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Abstract. We provide an application of a sequent calculus framework to
the formalization of definite descriptions. It is a continuation of research
undertaken in [20, 22]. In the present paper a so-called free description
theory is examined in the context of different kinds of free logic, includ-
ing systems applied in computer science and constructive mathematics for
dealing with partial functions. It is shown that the same theory in different
logics may be formalised by means of different rules and gives results of
varying strength. For all presented calculi a constructive cut elimination is
provided.
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1. Introduction

In recent years a lot of research in proof theory has been concerned
with the extension of proof-theoretic methods to formal theories. In
particular, applications of the sequent calculus (SC) have shown a great
usefulness in this field. Most of the work has been devoted to the formal-
ization of particular theories, or classes of such theories axiomatizable by
means of formulae of specific kinds. On the other hand, relatively little
effort has been put into the adequate treatment of useful formal devices
of more fundamental kinds and wide applicability, such as several types
of operators.

Definite descriptions (DD) may serve as a significant example of such
a neglected field in proof theory. An enormous number of books and pa-
pers have been devoted to providing an adequate solution of linguistic
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and philosophical problems connected with descriptions, but the number
of formal systems and their studies is relatively modest. It is true that a
number of natural deduction systems (ND) for DD have been provided,
such as Kalish and Montague [26, 27], Słupecki and Borkowski [6], Sten-
lund [42, 43], Tennant [44, 45], Garson [15], Carlström [8], Francez and
Wiȩckowski [14], Kürbis [29, 30, 31]. But only a few of them (namely
Tennant’s and Kürbis’ works) deal with DD by means of rules which
allow for finer proof analysis and provide normalization proofs. Ten-
nant’s work [45] represents a particularly important contribution, where
a general constructive neologicist theory of term-forming operators is
discussed which extends specific theories of definite descriptions and set
abstractors first developed in [44]. Tennant rightly noticed that the best
framework for development of such theories is provided by free logic.
In particular, he is using negative free logic, where all formulae with
nondenoting terms are counted as false. This kind of free logic has many
advantages, such as for work in constructive mathematics and computer
science [see, e.g., 18].

There are also a few tableau calculi due to Bencivenga, Lambert and
van Fraassen [5], Gumb [18], Bostock [7], Fitting and Mendelsohn [13]
but all of them introduce DD by means of rather complex rules, and so
are not really in the spirit of tableau systems methodology. Sequent cal-
culi (SC) of some sort were proposed by Czermak [11], Gratzl [17]. This
lack of interest is surprising because the application of formal machinery
of modern proof theory, in particular of SC, may be advantageous for
both sides. On the one hand, competing theories of DD may be shown
in a new light. On the other hand, the behaviour of DD needs subtle
syntactical analysis and this may enrich a toolkit of proof theory.

In [20, 22] we launched the program of formalizing different theories
of DD in the setting of SC admitting cut elimination. The first paper was
concerned with some modal theory due to Garson [15] and the second
with a Fregean approach as developed by Kalish and Montague [26].
Recently, in [24], we also provided a cut-free SC for a hybrid version of the
system of Fitting and Mendelsohn [13]. In this paper we continue such
research and provide a proof-theoretic analysis of a theory of DD founded
on the ground of free logic (FL), both in its negative (NFL) and positive
(PFL) version. Moreover, all systems will be presented in classical and
intiuitionistic versions. In section 2 we recall basic technical information
concerning languages, logics and sequent calculi. In section 3 we briefly
characterise the kind of theory of DD to be dealt with in this paper and
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then (section 4) discusses difficulties connected with the formalization of
DD in the setting of SC. Sections 5–8 contain a presentation of SC for
several logics with DD. In particular, we start with SC for the Russellian
theory of DD based on the definedness logic of Feferman [12] and Beeson
[3]. Section 6 examines a similar system which gives much weaker theory
of DD. A version of NFL equivalent to Tennant’s ND system [44] and
to Scott’s logic of existence [40] is considered in section 7 and PFL in
section 8. Section 9 focuses on the uniform proof of cut elimination
theorem for all the presented systems. In section 10 we briefly consider
prospects for further work and possible applications of our technical
machinery.

2. Preliminaries

We will be concerned with logics formulated in a standard first-order
predicate language with the following logical vocabulary:
• connectives: ¬, ∧, ∨, →;
• first-order quantifiers: ∀, ∃;
• predicates: E, =;
• iota-operator: ι.

An unary existence predicate E, although theoretically dispensable, is
taken as primitive in all cases with one exception (see section 5). The
category of terms covers variables and definite descriptions (briefly DD)
built by means of iota-operator ιfrom formulae of the language. Since
functions (including 0-ary ones, i.e. individual constants) may be al-
ways represented as descriptions, it is not necessary to consider them
as additional terms. For convenience, variables are divided into bound
VAR = {x, y, z, . . .} and free (parameters) PAR = {a, b, c, . . .}. The
definition of a term and formula is by simultaneous recursion on both
categories.

In the metalanguage ϕ, ψ, χ denote any formulae and Γ , ∆, Π, Σ
denote their multisets. In particular, we use a convention to the effect
that Γ1, . . . , Γi denote submultisets of Γ , whereas, e.g., Γ1,2 denotes the
multiset union of Γ1 and Γ2. It facilitates representation of schemata
involving many-premiss rules. DD will be written as ιxϕ where ϕ is
a formula in the scope of a respective operator. Metavariables t, t1, . . .
denote arbitrary terms; moreover, we will use a metavariable d to denote
any DD if its structure is not essential. In general, terms may fail to
denote although for some of the logics under consideration (quasi-free
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logics) all variables (bound and free) are assumed to denote. As for
DD, denoting ones are called proper and nondenoting (or not unique)
improper.

We define the complexity of an expression (term or formula) as the
number of occurrences of symbols from the logical vocabulary. Note
that as a consequence atomic formulae containing DD can be of different
complexity and may be more complex than compound formulae.

ϕ[t1/t2] is used for the operation of substitution of an arbitrary term
t2 for all occurrences of a variable/parameter t1 in ϕ, and similarly
Γ [t1/t2] for a uniform substitution in all formulae in Γ . It is always
assumed that the substitution thus represented is correct, i.e. if t2 is a
variable or contains variables, they remain free after substitution. To
simplify matters, we will also freely be using the notation ϕ(x), ϕ(a),
ϕ(t). In particular, in proof schemata ϕ(x) will be used to denote that
ϕ (being a scope of some operator which binds x) contains at least one
occurrence of free x, whereas ϕ(t) will denote the result of substitution.

We provide an SC formalization of four kinds of different free logics,
called here NQFL, PQFL, NFL and PFL (where N stands for negative, P
for positive, Q for quasi), each in two versions  classical and intuitionis-
tic. In negative free logics, in contrast to positive ones, atomic formulae
with nondenoting terms are always evaluated as false or, equivalently,
all predicates are strict, i.e. defined only on denoting terms. NQFL and
PQFL are systems for quasi-free logics in the sense that only descrip-
tions can fail to denote; variables are always denoting. If we can restrict
instantiation in all quantifier rules to parameters it makes it possible
to characterize them by means of standard (classical or intuitionistic)
quantifier rules which justifies our use of the term ‘quasi free’.

We briefly point out to which known logics these systems correspond.
Negative quasi-free logic presented as the system NQFL is equivalent to
the definedness logic (or logic of partial terms) of Beeson [3] and Fefer-
man [12] which has been extensively studied and applied in computer
science. Although it was rather developed in the context of constructive
mathematics, Fefermann rightly noticed that it works without changes in
the classical setting (in fact he was concerned only with classical seman-
tics in [12]. PQFL is a positive variant of NQFL, i.e. not requiring that
all predicates are strict. Its intuitionistic restricted version (no identity
and descriptions) was studied proof-theoretically by Baaz and Iemhoff
[2] and recently by Maffezioli and Orlandelli [35]. The remaining two sys-
tems NFL and PFL characterise absolutely free logics in the sense that
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variables may also fail to denote. The logic of NFL has been, as the logic
of existence [40], applied in computer sciences and in foundational studies
[44, 45]. Again it works uniformly in classical and intuitionistic settings
(Tennant [44] provides completeness proofs for both versions). PFL char-
acterises the most popular version of free logic [see, e.g., 4, 33, 34] usually
founded on classical logic and applied mainly in philosophical studies
and as the basis of formalization of modal first-order logics [see, e.g.,
15]. Note also that in contrast to quasi-free logics, absolutely free logics
are also inclusive (or universally free) in the sense that they admit empty
domains in their models. However, both SC may be easily modified to ex-
clude such a possibility and we consider these noninclusive versions, too.

Recently, the problem of finding cut-free SCs for free logics was in-
dependently solved by Pavlović and Gratzl [38] (absolutely free logics)
and by Indrzejczak [25] (also quasi-free logics) in languages without de-
scriptions. However, all these logics (except PQFL) were investigated in
a language with DD. Moreover, in all cases DD are characterised by the
same axiom (L) due to [32]. It does not mean however that the obtained
theory is the same. In negative logics (NQFL and NFL) the resulting
theory is relatively strong and equivalent to a Russellian treatment of DD
(in a sense to be explained in the next section), whereas in PFL it yields
the weakest (or minimal) theory of free description theory called MFD.
Particular systems examined in this article are modifications of some
SCs introduced in [25] but extended with rules for DD. A crucial feature
of these systems is that quantifier rules are restricted to parameters as
instantiated terms. Such a restriction is possible thanks to the rule (EI)
of introduction of existence formula to the antecedent of a sequent. In
the system for NQFL which is here formulated in the language without
an existence predicate some other rule is used which comprises the effect
of (EI) (as well as the requirement of strictness for predicates). It was
proved in [25] that SC with such rules and restricted quantifier rules are
equivalent to systems with unrestricted rules. In the next section we
explain why the elimination of unrestricted quantifier rules is vital for
providing well-behaved sequent calculi for DD.

The propositional basis of all four systems is essentially Gentzen’s LK
for classical and LJ for intuitionistic version with some minor changes:
(1) sequents of the form Γ ⇒ ∆ are built not from sequences but from
finite multisets to avoid inessential complications. (2) We also prefer to
present all two-premiss rules in the multiplicative (or with independent
contexts) version. (3) We display additionally rules for equivalence which
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are not usually formulated but are crucial for our analysis of DD. The
calculus LK consists of the following structural and logical rules:

(AX) ϕ ⇒ ϕ (Cut)
Γ ⇒ ∆,ϕ ϕ,Π⇒Σ

Γ,Π⇒∆,Σ

(W⇒)
Γ ⇒ ∆

ϕ, Γ ⇒ ∆
(⇒W)

Γ ⇒ ∆

Γ ⇒ ∆,ϕ

(C⇒)
ϕ, ϕ, Γ ⇒ ∆

ϕ, Γ ⇒ ∆
(⇒C)

Γ ⇒ ∆,ϕ, ϕ

Γ ⇒ ∆,ϕ

(¬⇒)
Γ ⇒ ∆,ϕ

¬ϕ, Γ ⇒ ∆
(⇒¬)

ϕ, Γ ⇒ ∆

Γ ⇒ ∆,¬ϕ

(∧⇒)
ϕ, ψ, Γ ⇒ ∆

ϕ ∧ ψ, Γ ⇒ ∆
(⇒∧)

Γ ⇒ ∆,ϕ Π ⇒ Σ,ψ

Γ,Π ⇒ ∆,Σ, ϕ ∧ ψ

(∨⇒)
ϕ, Γ ⇒ ∆ ψ,Π ⇒ Σ

ϕ ∨ ψ, Γ,Π ⇒ ∆,Σ
(⇒∨)

Γ ⇒ ∆,ϕ, ψ

Γ ⇒ ∆,ϕ ∨ ψ

(→⇒)
Γ ⇒ ∆,ϕ ψ,Π ⇒ Σ

ϕ → ψ, Γ,Π ⇒ ∆,Σ
(⇒→)

ϕ, Γ ⇒ ∆,ψ

Γ ⇒ ∆,ϕ → ψ

(↔⇒)
Γ ⇒ ∆,ϕ, ψ ϕ, ψ,Π ⇒ Σ

ϕ ↔ ψ, Γ,Π ⇒ ∆,Σ
(⇒↔)

ϕ, Γ ⇒ ∆,ψ ψ,Π ⇒ Σ,ϕ

Γ,Π ⇒ ∆,Σ, ϕ ↔ ψ

In LJ all succedents are restricted to at most one formula so (⇒C)
is missing, ∆, Σ are either empty or singletons, and we have two rules
for (⇒∨) and (↔⇒):

(⇒∨1)
Γ ⇒ ϕ

Γ ⇒ ϕ ∨ ψ
(⇒∨2)

Γ ⇒ ψ

Γ ⇒ ϕ ∨ ψ

(↔⇒ 1)
Γ ⇒ ϕ ψ,Π ⇒ Σ

ϕ ↔ ψ, Γ,Π ⇒ Σ
(↔⇒2)

Γ ⇒ ψ ϕ,Π ⇒ Σ

ϕ ↔ ψ, Γ,Π ⇒ Σ

We keep standard terminology with respect to proofs and rules; in
particular, displayed formulae in the schemata of rules are active (prin-
cipal in the conclusion and side-formulae in the premisses) and the re-
maining ones are parametric and together make a context. Proofs are
defined in a standard way as finite trees with nodes labelled by sequents.
The height of a proof D of Γ ⇒ ∆ is defined as the number of nodes of
the longest branch in D. Moreover, ⊢k Γ ⇒ ∆ means that Γ ⇒ ∆ has
a proof of height k.
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3. Definite Descriptions

We are concerned with a proof-theoretic characterization of DD so there
is no space for wider presentation of different theories of DD and their
philosophical or linguistic motivations. Nevertheless to make the pa-
per self-contained some elementary information should be provided. We
limit our considerations to only one approach with incidental remarks on
other solutions; the reader may find a wider presentation in [4, 32, 33, 34].
The approach we are interested in is strongly connected with free logic
and commonly called a free description theory. It is based on Lambert’s
axiom:

∀x( ιxϕ(x) = x ↔ ∀y(ϕ(y) ↔ y = x)) (L)

which is a universally quantified version of Hintikka axiom:

ιxϕ(x) = t ↔ ∀y(ϕ(y) ↔ y = t) (H)

where instead of bound y an arbitrary term occurs. Hintikka axiom is
too strong and with no restrictions leads to contradiction. For example,
in the case when ϕ is a contradictory formula but we use ιxϕ as t, and
classical rule of universal quantifier elimination to it. Even its weaker
version (L) when added to classical logic yields the same effect but on
the ground of FL it is under control due to the weaker rule for universal
quantifier elimination which allows for the instantiation of only those
terms which are known to denote.

The most popular theories of DD were provided by Frege and Russell.
We skip a discussion of Frege’s account and direct the reader to Pelletier
and Linsky [39] who attributed to Frege four different theories of definite
descriptions; all very influential. One of them was formally developed by
Kalish and Montague [26, 27] and formulated as cut-free SC by Indrzej-
czak [22]. The well-known Russellian approach is reductionist in the
sense that it treats DD not as genuine terms but shows how they can be
replaced in every context by complex first-order formulae. Its essential
content may be expressed by means of the following axiom:

ψ( ιxϕ(x)) ↔ ∃y(∀x(ϕ(x) ↔ x = y) ∧ ψ(y)) (R)

Again if we let ψ be an arbitrary formula it leads to contradiction, so
let it be an atomic formula. Even in such a restricted form (R) was
often attacked as being too strong. The left-right implication means
that if we state something about DD it implies that this description is
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proper. According to the Strawson’s well-known criticism if DD is used
as an argument of a predicate its existence and uniqueness is presupposed
rather than implied. Lambert’s axiom is in general weaker than (R)
and implies only the right-left implication of (R) which is commonly
acceptable. But on the ground of NFL, (L) and (R) are equivalent so
NFL with (L) is in fact quite a strong theory of DD and it is essentially
Russellian. It is a consequence of the fact that in NFL all predicates
are strict so the statement of an atomic formula implies that all terms
occuring in it are denoting. On the other hand in PFL, (L) yields the
weakest (minimal) theory of DD called MFD.

4. How to obtain SC Rules for Definite Descriptions?

Our aim is to provide cut-free SC with rules for DD which are provably
equivalent to (L) and possibly close to standard rules applied in SC.
Depending on the kind of underlying logic we will obtain different sets
of rules realizing this task. In the context of standard Gentzen’s SC it
is difficult to characterize DD (or even identity) by means of rules that
satisfy all conditions usually required from well-behaved rules of SC char-
acterizing logical constants, like symmetry, separation, explicitness [see,
e.g., 48]. Anyway we should try to obtain as much as possible; in partic-
ular, these additional rules should allow for proving the cut elimination
theorem and satisfying the subformula property or some reasonable gen-
eralization of it. In the systems presented below cut elimination is the
main adressed issue. In searching for satisfactory rules we encounter two
main problems which must be overcome.

The first, and the main, problem is connected with the unrestricted
instantiation of terms in quantifier rules. Let us consider the standard
rules (∀⇒) and (⇒∃). If descriptions are allowed as instantiated terms
we can infer from ∀xAx something like A( ιx(∃y(Bxy → ¬Cxy))). In the
framework of SC it means that the subformula property is lost and, in
particular for cut elimination proofs, that induction on the complexity
of cut formula fails. The problem is similar to the one connected with so
called Takeuti’s conjecture concerning cut elimination for second-order
logic. How to avoid trouble? In [20] cut elimination is proved in SC
for a variant of first-order modal logic with DD where some solution
of this problem was provided. The rules for quantifiers in that SC are
restricted  we are allowed to instantiate them only with parameters.



Free definite description theory 513

It works due to the special rule which enables transmission between
parameters and DD through the rules for identity. In consequence we
can prove ∀xϕ∧ Et → ϕ[x/t] for all terms t, not only for parameters. In
that case the special rule reducing the instantiation was rather connected
with the modal framework which is absent here. Fortunately it is still
possible to apply a similar strategy. The main contribution of this work
is the application of a single rule (EI) which enables such a restriction
on the side of quantier rules without the lack of completeness. It works
uniformly with all considered logics formulated in the language with an
existence predicate. We also provide its special version for one of the
logics in the language where an existence predicate is not needed (see
section 5).

The second problem is connected with the shape of rules for DD and
covers three different possible choices:

1. the choice of the principal formula;
2. the choice of side formulae;
3. one-sided rules versus symmetric rules.

As for the first issue we can choose a general form ψ( ιxϕ) with ψ atomic
[18] or more specialised ones, like t = ιxϕ or E

ιxϕ. Following Tennant
[44] we choose identity but the latter (i.e. E ιxϕ) is also possible (as noted
by Tennant as well). However there are serious practical reasons for the
choice of identity as a specialised principal formula. Premisses of the
rules will be obtained by decomposition of the right side of respective
axioms, and in the case of (L) there is only one occurrence of ∀ to be
dealt with. Since E

ιxϕ is defined by Russell as ∃x∀y(ϕ[x/y] ↔ x = y) we
would have to deal with two quantifiers. Moreover, by choosing identity
we can obtain rules directly related to (L) which facilitates a syntactical
proof of their equivalence to (L). The price is that such rules are not
separate (in the sense of not exhibiting other logical constants), since
identity is additionally involved in the schemata of rules for DD.

The choice of side formulae may be based not only on the right side of
the respective axiom, as it was formulated above, but also on some other
equivalent characterisations. In the case of (L) it may be either ∀x(ϕ ↔
x = y) or ϕ[x/y] ∧ ∀x(ϕ → x = y). In most of the aforementioned
systems such complex formulae are explicitly stated as premisses (or
conclusions in tableaux) of respective rules. But in order to obtain a
decent SC we need to make a decomposition of it into smaller parts
devoid of other logical constants. Such a decomposition can lead to
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different sets of premisses despite the fact that decomposed formulae
are equivalent. Moreover, one more characterization of DD may be of
interest, proposed by Goldblatt [16] in the context of first-order modal
logics:

ιxϕ(x) = t ↔ Et ∧ ∀x(ϕ(x) ↔ x = t) (G)

Similarly as (H) it is stronger than (L) and leads to contradiction not
only in the context of classical logic but even in PFL, if we instantiate
t with ιxϕ(x) and if ϕ is contradictory. However, Goldblatt uses NFL
(moreover with some restriction on admissible t connected with modal
distinctions between rigid and nonrigid terms) where it has no destruc-
tive consequences. It can be proved that in the context of NFL (and
NQFL)(G) is equivalent to (L). Hence at least for both negative logics
we can devise rules where premisses are obtained by decomposition of
the right side of (G). However, for the sake of uniformity it is better to
stay with (L). In the end, our choice will be ∀x(ϕ ↔ x = y), since it
is generally more convenient as it provides more informative premisses
after its decomposition.

Concerning the last choice (i.e. one-sided versus symmetric rules),
the standard solution applied in SC is to devise two (or more) symmetric
rules which introduce respective constants to the antecedent and to the
succedent of the conclusion. This is not always easy or even possible if
we search for rules characterising either logical constants of some non-
classical logics, or (non)logical constants of formal theories. Even the
characterisation of identity in SC leads to problems with finding truly
symmetric rules. For example one of the most popular set of rules for
identity proposed by Negri and von Plato [37] and adopted in the second
edition of Troelstra and Schwichtenberg [47], looks like that:

(REF)
t = t, Γ ⇒ ∆

Γ ⇒ ∆
(REPL)

ϕ[x/t2], t1 = t2, ϕ[x/t1], Γ ⇒ ∆

t1 = t2, ϕ[x/t1], Γ ⇒ ∆

where ϕ is restricted to atomic formulae to avoid troubles in the proof of
cut elimination. Duplication of principal formulae in (REPL) is needed
for the proof of admissibility of contraction. Since in the setting of LK
contraction rules are primitive such contraction-absorbing rule may be
simplified and it is enough to use:

(REPL′)
ϕ[x/t2], Γ ⇒ ∆

t1 = t2, ϕ[x/t1], Γ ⇒ ∆
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This solution to the problem of identity formalization is an example of
the general strategy applied by Negri and von Plato who successfully
characterised several formal theories by means of rules introducing their
specific constants always on the same side of a sequent. Let me call this
solution the one-sided approach. It permits us to apply a general strategy
for proving cut admissibility for several theories. In fact, for several
auxiliary rules involving identities or existence formulae in the presented
systems we have chosen the one-sided option; principal formulae are
introduced always to the antecedent. However, for the free theory of DD
based on (L) it is possible to devise a pair of symmetric rules introducing
identities with DD to both sides of a sequent which, in our opinion, is
a more natural solution for the characterization of logical constants in
SC. Hence we have decided to use rules for DD that are symmetric but
not separate, since descriptions are arguments of identities in principal
formulae.

But the choice of symmetric rules for DD which involve identities
leads to the situation where the one-sided approach cannot be conse-
quently realised for the general identity rules if we want to save cut
elimination. If we use a rule like (REPL′) (or similar) we encounter a
serious problem which follows from the lack of separation of the rules
for DD. If some other rules may introduce identities as principal for-
mulae there is a possible clash which may destroy the possibility of cut
elimination. Consider the following schematic cut application:

Γ1 ⇒ ∆1 . . . Γk ⇒ ∆k(r1)
Γ ⇒ ∆, d = t

Π1 ⇒ Σ1 . . . Πn ⇒ Σn (r2)
d = t,Π ⇒ Σ

(Cut)
Γ,Π ⇒ ∆,Σ

where d is a definite description and both cut-formulae are principal
formulae of (r1) and (r2). If one premiss is obtained via rule for DD (for
example (r1)) and the other via other rule with identity as the principal
formula (for example (REPL′), then in general we cannot make a reduc-
tion on the complexity of cut formula which is essential for constructive
proofs of cut elimination.

If DD could be characterised by one-sided rules such a problem could
be avoided, since identities would be introduced as principal formulae (of
all respective rules) only to one side of a sequent. Such a formula in the
second side of a sequent may be only parametric or introduced by W; in
both cases there is no risk of a clash. Such a solution was applied to the
Fregean theory of DD in [22] where all identities as principal formulae
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are introduced only to succedents of sequents. But if the rules for DD
are symmetric, as in the present case, we have a problem which must
be avoided by changing the shape of other rules involving identities. In
the particular case of (REPL′) there are seven interderivable equivalents
(one being the axiomatic sequent). This follows from the general rule-
generation theorem proved in [21]). Since we will refer to this theorem
quite often we state it here without the proof:

Theorem 1. For a sequent Γ ⇒ ∆ with Γ = {ϕ1, . . . , ϕk} and ∆ =
{ψ1, . . . , ψn}, k ­ 0, n ­ 0, k+n ­ 1 there are 2k+n − 1 equivalent rules

captured by the general schema:

Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi, ϕi ψ1, Πi+1 ⇒ Σi+1, ..., ψj , Πi+j ⇒ Σi+j

Γ−i, Π1, ..., Πi, Πi+1, ..., Πi+j ⇒ Σ1, ..., Σi, Σi+1, ..., Σi+j∆
−j

where Γ−i = Γ−{ϕ1, . . . , ϕi} and ∆−j = ∆−{ψ1, . . . , ψj} for 0 ¬ i ¬ k,

0 ¬ j ¬ n.

Informally, any equivalent rule can be obtained by taking a formula
from the succedent (antecedent) of the sequent and providing a premiss
with this formula in the antecedent (succedent). In particular in the
case of (REPL′) it is one of the possible rules expressing the sequent
t1 = t2, ϕ[x/t1] ⇒ ϕ[x/t2]; the remaining ones are:

(1)
Γ ⇒ ∆,ϕ[x/t1]

t1 = t2, Γ ⇒ ∆,ϕ[x/t2]
(2)

Γ ⇒ ∆, t1 = t2 Π ⇒ Σ,ϕ[x/t1]

Γ,Π ⇒ ∆,Σ, ϕ[x/t2]

(3)
Γ ⇒ ∆, t1 = t2

ϕ[x/t1], Γ ⇒ ∆,ϕ[x/t2]
(4)

Γ ⇒ ∆, t1 = t2 ϕ[x/t2], Π ⇒ Σ

ϕ[x/t1], Γ,Π ⇒ ∆,Σ

(5)
Γ ⇒ ∆,ϕ[x/t1] ϕ[x/t2], Π ⇒ Σ

t1 = t2, Γ,Π ⇒ ∆,Σ

(=+)
Γ ⇒ ∆, t1 = t2 Π ⇒ Σ,ϕ[x/t1] ϕ[x/t2], Λ ⇒ Θ

Γ,Π,Λ ⇒ ∆,Σ,Θ

where ϕ is atomic, t1, t2 are any terms.

Note that, with the exception of the last one, all of them have an
explicit identity, or an atom ϕ which may be an identity, in the conclu-
sion. Therefore, if we want to avoid a clash with one of the DD rules,
schematically displayed above, we are left only with the last one. Hence
(=+) will be our official rule.
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5. The Russellian Theory of Definite Descriptions

We start with the system NQFL formulated in the standard language
without an existence predicate E. It is adequately characterised as propo-
sitional LK (or LJ) with the following rules:

(∀⇒)
ϕ[x/b], Γ ⇒ ∆

∀xϕ, Γ ⇒ ∆
(⇒∀)1 Γ ⇒ ∆,ϕ[x/a]

Γ ⇒ ∆, ∀xϕ

(∃⇒)1 ϕ[x/a], Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆
(⇒∃)

Γ ⇒ ∆,ϕ[x/b]

Γ ⇒ ∆, ∃xϕ

(STR)2 ti = a, Γ ⇒ ∆

Rt1 . . . tn, Γ ⇒ ∆
(STR=)2 ti = a, Γ ⇒ ∆

t1 = t2, Γ ⇒ ∆

(=−′)
b = b, Γ ⇒ ∆

Γ ⇒ ∆

Γ1 ⇒ ∆1, t1 ≈ t2 Γ2 ⇒ ∆2, ϕ[x/t1] ϕ[x/t2], Γ3 ⇒ ∆3
(=+′)3

Γ ⇒ ∆

ϕ[x/a], Γ1 ⇒ ∆1, a = c a = c, Γ2 ⇒ ∆2, ϕ[x/a]
(⇒ ι)1

Γ ⇒ ∆, ιxϕ = c

Γ1 ⇒ ∆1, ϕ[x/b], b = c ϕ[x/b], b = c, Γ2 ⇒ ∆2
( ι⇒) ιxϕ = c, Γ ⇒ ∆

1. where a is not in Γ , ∆ and ϕ.
2. where a is not in Γ , ∆, i ¬ n and ti is DD.
3. where ϕ is atomic, and t1 ≈ t2 is either t1 = t2 or t2 = t1.

In the case of LJ-based version we must replace the last rule with
two rules:

( ι⇒1)
Γ1 ⇒ ϕ[x/b] b = c, Γ2 ⇒ ∆

ιxϕ = c, Γ ⇒ ∆

Γ1 ⇒ b = c ϕ[x/b], Γ2 ⇒ ∆
( ι⇒2) ιxϕ = c, Γ ⇒ ∆

The same procedure will apply to other systems in the intuitionistic ver-
sion, so in general we omit later signalling of this necessary modification.

A few comments on some rules are in order. (STR=) (the name
comes from ‘strict’) is in fact a special case of (STR) but it is better to
display it as a rule on its own, since identities will play special role in our
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considerations, as mentioned above. A side condition on ti restricting it
to descriptions is not necessary but is important for proof search to avoid
the inessential infinite generation of identities with fresh parameters. In
case of (STR=) this restriction is also important for the proof of cut
elimination. This rule without respective restriction leads to the same
kind of clash with (⇒ ι) as (REPL′). A way out of the trouble would be
to apply a similar solution as with (=+) and introduce a rule:

Γ1 ⇒ ∆1, t1 = t2 ti = a, Γ2 ⇒ ∆2
(STR′

=)
Γ ⇒ ∆

which does not need side condition concerning ti. But in this case using
a one-premiss rule with restriction does not lead to a problem with cut
elimination so it seems to be a better option.

In both DD rules principal formulae are identities having only one d
and an arbitrary parameter c as the other argument. In fact these rules
are also correct in the version where an arbitrary second term (i.e. some
other DD) is allowed. However, this restricted version is sufficient for
completeness whereas the unrestricted one must be in some systems 
as we will see in the next section  more complex.

The rule (=+′) is a strenghtened version of (=+) introduced in the
last section. In fact this schema covers two rules: (=+) and its sym-
metric variant. This addition is needed for NQFL since otherwise we
are unable to prove symmetry of identity for all four combination of
terms. The problem is connected with restricted reflexivity rule (=−′)
which is required to prove the symmetry. (=+) is sufficient to prove
a = b → b = a or a = d → d = a for any parameters a, b and any
definite description d. However to prove d = a → a = d we need a
symmetric version:

d = a ⇒ d = a a = a ⇒ a = a a = d ⇒ a = d (=+′)
d = a, a = a ⇒ a = d

(=−′)
d = a ⇒ a = d

whereas for proving d = d′ → d′ = d we need both versions; see the
proof (I) on p. 520.

Note that the following is provable (for all systems we consider):

Lemma 1. ⊢ t1 = t2, ϕ[x/t1] ⇒ ϕ[x/t2], for any formula ϕ.

Proof. The proof is by structural induction on the shape of ϕ. In the
basis ϕ is atomic and the claim follows directly from axioms by means
of (=+). The inductive step is proved as in [37].
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Essentially this system, but without rules for DD, was shown to be
equivalent to the basic definedness logic of Feferman [12] (E+ in [46]) in
[25]. In particular, in spite of the restriction of (⇒∃) and (∀⇒) to param-
eters as instantiated terms it is complete due to rules (STR), (STR=).
Note that in the language of our system the existence (or definedness)
predicate is missing in contrast to the formulation of Feferman. However
it can be introduced by definition and its presence is not necessary in
rules, since quantifier rules are restricted to parameters (always denot-
ing) as instatiated terms. In a language without an existence predicate
the present system is also equivalent to the ND system for Russellian
theory provided by Kalish, Montague and Mar [27].

It remains to show that both rules for DD are interderivable with
(L). The latter is provable in LJ in the way (II) on p. 520 (proofs for
LK are obvious modifications).

The derivability of both rules in LJ (and similarly in LK) in the pres-
ence of (L) added as additional axiomatic sequents is straightforward.
Notice first that:

(a) ιxϕ = c, L ⇒ ∀x(ϕ ↔ x = c) and
(b) ∀x(ϕ ↔ x = c), L ⇒ ιxϕ = c are provable.

Proof. For (a):

ιxϕ = c ⇒ ιxϕ = c ∀x(ϕ ↔ x = c) ⇒ ∀x(ϕ ↔ x = c)
(↔⇒1) ιxϕ = c, ιxϕ = c ↔ ∀x(ϕ ↔ x = c) ⇒ ∀x(ϕ ↔ x = c)

(∀⇒) ιxϕ = c, ∀y( ιxϕ = y ↔ ∀x(ϕ ↔ x = y)) ⇒ ∀x(ϕ ↔ x = c)

By cut with (L), and cut with:

Γ1 ⇒ ∆1, ϕ[y/b] b = c, Γ2 ⇒ ∆2
(↔⇒1)

ϕ[y/b] ↔ b = c, Γ ⇒ ∆
(∀⇒)

∀x(ϕ ↔ x = c), Γ ⇒ ∆

we obtain the conclusion of ( ι⇒1). Obvious modifications of the last
proof schema provide the derivability of ( ι⇒2) or ( ι⇒) in LK.

The proof of (b) is similar:

∀x(ϕ ↔ x = c) ⇒ ∀x(ϕ ↔ x = c) ιxϕ = c ⇒ ιxϕ = c
(↔⇒2)

∀x(ϕ ↔ x = c), ιxϕ = c ↔ ∀x(ϕ ↔ x = c) ⇒ ιxϕ = c
(∀⇒)

∀x(ϕ ↔ x = c), ∀y( ιxϕ = y ↔ ∀x(ϕ ↔ x = y)) ⇒ ιxϕ = c

The derivability of Γ ⇒ ∆, ∀x(ϕ ↔ x = c) from the premisses of
(⇒ ι) is straightforward. Again by two cuts we derive the conclusions of
respective rule.
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(I)

a = d ⇒ a = d d = d′ ⇒ d = d′

a = d′ ⇒ a = d′ a = d ⇒ a = d d′ = d ⇒ d′ = d (=+)
a = d′, a = d ⇒ d′ = d

(=+′)
a = d, a = d, d = d′ ⇒ d′ = d

(C⇒)
a = d, d = d′ ⇒ d′ = d

(Str=)
d = d′, d = d′ ⇒ d′ = d

(C⇒)
d = d′ ⇒ d′ = d

(II)

ϕ[y/b] ⇒ ϕ[y/b] b = a ⇒ b = a
( ι⇒1) ιxϕ = a, ϕ[y/b] ⇒ b = a

b = a ⇒ b = a ϕ[y/b] ⇒ ϕ[y/b]
( ι⇒2)ιxϕ = a, b = a ⇒ ϕ[y/b]

(⇒↔) ιxϕ = a ⇒ ϕ[y/b] ↔ b = a
(⇒∀) ιxϕ = a ⇒ ∀y(ϕ ↔ y = a) D

(⇒↔)
⇒ ιxϕ = a ↔ ∀y(ϕ ↔ y = a)

(⇒↔)
⇒ ∀x( ιxϕ = x ↔ ∀y(ϕ ↔ y = x))

where D is:

b = a ⇒ b = a ϕ[y/b] ⇒ ϕ[y/b]
(↔⇒)

ϕ[y/b] ↔ b = a, b = a ⇒ ϕ[y/b]
(∀⇒)

∀y(ϕ ↔ y = a), b = a ⇒ ϕ[y/b]

ϕ[y/b] ⇒ ϕ[y/b] b = a ⇒ b = a

ϕ[y/b] ↔ b = a, ϕ[y/b] ⇒ b = a

∀y(ϕ ↔ y = a), ϕ[y/b] ⇒ b = a
(⇒ ι)

∀y(ϕ ↔ y = a) ⇒ ιxϕ = a
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We stated that NQFL without rules for DD is an adequate SC for the
basic definedness logic called LPT (the logic of partial terms) which was
proved in [25]. Since (L) was also considered by Feferman [12] as a pos-
sible extension of LPT, as a result, NQFL with rules for DD provides an
adequate SC characterization of this important logic with descriptions.

Two things are worth stressing. First, due to simple quantifier rules
with no additional existence premisses which are usually present in the
formulation of free logics, (L) may be characterised by means of simple
two-premiss rules. Second, although (L) in general is treated as an axiom
characterising the weakest (free) theory of DD, in the case of negative
free logics it is in fact equivalent to (R). The present system is negative
since the effect of (STR) is that all predicates are strict. It is quite easy
to prove the equivalence of (L) and (R) and we omit it here.

6. Positive Quasi Free Logic with Descriptions

If we do not require that all predicates are strict but still treat all vari-
ables as denoting it has no impact on the quantifier rules. Therefore,
the system PQFL contains the same rules for quantifiers. Anyway, it
is easier to formulate a system in the language with a primitive exis-
tence (definedness) predicate E, since otherwise to express the fact that
parameters have existential import we have to use the more complex
formula ∃xx = a. It has also the same rules for DD and (=+) ((=+′)
is not necessary). It differs from NQFL in the following way: instead of
(STR), (STR=), (=−′) it has the following rules:

(EI)
a = t, Γ ⇒ ∆

Et, Γ ⇒ ∆
(EE)

Eb, Γ ⇒ ∆

Γ ⇒ ∆
(=−)

t = t, Γ ⇒ ∆

Γ ⇒ ∆

where a is not in Γ,∆,Et whereas b is any parameter and t any term.

Again some comments on the rules are in order. (EI) is a special
rule which is a weaker version of (STR). It shows that, by definition,
the predicate of existence is strict. It will be applied in all subsequent
calculi. In general, thanks to this rule (which is admissible even in
positive free logics) we can restrict the instantiation of terms to variables
in all quantifier rules to parameters. Moreover, in PQFL we can get rid
of additional existential premisses which are used in two quantifier rules
provided by Baaz and Iemhoff [2]. Namely, in their system instead of
(∀⇒), (⇒∃) we have:
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(∀E⇒)
Γ ⇒ ∆,Et ϕ[x/t], Π ⇒ Σ

∀xϕ, Γ,Π ⇒ ∆,Σ

(⇒∃E)
Γ ⇒ ∆,Et Π ⇒ Σ,ϕ[x/t]

Γ,Π ⇒ ∆,Σ, ∃xϕ

which, by the application of the rule-generation theorem [21], can be
replaced with the rules:

(∀E⇒)
ϕ[x/t], Γ ⇒ ∆

Et, ∀xϕ, Γ ⇒ ∆
(⇒∃E)

Γ ⇒ ∆,ϕ[x/t]

Et, Γ ⇒ ∆, ∃xϕ

These latter rules were in fact applied by Maffeziolli and Orlandelli [35]
but in contraction-absorbing versions (i.e. with the repetition of active
formulae from the conclusion in the premiss).

Since the proof of equivalence is simple, especially for the one-premiss
variant of rules, we record it here. (∀E⇒) (for (⇒∃E) the proof is similar)
is derivable in our system:

a = t, ϕ[x/a] ⇒ ϕ[x/t] ϕ[x/t], Γ ⇒ ∆
(Cut)

a = t, ϕ[x/a], Γ ⇒ ∆
(∀⇒)

a = t, ∀xϕ, Γ ⇒ ∆
(EI)

Et, ∀xϕ, Γ ⇒ ∆

where the leftmost leaf is derivable by Lemma 1.
For the other direction (EI) is derivable by (⇒∃E):

t = t ⇒ t = t(=−)
⇒ t = t(⇒∃E)

Et ⇒ ∃xx = t

a = t, Γ ⇒ ∆
(∃⇒)

∃xx = t, Γ ⇒ ∆
(Cut)

Et, Γ ⇒ ∆

and (∀⇒) (as well as (⇒∃)) is derivable by means of (EE):

ϕ[x/b], Γ ⇒ ∆
(∀E⇒)

Eb, ∀xϕ, Γ ⇒ ∆
(EE)

∀xϕ, Γ ⇒ ∆

(EE) is a rule corresponding to Beeson’s axiom stating that all param-
eters denote. In NQFL this rule was dispensable, since it is derivable if
we define Eb as b = b or ∃xx = b. Finally, since PQFL is not a negative
logic, (=−′) is strengthened to express the unconditional reflexivity of
identity. The side-effect of replacing (=−′) with (=−) is that symmetry
is proved in a uniform way for identities with arbitrary terms by means
of (=+) simply, and the strenghtening to (=+′) is not required.
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It is worth stressing here the advantages from restricting the DD rules
to principal formulae having always a parameter as the right argument
of identity. If we use the unrestricted version with any t in this position,
the rules from section 5 would be incorrect in PQFL. We should use
instead something like this:

ϕ[x/a], Γ1 ⇒ ∆1, a = t a = t, Γ2 ⇒ ∆2, ϕ[x/a] Γ3 ⇒ ∆3,Et
(⇒ ι)

Γ ⇒ ∆, ιxϕ = t

Γ1 ⇒ ∆1, ϕ[x/b], b = t ϕ[x/b], b = t, Γ2 ⇒ ∆2 Γ3 ⇒ ∆3,Et
( ι⇒) ιxϕ = t, Γ ⇒ ∆

or this:

ϕ[x/a], Γ1 ⇒ ∆1, a = t a = t, Γ2 ⇒ ∆2, ϕ[x/a]
(⇒ ι)1

Et, Γ ⇒ ∆, ιxϕ = t

Γ1 ⇒ ∆1, ϕ[x/b], b = t ϕ[x/b], b = t, Γ2 ⇒ ∆2
( ι⇒)

Et, ιxϕ = t, Γ ⇒ ∆

with the same proviso concerning a (in case of LJ the last rule must be
split into two differing only with respect to side formula in the middle
premiss). The reason is that if t is a DD, then the explicit statement that
it is proper is necessary. This is obtained by the addition of the rightmost
premiss (or alternatively, of the existence formula to the conclusion) in
both cases. But such rules are more complex and also the proof of their
interderivability with (L) is more complicated. Restriction to parameters
as second terms in principal formulae has the effect that this additional
premiss (or additional active formula in the conclusion) is not needed,
since all parameters denote. Therefore the same rules as in NQFL are
sufficient for PQFL and the proof of adequacy is the same as in NQFL,
since only the rules which are common to NQFL and PQFL are used for
that aim.

The fact that both NQFL and PQFL share the same quantifier and
DD rules may give the impression that we obtain the same theory of DD.
But it is not true. The system NQFL considered in section 5 is Russellian
in a twofold sense. By (STR) it comprises the Russellian denotation
principle to the effect that atomic formulae with nondenoting terms are
false and, as a result, the theory of DD although expressed by means of
relatively weak principle (L) is in fact equivalent to (R). This may be
seen as an advantage but not necessarily, as we observed in section 3.
In this respect PQFL may be seen as offering a better theory of DD.
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Despite the fact that (L) is expressed by means of the same rules, its
theory of DD is essentially different. In particular, only one half of (R)
is derivable since to obtain the left-right implication we must have all
predicates strict. Thus we can claim that PQFL is the system of the
minimal quasi-free DD.

7. Russellian Descriptions in the Logic of Existence

In the system NFL variables are not restricted in the range to existent
objects but may be undefined like other terms, so in our nomenclature
this logic is absolutely free. It has the effect that the presence of ad-
ditional existence formulae is unavoidable in many cases, including the
case of quantifier and DD rules. We must add the following rules to LK
(or LJ):

(∀E⇒)
ϕ[x/b], Γ ⇒ ∆

Eb, ∀xϕ, Γ ⇒ ∆
(⇒∀E)1 Ea, Γ ⇒ ∆,ϕ[x/a]

Γ ⇒ ∆, ∀xϕ

(∃E⇒)1 Ea, ϕ[x/a], Γ ⇒ ∆

∃xϕ, Γ ⇒ ∆
(⇒∃E)

Γ ⇒ ∆,ϕ[x/b]

Eb, Γ ⇒ ∆, ∃xϕ

(NEE)
Eti, Γ ⇒ ∆

Rt1 . . . tn, Γ ⇒ ∆
(NEE=)2 Eti, Γ ⇒ ∆

t1 = t2, Γ ⇒ ∆

(EI)1 a = t, Γ ⇒ ∆

Et, Γ ⇒ ∆
(E=−)

t = t, Γ ⇒ ∆

Et, Γ ⇒ ∆

(STR=)3 ti = a, Γ ⇒ ∆

t1 = t2, Γ ⇒ ∆

Γ1 ⇒ ∆1, t1 ≈ t2 Γ2 ⇒ ∆2, ϕ[x/t1] ϕ[x/t2], Γ3 ⇒ ∆3
(=+′)4

Γ ⇒ ∆

Ea, ϕ[x/a], Γ1 ⇒ ∆1, a = c a = c, Γ2 ⇒ ∆2, ϕ[x/a]
(⇒ ι)1

Ec, Γ ⇒ ∆, ιxϕ = c

Γ1 ⇒ ∆1, ϕ[x/b], b = c ϕ[x/b], b = c, Γ2 ⇒ ∆2
( ι⇒)

Eb, ιxϕ = c, Γ ⇒ ∆

1. where a is not in Γ,∆ and ϕ;
2. where ti is a parameter;
3. where a is not in Γ,∆, i ≤ n and ti is DD;
4. where ϕ is atomic, and t1 ≈ t2 is either t1 = t2 or t2 = t1.
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Note that ( ι⇒) splits into two rules in LJ as in the preceding cases.
(NEE) and (NEE=) are counterparts of (STR) and (STR=); again
(NEE=) is a special case of (NEE) but it is better to display it as a
special rule for greater perspicuity. Both rules make all predicates strict
so the logic is negative. This makes it necessary to weaken the rule for
reflexivity of identity and hence we obtain (E=−).

One should notice that (NEE=), in contrast to (NEE), is restricted
to parameters. The weaker form of (NEE=) is the reason that we keep
(STR=) with the same proviso as in NQFL. It is possible to use only
(NEE=) without any constraints on ti (as in (NEE)). Such a choice,
although more economical and uniform, leads again to a clash with (⇒ ι)
in the proof of cut elimination. Also in this case we could avoid this
problem by using the following rule:

Γ1 ⇒ ∆1, t1 = t2 Eti, Γ2 ⇒ ∆2
(NEE′

=)
Γ ⇒ ∆

with no constraints on ti. However, using two rules restricted to two
different kinds of terms seems to be a better option which, as we shall
see, creates no problems in the proof of cut elimination. One may easily
notice that such a solution allows for the derivability of the unrestricted
(NEE=). In the case of identity with two DD as arguments we proceed
in the following way:

d = a ⇒ d = a Ea ⇒ Ea Ed, Γ ⇒ ∆
(=+′)

d = a,Ea, Γ ⇒ ∆
(NEE=)

d = a, d = a, Γ ⇒ ∆
(C⇒)

d = a, Γ ⇒ ∆
(STR=)

d = d′, Γ ⇒ ∆

In the case where the identity has only one DD, the last application
of (STR=) is not needed. This proof shows also why, similarly as in
NQFL, we need (=+′) instead of (=+).

Since all quantifier rules were changed the rules for DD are also
changed. The reason is that premisses are obtained by decomposition of
the right side of (L) by means of the rules of the respective logic. Note
that the additional formula Ea in the antecedent of the second premiss is
needed. On the other hand, in the right premiss such an addition is not
necessary, since such formula can be obtained in a bottom-up direction
from a = c by (NEE=).
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Again we must show that our characterization of (L) by rules is ad-
equate. Tennant [44] introduced Gentzen-style natural deduction (ND)
for negative free logic with rules for description and abstraction opera-
tors, later generalised in [45]. In the former case he notified his debts
to Smiley [41] who provided axiomatic and semantic formulation of this
theory. Scott’s logic of existence with DD presented in axiomatic form in
[40] is essentially the same logic which was formalised as the ND system
by Tennant. There is a different characterization of identity but in the
case where all predicates are strict it gives the same result.

Since Tennant has the set of ND rules for DD which are interderivable
with (L) for the sake of variety we provide below the proof that our rules
are interderivable with his rules instead of a direct proof with respect
to (L). Tennant has one rule of introduction of DD and three rules of
elimination. These rules when transformed into the sequent format may
be directly expressed in SC in the following way:

(⇒ ι)
Γ1 ⇒ ∆1,Ec Ea, ϕ[x/a], Γ2 ⇒ ∆2, a = c a = c, Γ3 ⇒ ∆3, ϕ[x/a]

Γ ⇒ ∆, ιxϕ = c

Γ1 ⇒ ∆1,Eb Γ2 ⇒ ∆2, ϕ[x/b] Γ3 ⇒ ∆3,
ιxϕ = c

Γ ⇒ ∆, b = c

Γ1 ⇒ ∆1, b = c Γ2 ⇒ ∆2,

ιxϕ = b

Γ ⇒ ∆,ϕ[x/b]

Γ ⇒ ∆, ιxϕ = c

Γ ⇒ ∆,Ec

with the same proviso for a as the eigenvariable in the first rule.
His first rule is directly interderivable with our (⇒ ι) by means of the

rule-generation theorem. For the elimination of DD he uses three rules
corresponding to the three premisses of the ι-introduction rule in order
to obtain direct reduction schemata needed for normalization. The last
one is just a special case of denotation principle needed for negative free
logic. We can omit it since it is interderivable with our (NEE=).

To get a more standard SC we apply again the rule-generation the-
orem to the remaining two rules and obtain two left introduction rules
for ι:

Γ1 ⇒ ∆1,Eb Γ2 ⇒ ∆2, ϕ[x/b] b = c, Γ3 ⇒ ∆3
(T ι⇒1) ιxϕ = c, Γ ⇒ ∆
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Γ1 ⇒ ∆1, b = c ϕ[x/b], Γ2 ⇒ ∆2
(T ι⇒2) ιxϕ = c, Γ ⇒ ∆

In fact, these rules (with numerically restricted succedents) provide
an intuitionistic version of NFL. Are they interderivable with our ( ι⇒)?
The present rule is derivable by means of both Tennant’s rules. By the
first and the second we get (III) and (IV) on p. 528, respectively, and we
finish by combining them:

ιxϕ(x) = c, Γ ⇒ ∆,ϕ(a) Ea, ιxϕ(x) = c, ϕ(a), Γ ⇒ ∆
(Cut)

Ea, ιxϕ(x) = c, ιxϕ(x) = c, Γ, Γ ⇒ ∆,∆
(C)

Ea, ιxϕ(x) = c, Γ ⇒ ∆

Both Tennant’s rules are derivable by the present rule. A proof of
the first Tennant’s rule looks like (V) on p. 528. For the second we can
prove (VI) on p. 530. Hence both systems are equivalent in the setting
of LK. Obvious modifications yield the same result for LJ.

In contrast to quasi free logics, NFL (and PFL considered in the next
section) are universally free (or inclusive) in the sense that they are logics
characterised by models admitting empty domains. We can strengthen
NFL to obtain the system which excludes empty models. It is enough
to add a rule which is a weaker version of (EE):

(EE′)
Ea, Γ ⇒ ∆

Γ ⇒ ∆
where a is not in Γ,∆

With this rule one can immediately prove an axiom ∃xEx. Let us call
such a noninclusive version NFLN.

8. Free Description Theory in Positive Free Logic

PFL can be obtained from NFL simply by dropping rules (NEE),
(NEE=) and (STR=), and changing the rules for identity and DD. In-
stead of (E=−) and (=+′) we have (=−) and (=+), exactly as in PQFL.
The rules for quantifiers are just those of NFL. Since predicates are not
strict the rules for DD from NFL are too weak and must be modified by
the addition of suitable existence formulae:

Ea, ϕ[x/a], Γ1 ⇒ ∆1, a = c Ea, a = c, Γ2 ⇒ ∆2, ϕ[x/a]
(⇒ ι)

Ec, Γ ⇒ ∆, ιxϕ = c



528
A

n
d

r
z
e
j

I
n

d
r

z
e
j
c

z
a

k

(III)

Ea ⇒ Ea Γ1 ⇒ ∆1, a = c, ϕ(a) a = c, ϕ(a), Γ2 ⇒ ∆2
(T ι⇒1)

Ea, ιxϕ(x) = c, ϕ(a), Γ1,2 ⇒ ∆2,3, a = c a = c, ϕ(a), Γ2 ⇒ ∆2
(Cut)

Ea, ιxϕ(x) = c, ϕ(a), ϕ(a), Γ1,2,2 ⇒ ∆1,2,2
(C)

Ea, ιxϕ(x) = t, ϕ(a), Γ ⇒ ∆

(IV)

Γ1 ⇒ ∆1, ϕ(a), a = c

Γ1 ⇒ ∆1, ϕ(a), a = c ϕ(a), a = c, Γ2 ⇒ ∆2
(T ι⇒2)ιxϕ(x) = c, a = c, Γ1,2 ⇒ ∆1,2, ϕ(a)

(Cut)ιxϕ(x) = c, Γ1,1,2 ⇒ ∆1,1,2, ϕ(a), ϕ(a)
(C)ιxϕ(x) = c, Γ ⇒ ∆,ϕ(a)

(V)

Γ1 ⇒ ∆1,Ea

Γ2 ⇒ ∆2, ϕ(a)
(⇒W)

Γ2 ⇒ ∆2, a = c, ϕ(a)

a = c, Γ3 ⇒ ∆3
(W⇒)

a = c, ϕ(a), Γ3 ⇒ ∆3
( ι⇒)

Ea, ιxϕ(x) = c, Γ2,3 ⇒ ∆2,3
(Cut)ιxϕ(x) = c, Γ ⇒ ∆
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Γ1 ⇒ ∆1, ϕ[x/b], b = c ϕ[x/b], b = c, Γ2 ⇒ ∆2
( ι⇒)

Ec,Eb, ιxϕ = c, Γ ⇒ ∆

where a is not in Γ , ∆, ϕ but b is any parameter. Again two variants of
the second rule for LJ are needed.

The main difference with the rules from NFL is that in the present
version of (⇒ ι) we need Ea also in the antecedent of the rightmost pre-
miss and in ( ι⇒) an additional occurrence of Ec in the antecedent is
necessary to ensure that c denotes. The reader can easily check why we
cannot use the rules for DD from NFL. The reason is that in proofs of
interderivability of the rules from the preceding section with Tennant’s
rules (equivalent to L) the rule (NEE=) was necessary.

Instead of the proof that these rules are interderivable with (L) on the
basis of PFL we notice that this follows from the results in [20]. There
a modal version of PFL was introduced where DD was characterised by
means of the rules that we give in (VII) and (VIII) on p. 530.

These rules were shown to be equivalent to Garson’s ND rules for
DD from [15], and the latter are interderivable with (L). Since our
present rules are nothing more than the simplification of the above rules
obtained by the application of the rule-generation theorem we conclude
that they adequately characterise the minimal free description theory
MFD of Lambert. To obtain PFLN, a noninclusive variant adequate for
nonempty models only, we must add (EE′) exactly as in the case of NFL.

9. Cut Elimination Theorem

We have shown the equivalence of the proposed SC with respective sys-
tems formulated as axiomatic or ND calculi but such proofs require nu-
merous applications of cut. Below we present a constructive, uniform
proof of the cut elimination theorem for all presented systems which is
an extension of the proof in [25] for systems without DD. First note that
the following auxiliary result holds for all considered systems:

Lemma 2 (Substitution). If ⊢k Γ ⇒ ∆, then ⊢k Γ [a/b] ⇒ ∆[a/b], where

⊢k Γ ⇒ ∆ means that Γ ⇒ ∆ has a proof of height k.

The proof is standard by induction on the height of the proof of
Γ ⇒ ∆ [see, e.g., 37]. Note that we restrict the considerations to the
substitution of parameters for parameters. The reason is that such a
result is sufficient for our systems with all quantifiers restricted to the
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(VI)

Γ1 ⇒ ∆1, a = c

Γ1 ⇒ ∆1, a = c
(⇒W)

Γ1 ⇒ ∆1, a = c, ϕ(a)

ϕ(a), Γ2 ⇒ ∆2
(W⇒)

a = c, ϕ(a), Γ2 ⇒ ∆2
( ι⇒)ιxϕ(x) = c,Ea, Γ ⇒ ∆

(NEE=)ιxϕ(x) = c, a = c, Γ ⇒ ∆
(Cut)ιxϕ(x) = c, Γ1,1,2 ⇒ ∆1,1,2

(C)ιxϕ(x) = c, Γ ⇒ ∆

(VII)

Γ1 ⇒ ∆1,Ec Ea, ϕ[x/a], Γ2 ⇒ ∆2, a = c Ea, a = c, Γ3 ⇒ ∆3, ϕ[x/a]
(⇒ ι)

Γ ⇒ ∆, ιxϕ = c

(VIII)

Γ1 ⇒ ∆1,Ec Γ2 ⇒ ∆2,Eb Γ3 ⇒ ∆3, ϕ[x/b], b = c ϕ[x/b], b = c, Γ4 ⇒ ∆4
( ι⇒) ιxϕ = c, Γ ⇒ ∆
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instantiation of parameters. Moreover, the general version, with arbi-
trary t substituted for a does not hold for NQFL, PQFL and NFL, due
to several rules which are correct only with the proviso that a parameter
is involved (such as (=−′), (EE), (NEE=)).

Moreover, we assume that all proofs are regular in the sense that
every parameter which is fresh by the side condition on the respective
rule must be fresh in the entire proof, not only on the branch where the
application of this rule takes place. There is no loss of generality since
every proof may be systematically transformed into a regular proof by
the substitution lemma.

The strategy applied in [25] was originally introduced for hyperse-
quent calculi by Metcalfe, Olivetti and Gabbay [36] and later extensively
used in this framework [see, e.g., 10, 19, 23, 28]. However, it is also appli-
cable to standard sequent calculi [see 20, 21]. It deals in an elegant way
with the problems generated by contraction and proceeds by reducing
either the height of one of the premisses (if a cut formula is not principal
there) or the complexity of cut formula (if a cut formula is principal in
both premisses).

Let us recall that the complexity of a formula is counted as the num-
ber of occurrences of logical constants including iota-operator, identity
and E. Thus atomic formulae with DD are of complexity > 0 but it
has no impact on the correctness of proof as we shall see. The complex-
ity of a cut-formula ϕ is called its cut-degree and denoted as dϕ. The
proof-degree (dD) is the maximal cut-degree in the proof D. The cut
elimination theorem follows from two lemmata, where ϕk and Γ k denote
k > 0 occurrences of ϕ and Γ , respectively:

Lemma 3 (Right reduction). Let D1 ⊢ Γ ⇒ ∆,ϕ and D2 ⊢ ϕk, Π ⇒
Σ with dD1, dD2 < dϕ, and ϕ principal in Γ ⇒ ∆,ϕ. Then we can

construct a proof D such that D ⊢ Γ k, Π ⇒ ∆k, Σ and dD < dϕ.

Lemma 4 (Left reduction). Let D1 ⊢ Γ ⇒ ∆,ϕk and D2 ⊢ ϕ,Π ⇒ Σ
with dD1, dD2 < dϕ. Then we can construct a proof D such that D ⊢
Γ,Πk ⇒ ∆,Σk and dD < dϕ.

Both lemmata successively make a reduction first on the height of
the right and then on the height of the left premiss of cut. The crucial
point enabling suitable transformations is that all rules are substitutive
and reductive. These notions were introduced by Ciabattoni [9] and
applied for general form of cut elimination proof in hypersequent calculi
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by Metcalfe, Olivetti and Gabbay [36] but can be also applied in the
present setting. The former property is connected with the fact that
multisets of formulae may be safely substituted for a cut formula which is
parametric. It allows for induction on the height of a proof in cases when
the cut formula is not principal in at least one premiss of cut. Rules with
side conditions concerning fresh parameters are not fully substitutive as
such but they are substitutive in regular proofs, so due to the substitution
lemma this problem may be easily overcome.

The latter property, called coherency in [1], may be roughly defined
as follows: a pair of introduction rules (⇒⋆), (⋆⇒) for a constant ⋆ is re-
ductive if an application of cut on cut formulae introduced by these rules
may be replaced by the series of cuts made on less complex formulae,
in particular on their subformulae. Thus reductivity permits induction
on cut-degree in the course of proving cut elimination. Note that the
reductivity of DD rules is not sufficient for proving cut elimination in
case of NQFL and NFL, since ιxϕ = c may be also introduced by the
application of (NEE=) or (STR=) in the right premiss of cut application,
so these cases must be also examined.

The proof of Lemma 3. By induction on the height of D2. The basis
is trivial and induction step requires consideration of all cases of possible
derivations of ϕk, Π ⇒ Σ and the role of cut-formula in the transition.
In the case where all occurrences of ϕ are parametric we simply apply
the induction hypotheses to the premisses of ϕk, Π ⇒ Σ and then ap-
ply to them the respective rule  here, the regularity of proofs prevents
the violation of side conditions. If one of the occurrences of ϕ in the
premiss(es) is a side formula of the last rule we must additionally apply
weakening to restore the missing formula before the application of a rule.
In the case where one occurrence of ϕ in ϕk, Π ⇒ Σ is principal we make
use of the fact that ϕ in the left premiss is principal too (note that for
contraction and weakening it is trivial). We will show it only for the
most complicated case of identity with DD in NFL. D1 ends with:

Ea, ϕ[x/a], Γ1 ⇒ ∆1, a = c a = c, Γ2 ⇒ ∆2, ϕ[x/a]
(⇒ ι)

Ec, Γ ⇒ ∆, ιxϕ = c

D2 ends with ιxϕ = ck, Π ⇒ Σ and we want to obtain Ec, Γ k, Π ⇒
∆k, Σ. There are three subcases. In the first, one occurrence of ιxϕ = c
is introduced by the application of (NEE=) and the premiss is Ec, ιxϕ =
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ck−1, Π ⇒ Σ. By the induction hypothesis we obtain Ec, Γ k−1, Π ⇒
∆k−1, Σ which by weakening yields the result.

In the second subcase (STR=) is the last rule, the premiss is ιxϕ =
b, ιxϕ = ck−1, Π ⇒ Σ where b is new. By the substitution lemma we
obtain ιxϕ = c, ιxϕ = ck−1, Π ⇒ Σ, so by the induction hypothesis
(since the proof of this sequent is lower) we obtain the result.

The last rule is ( ι⇒) so D2 ends with:

ιxϕ = ci, Π1 ⇒ Σ1, ϕ[x/b], b = c ϕ[x/b], b = c, ιxϕ = cj , Π2 ⇒ Σ2
( ι⇒)

ιxϕ = ck,Eb,Π ′ ⇒ Σ

where i + j = k and Eb is either in Π1 or in Π2. By the substitution
lemma applied to premisses of (⇒ ι) we obtain:

(a) Eb, ϕ[x/b], Γ1 ⇒ ∆1, b = c and
(b) b = c, Γ2 ⇒ ∆2, ϕ[x/b].

By the induction hypothesis applied to premisses of ( ι⇒) we obtain:

(c) Γ i, Π1 ⇒ Σ1, ∆
i, ϕ[x/b], b = c and

(d) ϕ[x/b], b = c, Γ j , Π2 ⇒ Σ2, ∆
j .

By cut on (a) and (c) we obtain:

(e) Eb, Γ i, Γ1, Π1 ⇒ Σ1, ∆
i, ∆1, b = c, b = c.

By cut on (b) and (d) we obtain:

(f) b = c, b = c, Γ j , Γ2, Π2 ⇒ Σ2, ∆
j, ∆2.

(e) and (f) after contraction and cut on b = c, some contractions and
(W⇒) to add Ec yield the desired sequent. Since all these new cuts have
lower degree than d( ιxϕ = c), the new proof has lower degree and we
are done.

The proof of Lemma 4. The proof is similar to the proof of Lemma 3
but by induction on the height of D1. Here the cut formula in the right
premiss does not need to be principal. Therefore, when cut-formula is
principal in the left premiss we apply first the induction hypothesis and
next the rule in question to side-formulae. The new proof of the left
premiss satisfies the assumption of the right reduction lemma, so we can
safely apply it and, possibly after some applications of structural rules,
obtain the result. We omit the details.
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Theorem 2. Cut is eliminable from proofs in NQFL, PQFL, NFL, PFL,
NFLN, PFLN, where the last two systems are noninclusive variants of

NFL and PFL.

Proof. The proof follows from the left reduction lemma by double in-
duction: primary on dD and subsidiary on the number of maximal cuts
(in the basis and in the inductive step of the primary induction). We
always take the topmost maximal cut and apply the left reduction lemma
to it. By successive repetition of this procedure we diminish either the
degree of a proof or the number of maximal cuts in it until we obtain a
proof with d = 0.

10. Comments

We conclude this paper with the remark that this kind of analysis can
be extended to other kinds of operators in accordance with the strategy
described by Tennant [45]. In particular, already in [44] he formulated
analogous ND rules for the abstraction operator in the basic set theory
in NFL. Their SC counterparts may be devised in an analogous way as
we did with DD:

Ea, ϕ[x/a], Γ1 ⇒ ∆1, a ∈ c a ∈ c, Γ2 ⇒ ∆2, ϕ[x/a]
(⇒ ι)

Ec, Γ ⇒ ∆, {x : ϕ} = c

Γ1 ⇒ ∆1, ϕ[x/b], b ∈ c ϕ[x/b], b ∈ c, Γ2 ⇒ ∆2
( ι⇒)

Eb, {x : ϕ} = c, Γ ⇒ ∆

where a is not in Γ , ∆, ϕ but b is any parameter. Both rules are also
reductive hence an NFL-based version of Tennant’s basic set theory can
be also proved to be cut-free.

Another task requiring further study is the construction of decent
SC for stronger theories of DD which were studied by Lambert [33] and
others on the basis of MFD. For some of them it is not hard to provide
rules [see, e.g., 20] but certainly more involved research should be carried
out. Just for illustration we show how we can formalise FD1 which is
an extension of MFD by means of the addition of the cancellation law:
t = ιx(x = t) to MFD. One can add the following rule in PFL:

(Can)
t = ιx(x = t), Γ ⇒ ∆

Γ ⇒ ∆
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It is easy to check that its addition cannot destroy cut elimination proof
for PFL. Moreover, we can dispense with (=−), since it is derivable by
means of (Can) and (=+).

The last task worth further research is to find solutions which are
better-behaved from the standpoint of actual proof-search. We have
shown that the application of the rule-generation theorem [25] may be
helpful in finding rules with a smaller branching factor. The main prob-
lem in the present systems is with (=+) which generates three branches
in proofs and violates the subformula property. The example of two
other rules involving identity as the principal formula  (STR=) and
(NEE=)  shows that by suitably placed restrictions on active terms one
can obtain better characterization. In particular, in NFL by division of
the labour between these two rules restricted to different kind of terms,
we obtain a more satisfactory solution. We conjecture that by intro-
ducing more specialised versions of (=+), dealing with different kinds of
identities, we can gain stricter control over the process of cut elimination
and avoid the clash with DD-rules in a similar way. This is a non-trivial
task which requires further research.
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