧
j Γ1 →j

∨
j ∆1)

)
∨ · · · ∨ v

(
�j(

∧
j Γm →j

∨
j ∆m)

)
∈

Un, i.e. τ(H) ∈ Un. So τ(H) is valid in MMLS5
n .

Suppose that τ(H) is valid in MMLS5
n . Thus, v

(
�j(

∧
j Γ1 →j

∨
j ∆1)

)

∨ · · · ∨ v
(
�j(

∧
j Γm →j

∨
j ∆m)

)
∈ Un. Then there is an i such that 1 ¬

1 To be more precise, this definition holds, if both Γ 6= ∅ and ∆ 6= ∅. If Γ = ∅,
then τ(Γ ⇒ ∆) =

∨
j

∆; if ∆ = ∅, then τ(Γ ⇒ ∆) = ¬k¬j

∧
j

Γ ; if both Γ = ∅ and

∆ = ∅, then τ(Γ ⇒ ∆) = p ∧j ¬k¬jp.
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i ¬ m and �j

(
v(

∧
j Γi →j

∨
j ∆i)

)
∈ Un. By (decreasing), v(

∧
j Γi →j∨

j ∆i) ∈ Un. Hence, v(
∧

j Γi) ∈ Un implies v(
∨

j ∆i) ∈ Un. So v(ϕ) ∈ Un

for any ϕ ∈ Γi implies v(ψ) ∈ Un for some ψ ∈ ∆i. Therefore, Γi ⇒ ∆i

is valid. Hence, H is valid in MMLS5
n . ⊣

Lemma 5.3. All the rules of the sequent calculus MMLS5
n are sound with

respect to modal multilattices with Halmos operators.

Proof. Ad (�j⇒). Assume that MMLS5
n |= ϕ, Γ ⇒ ∆ | H. Then, by

Proposition 5.1, MMLS5
n |= τ(ϕ, Γ ⇒ ∆ | H), i.e. MMLS5

n |= �j

(
(ϕ ∧j∧

j Γ )→j

∨
j ∆

)
∨j �jτ(H). Then MMLS5

n |= �j

(
(ϕ∧j

∧
j Γ )→j

∨
j ∆

)

or MMLS5
n |= �jτ(H). The latter option immediately implies the re-

quired result. Let us consider the former one. We leave it to the reader to
check that MMLS5

n |= �j(χ→j ω) →j (�jχ→j �jω). Then MMLS5
n |=

�j(ϕ ∧j

∧
j Γ ) →j �j

∨
j ∆. By (I-idempotent), MMLS5

n |= (�jϕ ∧j

�j

∧
j Γ ) →j �j

∨
j ∆. Thus, MMLS5

n |= ¬k¬j(�jϕ ∧j �j

∧
j Γ ) ∨j

�j

∨
j ∆. Then MMLS5

n |= ¬k¬j�jϕ ∨j ¬k¬j�j

∧
j Γ ∨j �j

∨
j ∆ which

implies MMLS5
n |= ¬k¬j�jϕ ∨j

(
�j

∧
j Γ →j �j

∨
j ∆

)
. By (interior

interconnection), MMLS5
n |= ¬k¬j�jϕ iff MMLS5

n |= �j¬k¬j�jϕ. We
leave it to the reader to prove MMLS5

n |= (�jχ→j �jω)→j �j(χ→j ω).
Therefore, MMLS5

n |= �j¬k¬j�jϕ ∨j �j

( ∧
j Γ →j

∨
j ∆

)
. By the prop-

erties of ∨j , we have MMLS5
n |= �j¬k¬j�jϕ ∨j �j

( ∧
j Γ →j

∨
j ∆

)
∨j

�jτ(H). Hence, by the definition of τ , MMLS5
n |= τ(�jϕ ⇒ | Γ ⇒ ∆ |

H). By Proposition 5.1, MMLS5
n |= �jϕ⇒ | Γ ⇒ ∆ | H.

Ad (⇒♦j). Assume that MMLS5
n |= Γ ⇒ ∆,ϕ | H. Then MMLS5

n |=
¬k¬jϕ, Γ ⇒ ∆ | H. By Proposition 5.1, MMLS5

n |= τ(¬k¬jϕ, Γ ⇒ ∆ |
H), i.e. MMLS5

n |= �j

(
(¬k¬jϕ ∧j

∧
j Γ ) →j

∨
j ∆

)
∨j �jτ(H). Then

MMLS5
n |= �j

(
(¬k¬jϕ ∧j

∧
j Γ ) →j

∨
j ∆

)
or MMLS5

n |= �jτ(H). The
latter option immediately implies the soundness of the rule in ques-
tion. Let us consider the former one. Similarly to the previous case,
we get MMLS5

n |= (�j¬k¬jϕ ∧j �j

∧
j Γ )→j �j

∨
j ∆. Then MMLS5

n |=
(¬k¬j♦jϕ ∧j �j

∧
j Γ ) →j �j

∨
j ∆. By (closure interconnection),

MMLS5
n |= (♦j¬k¬j♦jϕ ∧j �j

∧
j Γ ) →j �j

∨
j ∆. Then MMLS5

n |=
(¬k¬j�j♦jϕ ∧j �j

∧
j Γ ) →j �j

∨
j ∆. Therefore, MMLS5

n |= �j♦jϕ ∨j

¬k¬j�j

∧
j Γ ∨j �j

∨
j ∆. Hence, MMLS5

n |= �j♦jϕ ∨j (�j

∧
j Γ →j

�j

∨
j ∆). Thus, MMLS5

n |= �j♦jϕ ∨j �j(
∧

j Γ →j

∨
j ∆) which implies

MMLS5
n |= Γ ⇒ ∆ | ⇒ ♦jϕ | H.
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Ad (⇒�j). Assume that MMLS5
n |=⇒ ϕ | H. Then MMLS5

n |=⇒ ϕ
or MMLS5

n |= H. The latter case immediately implies MMLS5
n |= ⇒

�jϕ | H. Let us look at the former one. We have v(ϕ) = 1j , for
some j ¬ n. Thus, 1j ≤j v(ϕ) and v(ϕ) ≤j 1j . By (I-monotonicity),
Ij(1j) ≤j Ij(v(ϕ)) and Ij(v(ϕ)) ≤j Ij(1j), i.e. Ij(v(ϕ)) = Ij(1j). By
(1j is open), Ij(v(ϕ)) = 1j . Hence, MMLS5

n |=⇒ �jϕ | H.
Ad (♦j⇒). Then MMLS5

n |= ϕ ⇒ | H. Then MMLS5
n |= ϕ ⇒

or MMLS5
n |= H. The latter case immediately implies the required re-

sult. Let us consider the former one. We have v(ϕ) = 0j , for some
j ¬ n. Thus, v(ϕ) ≤j 0j and 0j ≤j v(ϕ). By (C-monotonicity),
Cj(v(ϕ)) ≤j Cj(0j) and Cj(0j) ≤j Cj(v(ϕ)), i.e. Cj(v(ϕ)) = Cj(0j).
By (0j is closed), Cj(v(ϕ)) = 0j . Hence, MMLS5

n |= ♦jϕ⇒ | H.
The other cases are proved similarly. ⊣

Theorem 5.1. Let L ∈ {MMLMNT4
n ,MMLS4

n ,MMLS5
n }. For each pair of

finite sets Γ and ∆ of LM-formulas, it holds that if L ⊢ Γ ⇒ ∆, then

L |= Γ ⇒ ∆.

Proof. By induction of the height of the derivation, using Lemmas 5.1,
5.2, and 5.3. ⊣

5.2. Completeness

Definition 5.2. Let L ∈ {MMLMNT4
n ,MMLS4

n ,MMLS5
n } and let [ϕ] be

the class of equivalence of ϕ ∈ FM, i.e. {ψ ∈ FM | L ⊢ ϕ⇒ ψ,L ⊢ ψ ⇒
ϕ}. Let Γ ⊆ FM and [Γ ] be {[γ] | γ ∈ Γ}. Thus, [FM] is the set of all
the classes of equivalences, i.e. {[ϕ] | ϕ ∈FM}.

Definition 5.3. Let ϕ, ψ ∈ FM and L ∈ {MMLMNT4
n ,MMLS4

n ,MMLS5
n }.

Then a Lindenbaum-Tarski algebra (LT-algebra) is a structure ML

n =
〈[FM],≤1, . . . ,≤n〉 which satisfies the following conditions:

[ϕ] ≤j [ψ] iff [ϕ] = [ϕ ∧j ψ];

−j [ϕ] = [¬jϕ];

[ϕ] ∩j [ψ] = [ϕ ∧j ψ];

[ϕ] ∪j [ψ] = [ϕ ∨j ψ];

[ϕ] ⊃j [ψ] = [ϕ→j ψ];

[ϕ] ⊂j [ψ] = [ϕ←j ψ];

Ij [ϕ] = [�jϕ];

Cj [ϕ] = [♦jϕ].
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Fact 5.1. For each ϕ, ψ ∈ FM and L ∈ {MMLMNT4
n ,MMLS4

n ,MMLS5
n },

it holds that L ⊢ ϕ⇒ ψ and L ⊢ ψ ⇒ ϕ iff [ϕ] = [ψ].

Lemma 5.4. The following sequents are provable in the sequent calculus

for MMLMNT4
n :

(1) �j(p∨j ¬k¬jp)⇒ p∨j ¬k¬jp
(2) p∨j ¬k¬jp⇒ �j(p∨j ¬k¬jp)
(3) ♦j(p∧j ¬k¬jp)⇒ p∧j ¬k¬jp
(4) p∧j ¬k¬jp⇒ ♦j(p∧j ¬k¬jp)
(5) �jϕ⇒ ϕ
(6) �jϕ⇒ �j�jϕ;
(7) �j�jϕ⇒ �jϕ;
(8) �j(ϕ ∧j ψ)⇒ �jϕ ∧j �jψ;
(9) ϕ⇒ ♦jϕ

(10) ♦jϕ⇒ ♦j♦jϕ;
(11) ♦j♦jϕ⇒ ♦jϕ;
(12) ♦jϕ ∨j ♦jψ ⇒ ♦j(ϕ ∨j ψ);

(13) ¬j�jϕ⇒ ♦j¬jϕ;
(14) ♦j¬jϕ⇒ ¬j�jϕ;
(15) ¬j♦jϕ⇒ �j¬jϕ;
(16) �j¬jϕ⇒ ¬j♦jϕ;
(17) ¬k�jϕ⇒ �j¬kϕ;
(18) �j¬kϕ⇒ ¬k�jϕ;
(19) ¬k♦jϕ⇒ ♦j¬kϕ;
(20) ♦j¬kϕ⇒ ¬k♦jϕ;
(21) ¬k¬j�j¬k¬jϕ⇒ ♦jϕ;
(22) ♦jϕ⇒ ¬k¬j�j¬k¬jϕ;
(23) ¬k¬j♦j¬k¬jϕ⇒ �jϕ;
(24) �jϕ⇒ ¬k¬j♦j¬k¬jϕ.

Lemma 5.5. M
MMLMNT4

n

n is a Tarski multilattice.

Proof. Due to Lemma 5.4, operations Ij and Cj on [FM] satisfy the
conditions which are listed in Definitions 2.9 and 2.10. Specifically, the
correspondence between the properties required by these definitions and
the provable sequents listed above is as follows:

• (decreasing) is justified by the provability of (5); (I-idempotent) by
(6)–(7); (sub-multiplicative) by (8); (increasing) by (9);
(C-idempotent) by (10)–(11); finally, (sub-additive) by (12).

• (1j is open) and (0j is closed) are justified by (1)–(4);
(−jIj-definition) by (13)–(14); (−jCj-definition) by (15)–(16);
(−kIj-definition) by (17)–(18); (−kCj-definition) by (19)–(20);
(C-definition) by (21)–(22); (I-definition) by (23)–(24). ⊣

Lemma 5.6. The sequents (1)–(24) from Lemma 5.4 as well as the fol-

lowing ones are provable in the sequent calculus for MMLS4
n :

(25) �jϕ ∧j �jψ ⇒ �j(ϕ ∧j ψ); (26) ♦j(ϕ ∨j ψ)⇒ ♦jϕ ∨j ♦jψ.

Proof. In virtue of Remark 4.1, we observe that the rules of MMLMNT4
n

are restrictions of the rules of MMLS4
n . This fact implies that the sequents
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(1)–(24) from Lemma 5.4 are provable in MMLS4
n as well. As for the

latter ones, their proofs are below.

ϕ⇒ ϕ
(W⇒)

ϕ, ψ ⇒ ϕ

ψ ⇒ ψ
(W⇒)

ϕ, ψ ⇒ ψ
(⇒∧j)

ϕ, ψ ⇒ ϕ ∧j ψ (�j⇒)2x
�jϕ,�jψ ⇒ ϕ ∧j ψ (⇒�j)

�jϕ,�jψ ⇒ �j(ϕ ∧j ψ)
(∧j⇒)

�jϕ ∧j �jψ ⇒ �j(ϕ ∧j ψ)

ϕ⇒ ϕ
(⇒W)

ϕ⇒ ϕ, ψ

ψ ⇒ ψ
(⇒W)

ψ ⇒ ϕ, ψ
(∨j⇒)

ϕ ∨j ψ ⇒ ϕ, ψ
(⇒♦j)2x

ϕ ∨j ψ ⇒ ♦jϕ,♦jψ (♦j⇒)
♦j(ϕ ∨j ψ)⇒ ♦jϕ,♦jψ (⇒∨j) ⊣

♦j(ϕ ∨j ψ)⇒ ♦jϕ ∨j ♦jψ

Lemma 5.7. M
MMLS4

n

n is a Kuratowski multilattice.

Proof. Due to Lemma 5.6, operations Ij and Cj satisfy the conditions
which are listed in Definition 2.11. In particular, (multiplicative) is jus-
tified by the provability of (8) and (25), (additive) is justified by (12)
and (26). ⊣

Lemma 5.8. The sequents (1)–(24) and (25)–(26) from Lemmas 5.4 and

5.6, respectively, as well as the following ones are provable in the sequent

calculus for MMLS5
n :

(27) �j¬k¬j�jϕ⇒ ¬k¬j�jϕ;
(28) ¬k¬j�jϕ⇒ �j¬k¬j�jϕ;

(29) ♦j¬k¬j♦jϕ⇒ ¬k¬j♦jϕ;
(30) ¬k¬j♦jϕ⇒ ♦j¬k¬j♦jϕ.

Proof. As an example, we proof of the sequents (29) and (30).

ϕ⇒ ϕ
(⇒♦j)

ϕ⇒|⇒ ♦jϕ (¬k¬j ⇒)
ϕ⇒| ¬k¬j♦jϕ⇒ (♦j⇒)
ϕ⇒| ♦j¬k¬j♦jϕ⇒ (♦j⇒)

♦jϕ⇒| ♦j¬k¬j♦jϕ⇒ (⇒ ¬k¬j)
⇒ ¬k¬j♦jϕ | ♦j¬k¬j♦jϕ⇒

(Merge)
♦j¬k¬j♦jϕ⇒ ¬k¬j♦jϕ
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ϕ⇒ ϕ
(⇒♦j)

ϕ⇒|⇒ ♦jϕ (¬k¬j ⇒)
ϕ⇒| ¬k¬j♦jϕ⇒ (♦j⇒)

♦jϕ⇒| ¬k¬j♦jϕ⇒ (⇒ ¬k¬j)
⇒ ¬k¬j♦jϕ | ¬k¬j♦jϕ⇒ (⇒♦j)

⇒ | ⇒ ♦j¬k¬j♦jϕ | ¬k¬j♦jϕ⇒
(Merge)2x ⊣

¬k¬j♦jϕ⇒ ♦j¬k¬j♦jϕ

Lemma 5.9. M
MMLS5

n

n is a Halmos multilattice.

Proof. Due to Lemma 5.8, operations Ij and Cj satisfy the condi-
tions which are listed in Definition 2.12. In particular, the condition
(interior interconnection) is justified by the provability of (27) and (28),
(closure interconnection) is justified by (29) and (30). ⊣

By structural induction on a formula ϕ, using Definition 5.3 we get:

Lemma 5.10. Let ṽ be a valuation introduced in Definition 2.13 such

that ṽ(p) = [p], for all p ∈ P (such a valuation is said to be canonical).
Then ṽ(ϕ) = [ϕ], for all ϕ ∈ FM.

For the elaborated proof of the following lemma see [7, Lemma 4.12]

Lemma 5.11 (Lindenbaum). L ∈ {MMLMNT4
n ,MMLS4

n ,MMLS5
n }. For

every pair of finite sets Γ and ∆ of LM-formulas, it holds that 6⊢L Γ ⇒ ∆
implies that there is an ultramultifilter Un on Lindenbaum-Tarski algebra

ML

n and [χ] ∈ Un for each χ ∈ Γ , while [ω] 6∈ Un for each ω ∈ ∆.

Theorem 5.2. Let L ∈ {MMLMNT4
n ,MMLS4

n ,MMLS5
n }. For every pair

of finite sets of LM-formulas Γ and ∆, it holds that L |= Γ ⇒ ∆ iff

L ⊢ Γ ⇒ ∆.

Proof. One direction follows from Theorem 5.1. For the other direction
we use contraposition and assume that L 0 Γ ⇒ ∆. Then, by Lemma
5.11, ML

n has an ultramultifilter Un such that [ϕ] ∈ Un (for all ϕ ∈
Γ ) and [ψ] 6∈ Un (for all ψ ∈ ∆). By Lemmas 5.5, 5.7 and 5.9, if
L = MMLMNT4

n (resp. MMLS4
n , MMLS5

n ), then ML

n is a Tarski (resp.
Kuratowski, Halmos) multilattice. By Lemma 5.10, there is canonical
valuation ṽ such that ṽ(ϕ) ∈ Un (for all ϕ ∈ Γ ) and ṽ(ψ) 6∈ Un (for all
ψ ∈ ∆), i.e. L 6|= Γ ⇒ ∆. ⊣
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6. Metatheoretical proporties via embedding

Now we present some metatheoretical results for the system MMLMNT4
n

obtained via embedding techniques following the lines of [6]. For this
purpose we provide syntactic embedding using as a target the language
of the MNT4 sequent calculus discussed in Section 3.

6.1. Syntactic embedding

Let us define a syntactical embedding function f from the language LM

to the language L . For the purpose of brevity we put ⊙j ∈ {∧j ,∨j ,→j,
←j} and ⊛j ∈ {�j ,♦j} as a shorthand for propositional connectives of
the language LM, while ⊙ ∈ {∧,∨,→,←} and ⊛ ∈ {�,♦} for L . We
also write ⊙d

j (⊛d
j ) for be the dual of ⊙j (⊛j).2

Definition 6.1. Let n > 1, j, k ¬ n, and j 6= k. Then a mapping f
from LM to L is defined inductively as follows:

(1) f(p) = p and f(¬jp) = pj (where pj ∈ Pj), for each p ∈ P,
(2) f(ϕ⊙j ψ) = f(ϕ)⊙ f(ψ),
(3) f¬j(ϕ⊙j ψ) = f(¬jϕ)⊙d f(¬jψ),
(4) f¬k(ϕ⊙j ψ) = f(¬kϕ)⊙ f(¬kψ),
(5) f(¬j¬jϕ) = f(ϕ),
(6) f(¬k¬jϕ) = f(¬ϕ),
(7) f(⊛j(ϕ)) = ⊛f(ϕ),
(8) f(¬j⊛j ϕ) = ⊛df(¬jϕ),
(9) f(¬k⊛j ϕ) = ⊛f(¬kϕ).

We adopt the usual notation: where Λ is a set of formulas, f(Λ) :=
{f(ϕ) | ϕ ∈ Λ}.

Theorem 6.1 (Syntactical embedding from MMLMNT4
n into MNT4). Let

f be a mapping introduced in Definition 6.1. Then for each sequent Γ ⇒
∆, such that Γ and ∆ are sets of LM-formulas: MMLMNT4

n ⊢ Γ ⇒ ∆ iff

MNT4 ⊢ f(Γ )⇒ f(∆).

Proof. “From left to right”. The proof is obtained by induction on
the construction of the derivation D of Γ ⇒ ∆ in the sequent calculus
MMLMNT4

n . Suppose that a rule r is the last one which was applied
in a sub-derivation D′ of D and the induction hypothesis (that is the

2 The following pairs of connectives of LM are considered as dual: ∧j and ∨j ;
←j and →j ; �j and ♦j . Similarly for the L -connectives (just ignore the indices).
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assertion of the lemma) holds for the whole part of D′ taken without the
conclusion of r. We have to show that the whole of D′ converts into a
MNT4 sub-derivation. Let us consider some typical propositional and
modal cases of r.

r := (¬j→j⇒). The premise of the last rule of application in D′ is
¬jψ, Γ ⇒ ∆,¬jϕ. Using induction hypothesis we construct the following
MNT4-derivation:

...
f(¬jψ), f(Γ )⇒ f(∆), f(¬jϕ)

(←⇒)
f(¬jϕ)← f(¬jψ), f(Γ )⇒ f(∆)

where the conclusion is the translation of the conclusion of r.
r := (¬k→j⇒). Now the premises of r are Γ ⇒ ∆,¬kϕ and ¬kψ,Θ ⇒

Λ. Thus, applying the induction hypothesis, we obtain

...
f(Γ )⇒ f(∆), f(¬kϕ)

...
f(¬kψ), f(Θ)⇒ f(Λ)

(→⇒)
f(¬kϕ)→ f(¬kψ), f(Γ ), f(Θ)⇒ f(∆), f(Λ)

r := (¬j�j⇒). The premise of r is of the form ¬jϕ,Λ
♯ ⇒ δ. Using

the induction hypothesis we construct:
...

f(¬jϕ), f(Λ♯)[= �f(Λ)]⇒ f(δ)
(♦⇒)

♦f(¬jϕ),�f(Λ)⇒ f(δ)

As one can see, the expression below the line is a translation of the result
of the application of r to the indicated premise.

r := (¬k�j⇒). This case is justified by the following MMLMNT4
n -

derivation: ...
f(¬kϕ), f(Γ )⇒ f(δ)

(�⇒)
�f(¬kϕ), f(Γ )⇒ f(δ)

Again, it is easy to see that the last sequent is a correct translation of
¬k�jϕ, Γ ⇒ ∆, the conclusion of r.

“From right to left”. To prove the assertion we utilize induction on
the construction of MNT4-proof E . Suppose that induction hypothesis
holds for a sub-derivation E ′ (dropping out the last sequent). Let us
inspect some cases of application of the rule r in the last step in the
construction of the E .
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r := (�⇒). Consider the final step of E :

...
χ, f(Γ )⇒ f(δ)

(�⇒)
�χ, f(Γ )⇒ f(δ)

where �χ is a translation of some appropriate LM-formula, that is �χ
is one of f(�jϕ), f(¬k�jϕ) or f(¬j♦jϕ) for some LM-formula ϕ, ac-
cording to the Definition 6.1. Thus χ itself is of the form f(ϕ), f(¬kϕ)
or f(¬jϕ). By the induction hypothesis we already have a MMLMNT4

n -
derivation for f−1(χ), Γ ⇒ δ. What is left is to apply one of the rules
(�j⇒), (¬k�j⇒) or (¬j♦j ⇒), corresponding to the above listed form
of χ.

r := (♦⇒). The last inference of E has the following form:

...
χ, f(Ξ)⇒ f(ψ)

(♦⇒)
♦χ, f(Ξ)⇒ f(ψ)

Note that f(Ξ) is of the form �Γ , while f(ψ) is empty or is of the form
f(δ) (in order to apply the rule (♦⇒) correctly). Thus ♦χ is an image of
one of the following formulas: f(♦jϕ), f(¬k♦jϕ) or f(¬j�jϕ). So χ co-
incides with one of the f(ϕ), f(¬kϕ) or f(¬jϕ). Again, we already know
a derivation of f−1(χ), Ξ ⇒ ψ in MMLMNT4

n and we complete it by apply-
ing (♦j⇒), (¬k♦j⇒) or (¬j�j⇒) depending on the structure of χ. ⊣

Corollary 6.1 (Decidability). MMLMNT4
n is decidable.

Proof. Follows from Theorem 6.1 and decidability of MNT4. ⊣

6.2. Neighbourhood semantics for MMLMNT4
n

Definition 6.2. A neighbourhood frame is a structure F = (W,N),
where W is an non-empty set, N : W → P(P(W )) is a neighbourhood
function. A neighbourhood model based on F is a pairM = (F , θ), where
F is a neighbourhood frame, θ : P →P(W ) is a valuation function. The
truth relation |= is defined inductively in a standard way, we just spell
out the modal condition (where ‖ϕ‖M is a truth set of formula ϕ inM):

M, x |= �ϕ iff ‖ϕ‖M ∈ N(x).
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We introduce the very basic, minimal neighbourhood models. We need
to add some extra conditions to obtain MNT4-neighbourhood models.
An MNT4-neighbourhood model is a minimal neighbourhood model en-
dowed with the following properties [5]:

supplemented model (sm) for all X, Y ⊆ W such that X ⊆ Y , for all
x ∈W , if X ∈ N(x) then Y ∈ N(x);

N condition (nc) W ∈ N(x) for all x ∈W ;
t condition (tc) for all X ⊆W , if X ∈ N(x) then x ∈ X , for all x ∈ X ;
4 condition (4c) for all X ⊆ W , for all x ∈ W , if X is in N(x) then all

points y such that X ∈ N(y) constitute the elements of N(x).

Next let us define a special type of evaluation which maps propositional
variables and their negations to the powerset of W . We denote the set of
negated propositional variables as P¬. Thus a paraconsistent valuation
is a function ϑ : P∪P¬ →P(W ). A paraconsistent neighbourhood model
is a pair M = (F , ϑ), where F is a neighbourhood frame.

Definition 6.3. An MMLMNT4
n -model is a paraconsistent neighbour-

hood model satisfying the conditions sm, nc, tc and 4c.

The paraconsistent truth relation is given by the following state-
ments:

Definition 6.4. For an MMLMNT4
n -model M = (W,N, ϑ), an x ∈ W ,

formulas ϕ, ψ ∈ LM and p ∈ P ∪ P¬, all j, k (1 ¬ j, k ¬ n, j 6= k), the
paraconsistent truth relation |=p is defined by the following clauses:

(1) x |=p p iff x ∈ ϑ(p),
(2) x |=p ϕ ∧j ψ iff x |=p ϕ and x |=p ψ,
(3) x |=p ϕ ∨j ψ iff x |=p ϕ or x |=p ψ,
(4) x |=p ϕ→j ψ iff x 6|=p ϕ or x |=p ψ,
(5) x |=p ϕ←j ψ iff x |=p ϕ and x 6|=p ψ,
(6) x |=p �jϕ iff ‖ϕ‖M ∈ N(x),
(7) x |=p ♦jϕ iff W \ ‖ϕ‖M /∈ N(x),
(8) x |=p ¬j(ϕ ∧j ψ) iff x |=p ¬jϕ or x |=p ¬jψ,
(9) x |=p ¬j(ϕ ∨j ψ) iff x |=p ¬jϕ and x |=p ¬jψ,

(10) x |=p ¬j(ϕ→j ψ) iff x |=p ¬jψ and x 6|=p ¬jϕ,
(11) x |=p ¬j(ϕ←j ψ) iff x |=p ¬jϕ or x 6|=p ¬jψ,
(12) x |=p ¬j�jϕ iff W \ ‖¬jϕ‖M /∈ N(x),
(13) x |=p ¬j♦jϕ iff ‖¬jϕ‖M ∈ N(x),
(14) x |=p ¬j¬jϕ iff x |=p ϕ,
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(15) x |=p ¬k(ϕ ∧j ψ) iff x |=p ¬kϕ and x |=p ¬kψ,
(16) x |=p ¬k(ϕ ∨j ψ) iff x |=p ¬kϕ or x |=p ¬kψ,
(17) x |=p ¬k(ϕ→j ψ) iff x |=p ¬kψ or x 6|=p ¬kϕ,
(18) x |=p ¬k(ϕ←j ψ) iff x |=p ¬kϕ and x 6|=p ¬kψ,
(19) x |=p ¬k�jϕ iff ‖¬kϕ‖M ∈ N(x),
(20) x |=p ¬k♦jϕ iff W \ ‖¬kϕ‖M /∈ N(x),
(21) x |=p ¬k¬jϕ iff x 6|=p ϕ.

Finally, let us fix a bunch of standard semantic notions. Abusing
notation we will write x ∈M to mean that x is an element of the carrier
set of M.

Definition 6.5. A formula ϕ ∈ L (resp. ϕ ∈ LM) is valid in an MNT4-
model (resp. MMLMNT4

n -model) M if M, x |= ϕ (resp. M, x |=p ϕ) for
all x ∈ M. A formula ϕ is MNT4-valid (resp. MMLMNT4

n -valid) if it
is valid in all MNT4-models (resp. MMLMNT4

n -models). In the sequel
let MNT4 |= ϕ (resp. MMLMNT4

n |=p ϕ) denote MNT4-validity (resp.
MMLMNT4

n -validity) for a formula ϕ.

6.3. Neighbourhood completeness via embedding

The aim of this section is to show that our system MMLMNT4
n is complete

with respect to the class of all paraconsistent neighbourhood models.
This result can be regarded as a by-product of the embedding technique
elaborated in previous subsections.

As a starting point, we relate the truth conditions of a formula ϕ
(of the language LM) at a point in an MMLMNT4

n -model and the truth
conditions of its translation f(ϕ) at a point in an MNT4-model.

Suppose that we have an MMLMNT4
n -model M = (W,N, ϑ) at hand.

It is sufficient to reconstruct a paraconsistent valuation ϑ into a standard
valuation ϕ, defined on the same frame (W,N), and specifying for all
p ∈ P, x ∈W and j ¬ n:

x ∈ ϑ(p) iff x ∈ θ(p);

x ∈ ϑ(¬jp) iff x ∈ θ(pj).

Thereby we have constructed a neighbourhood model M′ = (W,N, θ).
Let us check that this is an intended MNT4-model.
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Lemma 6.1. M′ = (W,N, θ) is an MNT4-model. Moreover, for each

formula ϕ of the language LM and for each x ∈W ,

M, x |=p ϕ iff M′, x |= f(ϕ).

Proof. The proof is almost a straightforward induction argument. Let
us consider some typical cases.

1. For a propositional variable or a negated propositional variable the
statement follows directly from the definition of θ.

2. M, x |=p ¬j(ϕ∧jψ) iffM, x |=p ¬jϕ orM, x |=p ¬jψ (Definition 6.4)
iff M′, x |= f(¬jϕ) or M′, x |= f(¬jψ) (induction hypothesis) iff
M′, x |= f(¬jϕ)∨f(¬jψ) iffM′, x |= f(¬j(ϕ∧j ψ)) (Definition 6.1).

3. M, x |=p ¬k(ϕ ∧j ψ) iff M, x |=p ¬kϕ and M, x |=p ¬kψ (Def-
inition 6.4) iff M′, x |= f(¬kϕ) and M′, x |= f(¬kψ) (induction
hypothesis) iff M′, x |= f(¬kϕ) ∧ f(¬kψ) iff M′, x |= f(¬k(ϕ ∧j ψ))
(Definition 6.1).

4. M, x |=p �jϕ iff ‖ϕ‖M ∈ N(x) iff ‖f(ϕ)‖M′ ∈ N(x) (induction
hypothesis) iff M′, x |= �(f(ϕ)) iff M′, x |= f(�jϕ).

5. M, x |=p ¬j�jϕ iff W \‖¬jϕ‖M /∈ N(x) iff W \‖f(¬jϕ)‖M′ /∈ N(x)
(induction hypothesis) iffM′, x |= ♦(f(¬jϕ)) iffM′, x |= f(¬j�jϕ).

⊣

For the other direction of reconstructing models we stipulate the
following which we get similar to the previous lemma:

Lemma 6.2. For every MNT4-model M′ = (W,N, θ) there exists an

MMLMNT4
n -model M = (W,N, ϑ) such that for every formula ϕ ∈ LM,

for all x ∈W :
M′, x |= f(ϕ) iff M, x |=p ϕ.

In the context of completeness we are interested in validity preserva-
tion which is the subject of the next lemma.

Lemma 6.3. For every LM formula ϕ, ϕ is an MMLMNT4
n -valid iff f(ϕ)

is MNT4-valid.

Proof. For the only if part suppose that for some MMLMNT4
n -valid

formula ϕ, some MNT4-model M′ and x ∈ M′, M′, x 6|= f(ϕ). Then,
by Lemma 6.2 there is an MMLMNT4

n -model refusing ϕ. For the other
direction assume that for some ϕ there is an MMLMNT4

n -model falsifying
it. Then by Lemma 6.1, f(ϕ) is refused in some MNT4-model. ⊣
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Theorem 6.2. The calculus MMLMNT4
n is sound and complete with re-

spect to the class of all MMLMNT4
n -models.

Proof. By Lemma 6.3, Theorem 6.1, and the completeness result for
the calculus MNT4, we have the following sequence of equivalences:
MMLMNT4

n |=p ϕ iff MNT4 |= f(ϕ) iff MNT4 ⊢ ⇒ f(ϕ) iff MMLMNT4
n ⊢

⇒ ϕ ⊣

7. Conclusion

We have introduced a new modal multilattice logic which is called
MMLMNT4

n and is based on modal multilattices with Tarski closure and
interior operators. We have proved an algebraic completeness theorem
and presented a sequent calculus for MMLMNT4

n as well as a neighbour-
hood semantics for it. We have studied modal multilattices with Kura-
towski and Halmos closure and interior operators and shown that the for-
mer structure determines the logic MMLS4

n and the latter one determines
the logic MMLS5

n . Future investigation may address modal multilattices
with the other closure and interior operators.
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