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The Modal Logic LEC for Changing Knowledge,

Expressed in the Growing Language

Abstract. We present the propositional logic LEC for the two epistemic
modalities of current and stable knowledge used by an agent who system-
atically enriches his language. A change in the linguistic resources of an
agent as a result of certain cognitive processes is something that commonly
happens. Our system is based on the logic LC intended to formalize the idea
that the occurrence of changes induces the passage of time. Here, the prim-
itive operator C read as: it changes that, defines the temporal succession
of states of the world. The notion of current knowledge concerns variable
components of the world and it may change over time. We represent it
by the primitive operator k read as: the agent currently knows that, and
assume that it has S5 properties. The second type of knowledge, symbolized
by the primitive operator K read as: the agent stably knows that, relates to
constant components of the world and it does not change. As a result of
the axiomatic entanglement of C, K and k we show that stable knowledge
satisfies axioms of S4.3. K and k modalities are not mutually definable,
stable knowledge implies the current one and if the latter never changes,
then it comes to be stable. The combination of K and k with the idea
of an expanding language allows questioning of the so-called perfect recall

principle. It cannot be maintained for both types of knowledge just because
of changes in the vocabulary of the agent and possibly the growing spectrum
of possible states of the world. We interpret LEC in the semantics of histories

of epistemic changes and show that it is complete. Finally, we compare our
logic with selected epistemic logics based on the concept of linear discrete
time.
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Introduction

Contemporary formal epistemic research are often inspired by Hintikka’s
considerations on knowledge and beliefs presented in [4]. In particular,
they also examine the issue of the changeability of knowledge over time
[cf. 2, 3]. Our work aims to describe changes of knowledge in a new
context which is the agent’s use of a changing language. A change in the
linguistic resources of an agent as a result of certain cognitive processes
is something that commonly happens. In our approach, the language
used by an agent grows by adding new expressions that were not in his
earlier vocabulary.

The spectrum of logics that are usually used to describe the notion of
knowledge is in between S4 and S5. In temporal multi-agent epistemic
logics various kinds of changing knowledge are studied, often described
by properties of the modal logic S5 [see 2, pp. 59, 105]. We propose a
formalism that may be considered as a logic of one agent who uses two
modal concepts of knowledge parametrized by time. Our new system
LEC is an epistemic axiomatic extension of the propositional modal logic
LC formulated by Świętorzecka [11], later elaborated together with Cz-
ermak [12, 13]. LC is intended as a formal description of the idea that
change is primary in relation to time (the occurrence of changes is to
induce the passage of time) and it uses the primitive modal operator C

read as: it changes that, which defines the temporal succession of states

of the world. The first concept of knowledge that we are interested in
here concerns variable components of the world and it may change over
time. We call it current knowledge and assume that this modality has S5

properties. The second type of knowledge relates to constant components
of the world, and when it is acquired, it is not subject to change. For
this knowledge we use Stalnaker’s adjective ‘stable’ [10]. The proposed
way of understanding this concept respects some well-known discussions
about the adequate formal representation of knowledge, started already
by Hintikka who questioned the principle of negative retrospection [4,
p. 56].1 In the case of stable knowledge, we follow his objection to the
principle of negative retrospection expressed by the specific axiom of
S5. The stability of our knowledge does not mean that it cannot be
expanded. In other words, our lack of stable knowledge may change. If

1 It is said that S4 is the closest modern candidate for Hintikka’s considerations
because his pioneering analyzes in [4] were not carried out within the framework of
normal modal logics [6].
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we had negative introspection, then we could not also change the lack
of stable knowledge, because stable knowledge does not change. As we
will see, in our system it can be proved that stable knowledge has S4.3

properties. The system S4.3 taken as a formal basis for the concept
of knowledge was first suggested by Hoek in [5] and then considered by
Stalnaker. The latter considered knowledge as a justified true belief that
is stable under any potential revision by a piece of information that is,

in fact, true [10, p. 187] and he explicitly indicated S4.3 properties in
formalization of this concept [10, p. 190]. We follow these interpretative
intuitions here.2 From the philosophical perspective, stable knowledge
may be considered as a counterpart of the classical concept episteme, at
least in this sense that it cannot change over time. What is different
from Platonic associations, is that in our logic the concept of stable
knowledge is axiomatically fully entangled with concepts of change and
current knowledge. That means that in the axioms and rules of LEC, we
do not impose on it any properties that are isolated from other modal
concepts. The characteristic properties of stable knowledge itself are
consequences of accepted axioms. Such an inferential relationship is a
novelty in relation to the results presented in the available literature
devoted to the formal modeling of the concept of knowledge.

Formal properties of both types of knowledge are also dependent on
the new component introduced in the proposed consideration which is
the fact that the agent uses an expanding language. The description of
the phenomenon of a growing language was used to expresses logic LC

in its original formulation [11] and it was also considered in [12, 13]. We
continue and extend this study. We express LC in a language that can
be expanded by any number of new propositional expressions and we
add two primitive epistemic operators: k (“the agent currently knows
that”) and K (“the agent stably knows that”). Current knowledge may
change in time. Stable knowledge does not change and implies current
knowledge. If the latter never changes, then it becomes stable.

It turns out that the combination of the two aforementioned con-
cepts of knowledge with the idea of an expanding language allows us to
re-discuss the so-called perfect recall principle [see 2, pp. 136–138] often
accepted in epistemic temporal systems and game theory [14]. This
principle is intended to express the limitation of the cognitive spectrum
of an agent who has gained new information. According to this idea, the

2 Although we do not continue the AGM approach studied by Stalnaker.



42 Marcin Łyczak

agent with an increase of knowledge can, at most, ‘narrow’ the spectrum
of his possible states of the world. We could say that he cannot con-
sider new states that could provide new knowledge  once that earlier
he could not even take into account. Here we want only to indicate our
first intuitions regarding this issue when considered in the framework of
expanding language. Let us assume that the agent uses in his current
propositional language only two propositions α1 and α2 which are mu-
tually independent on the ground of classical logic. We assume that he
knows that α1 is true, but he does not have any knowledge regarding
either α2 or its negation. This means that he can consider two possible
states of the world that are candidates for the current real state, which
are described by the following conjunctions: α1 ∧ α2, and α1 ∧ ¬α2. If
the agent enriches his language by a new atom α3, he is still undecided
about the value of α2, but if his knowledge of α1 is stable, then he can
now consider four possible descriptions of the actual state. They are
described by the following conjunctions: α1 ∧ α2 ∧ α3; α1 ∧ ¬α2 ∧ α3;
α1 ∧ α2 ∧ ¬α3; α1 ∧ ¬α2 ∧ ¬α3. If his knowledge of α1 changed, because
it was only the current knowledge, and he is still undecided about the
value of α2, then the number of possible descriptions will double. It is
easy to see now that the perfect recall principle cannot be maintained
for both types of knowledge.

Anticipating our considerations, let us say at the outset that the
idea of a growing language is essentially different from the concept of
awareness elaborated in the framework of the awareness logic introduced
in [1]. The first one was already used in formalization of the doxastic
logic LCB and was compared with the awareness approach in [8]. This
comparison can be repeated here. In brief, we can say that the awareness
logic uses an appropriate awareness operator which is applied to these
formulas of a given language that the agent is aware of. In the context
of this language, it makes sense to speak about formulas which are not
in the scope of the awareness operator. In our approach, the agent’s
language resource, which he does not yet use, can be considered only
on the semantic level. The formulas which he is not ‘aware of’, do not
belong to his language and as such, they have even no logical value. We
will pay attention to this matter again when interpreting our formalism.

We start our presentation with the description of the idea of a growing
language and its epistemic semantics (Section 1). Then we give axiom-
atization for the intended semantic structures, and we prove the axioms
of S4.3 for stable knowledge (Section 2). In Section 3 we give proofs
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of soundness and completeness theorems for our new logic LEC. Finally,
in Section 4, we discuss the relation of our approach to the epistemic
temporal logics based on the concept of linear discrete time.

1. A growing language and its semantics

The concept of a growing language denotes a family of propositional lan-
guages. Upper indexes of atomic formulas code the information to which
languages they belong. We will inductively define atomic expressions of
subsequent languages. For any n > 0 let In be either the set of all
natural numbers or its initial segment. Then we put At1 = {α1

i : i ∈ I1}
and Atn+1 = Atn ∪ {αn+1

i : i ∈ In+1}. Note that in Atn+1, there is at
least one new atomic formula that is not a member of Atn.

For the operators C, k and K, for any n > 0 every current language
is some n-language which formulas are defined as follows:

A ::= α | ¬A | A → B | CA | kA | KA

where α ∈ Atn. The symbols ∨, ∧ and ↔ are defined as usual. If a
formula A belongs to the n-language, we say that A is of level n.

Because of the definition of Atn, each n-language contains all for-
mulas from all previous m-languages, and every n-language has new
formulas, that are not members of any previous languages.

The minimal level of a formula A (Lv(A), for short) is the highest
upper index in the set of atomic expressions occurring in the formula A.

We interpret our growing language in structures of the following kind.
An epistemic structure is any 4-tuple E = 〈L, S, d , u〉, where:

(i) L = {1, 2, . . .} is a set of language levels;
(ii) S is an infinite set of states such that S ∩ L = ∅;
(iii) d : L → 2S is a description function that assigns to each language

level a set of those states which the agent can consider using the
language. The function d fulfills the following conditions:

∀n∈L d(n) 6= ∅, (d1)

∀s∈S∃1
n∈L s ∈ d(n); (d2)

(iv) u : S → S is an updating function which fulfills the condition:

∀n∈L∀s∈d(n) u(s) ∈ d(n + 1). (u)
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Condition (d1) expresses our conviction that there is no n-language
that describes nothing. Secondly, we assume that the description of
every state is maximally comprehensive, and this can be done in a rich
enough language not containing any superfluous expressions. For this
reason, for ever state, the description function assigns only one level,
and this is stated in condition (d2).

The function u assigns to any state s ∈ d(n) a state t belonging to
d(n + 1) which is the update of s, this being condition (u). The agent
may update two different states to one state. We do not exclude the
situation where some states from d(n + 1) are not updates of any state
from d(n). The agent can always consider new states that he could not
describe in his earlier poorer language.

For any structure E and any d(n), there may be chosen a certain
state from d(n) which verifies a certain set of atomic n-formulas, and
the same can be done for subsequent values of function d . In general,
each structure E may be described by successive sets of atomic formulas
of subsequent n-languages. Every structure with a certain course of
chosen sets of atomic formulas forms a history of epistemic changes.

For any E structure and any n > 0, let yn : d(n) → 2Atn

be a function
which assigns to any state s ∈ d(n) a subset of n-atoms. Furthermore,
we put y :=

⋃

n yn. Then a history of epistemic changes is any pair
H = 〈E ,y〉. For any structure E = 〈L, S, d , u〉, any history y, any state
s ∈ S and any n ∈ L we define the relation of satisfaction.

Firstly, for any atomic formula αm
i of level n (i.e., when m ¬ n and

i ∈ Im) and any s ∈ d(n) we put:

E ,y, s |=n αm
i ⇐⇒ αm

i ∈ yn(s).

Secondly, for any formulas A and B of level n and any s ∈ d(n) we have:

E ,y, s |=n ¬A ⇐⇒ E ,y, s 6|=n A,

E ,y, s |=n A → B ⇐⇒ E ,y, s 6|=n A or E ,y, s |=n B,

E ,y, s |=n
CA ⇐⇒ either E ,y, s |=n A and E ,y, u(s) 6|=n+1 A,

or both E ,y, s 6|=n A and E ,y, u(s) |=n+1 A,

E ,y, s |=n
kA ⇐⇒ ∀t∈d(n) E ,y, t |=n A,

E ,y, s |=n
KA ⇐⇒ ∀m­n∀t∈d(m) E ,y, t |=m A.

Satisfaction for ∨, ∧ and ↔ is defined in the classical way.
Consequently, the concept of validity of A in 〈E ,y〉 has to be de-

pendent on Lv(A). For any H = 〈E ,y〉, we say that a formula A with
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Lv(A) = m is H-valid iff for any n ­ m and any s ∈ d(n) we have
E ,y, s |=n A. Furthermore, a formula A is logically valid iff A is H-valid,
for any H.

Remark 1.1. If Lv(A) = m then for all n < m, satisfaction of A on n
(i.e., |=n A) is not defined. In this way, we model the situation that the
agent cannot consider as senseful these propositions that he has not yet
added to his language. Thus, these propositions cannot be the subject
of both kinds of knowledge. Now we can note the difference between our
approach and awareness logic. In our case formulas which the agent is not
‘aware of’, i.e., formulas of higher levels do not belong to his language,
and he cannot even express this fact in his current language. ⊣

Remark 1.2. The original semantics for LC is also based on the idea of
an expanding language. There, the language is always enriched with one
atomic expression that is added to the previous language. In LC, the set
of atomic sentences of level n is just {α1, α2, . . . , αn} and therefore in LC

there is no need for double indexing of atomic formulas, in contrast to
our approach. LC deals with the concept of a history of changes. In our
approach, LC-structures may be defined as any structure E = 〈L, S, d , u〉
satisfying the following condition:

∀n∈L∃1
s∈S s ∈ d(n). (d∗)

Now, the function d chooses, for every n, only one possible state which is
the subject of a comprehensive description formulated in the n-language.
Note that in the result, the function u is redundant. The concept of a his-
tory of changes may be defined via the definition of a history of epistemic
changes. Satisfaction for atomic formulas and ¬, →,C is defined as for
LEC. Taking (d∗), we observe that in LC structures, the operator k gets
the same meaning as assertion and K as necessity considered in [13]. ⊣

2. The logic LEC

Let us now characterize the formal system. The proposed axiomatization
is an extension of the original axiomatics for LC. As we have already said,
the concept of stable knowledge will be fully entangled in contexts with
operators of current knowledge and change. Then we prove that the
stable knowledge modality has S4.3 properties.
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2.1. An axiomatization

The considered logic LEC is defined as the smallest subset of the set of all
formulas of all n-languages which contains twelve axioms and is closed
under five rules presented below.

Axioms:

• all instantiations of all tautologies of classical logic;
• all formulas of the following forms:

CA → C¬A (C1)

C(A ∧ B) → CA ∨ CB (C2)

A ∧ ¬CA ∧ CB → C(A → B) (C3)

¬A ∧ ¬B ∧ CA ∧ CB → C(A ∧ B) (C4)

kA ∧ k(A → B) → kB (Kk)

kA → A (Tk)

¬kA → k¬kA (5k)

¬kA ∧ C¬kA → k((A → ¬CA) ∧ (¬A → C¬A)) (kC1)

kA ∧ ¬CkA → k¬CA (kC2)

KA → kA (Kk1)

KA → kKA (Kk2)

KA → ¬CKA (KC)

Schemata (Kk), (Tk), (5k) express respectively: the closure principle

for the current knowledge, its veridicality, and negative introspection.
Implication (kC1) states that a change to the agent’s lack of current
knowledge of A implies current knowledge of A. Following (kC2), we
say that the lack of change regarding the current knowledge of A implies
current knowledge of the non-change of A. According to (Kk1), stable
knowledge implies current knowledge. Schemata (Kk2) and (KC) state
that stable knowledge is currently known and it cannot be changed in
the sense of ¬C.

Rules: The first rule is modus ponens. The second one is replacement:

if A[B] ∈ LEC and B ↔ B′ ∈ LEC, then A[B′] ∈ LEC. (rep)
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The third one is the rule of introduction ¬C:

if A ∈ LEC then ¬CA ∈ LEC, (gen ¬C)

Rule (gen ¬C) states that logical theses do not change.
The fourth rule is the rule for introducing k:

if A ∈ LEC then kA ∈ LEC. (gen k)

Rule (gen k) says that the agent always accepts theses expressed in his
current language.

To introduce the last, fifth rule, we need two types of abbreviations
for certain formulas. The first type is as follows. Firstly, for any formula
A let:

A
1 A be an abbreviation for: A ↔ ¬CA.

In our interpretation this abbreviation equally expresses that: after
one step A holds. Indeed, for arbitrary E = 〈L, S, d , u〉, y, s ∈ S and
n ∈ L we have:

E ,y, s |=n
A

1 A ⇐⇒ E ,y, u(s) |=n+1 A.

Secondly, for any formula A and any m > 1 we introduce:

A
m A be an abbreviation for: A

m−1 A ↔ ¬CA
m−1 A.

Let us also assume that A
0 is blank, i.e., for any A we have A

0 A := A.
The abbreviation A

m A in our interpretation equally expresses that: after
m steps A holds. Indeed, for arbitrary E = 〈L, S, d , u〉, y, s ∈ S and
n ∈ L we have:

E ,y, s |=n
A

m A ⇐⇒ E ,y, u
m(s) |=n+m A,

where u
1(s) = u(s) and u

m(s) = u(um−1(s)). We obtain this by using
the fact that E ,y, s |=n

A
m A ⇐⇒ E ,y, u(s) |=n+1

A
m−1 A, obtained

from the law of excluded middle for A
m−1 A at n and satisfaction for C.

The second type of abbreviation is as follows. Firstly, for any formula A
let:

T
1 A be an abbreviation for: A ∧ ¬CA.

In our interpretation this abbreviation equally expresses that: A holds
and it does not change in one step. Indeed, for arbitrary E = 〈L, S, d , u〉,y, s ∈ S and n ∈ L we have:

E ,y, s |=n
T

1 A ⇐⇒ E ,y, s |=n A and E ,y, u(s) |=n+1 A.
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Secondly, for any formula A and any m > 1 we introduce:

T
¬m A is an abbreviation for: T

¬m−1 A ∧ ¬CT
¬m−1 A. (T¬m)

Let us also assume that T
¬1 A := T

1 A and T
¬0 is blank, i.e., for any

A we have T
¬0 A := A. The abbreviation T

¬m A in our interpretation
equally expresses that: A holds and does not change in at least m steps.
Indeed, for arbitrary E = 〈L, S, d , u〉, y and s ∈ S we have:

E ,y, s |=n
T

¬m A ⇐⇒ ∀i∈{0,...,m} E ,y, u
i(s) |=n+i A.

Having the above abbreviations we can formulate the fifth rule. For
any m ­ 0:

if for all n ­ 0 we have B → A
m
T

¬n
kA ∈ LEC,

then B → A
m
KA ∈ LEC. (w-rule)

This rule is infinistic because for a given m, the conclusion requires
infinitely many premises: B → A

m
kA ∈ LEC, B → A

m
T

1
kA ∈ LEC,

B → A
m
T

¬2
kA ∈ LEC, . . . . Informally we can say that according to

(w-rule), if current knowledge never changes then it is stable.

Remark 2.1. (i) Schemata (C1)–(C4) and modus ponens, (rep), (gen ¬C)
characterize the logic LC [see 12, 13]. Notice that from (C1), (C3) and
(rep) the following formula is its thesis:

A ∧ B ∧ CA → C(A ∧ B)

(ii) We take (w-rule) following its version for the logic LCS4 from [13]:

if for all n ­ 0 we have T
¬n A ∈ LCS4, then 2A ∈ LCS4.

where 2 is a certain operator for unchangeability. ⊣

The soundness and completeness of the logic LEC will be shown in
Section 3. Further, we will write ‘⊢ A’ instead of: ‘A ∈ LEC’.

2.2. S4.3 properties for K

Stable knowledge is veridical, falls under the principle of positive ret-

rospection, the closure principle and is weakly connected. To be more
precise, this means that:

Theorem 1. Modality K has S4.3 properties, i.e., LEC has the following

theses:
KA → A (TK)

KA → KKA (4K)
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K(A → B) → (KA → KB) (KK)

K(KA → B) ∨ K(KB → A) (.3)

and it is closed under the following rule:

if ⊢ A then ⊢ KA. (genK)

Proof. For (genK): If ⊢ A, then from (genk) and (gen ¬C) for any
n ­ 0 we obtain ⊢ T

¬n
kA. Next, using classical logic, for any n ­ 0

we have ⊢ α1
1 ∨ ¬α1

1 → T
¬n

kA. By (w-rule) we get ⊢ α1
1 ∨ ¬α1

1 → KA.
Finally, we have: ⊢ KA.

For (TK): It is a direct consequence of (Kk1) and (Tk).
For (4K): It is done by induction:

1. ⊢ KA → T
0
kKA (Kk2)

We take as the inductive hypothesis:
2. KA → T

¬n
kKA and so:

3. ¬C(KA → T
¬n

kKA) 2, (gen ¬C)
4. A ∧ ¬CA ∧ CB → C(A → B) (C3)
5. ¬KA ∨ CKA ∨ ¬CT

¬n
kKA 3, substitution, contraposition: 4

6. KA → CKA ∨ ¬CT
¬n

kKA 5
7. KA → ¬CKA (KC)
8. KA → ¬CT

¬n
kKA 6, 7

9. KA → T
¬n

kKA ∧ ¬CT
¬n

kKA 2, 8
10. KA → T

¬n+1
kKA 9, (T¬m)

Therefore, by 1, 2, 10:
11. for any n ­ 0, ⊢ KA → T

¬n
kKA

12. ⊢ KA → KKA 11, (w-rule)

For (KK): It is done by induction:

1. ⊢ K(A → B) → (KA → T
0
kB) (Kk1), (Kk)

We take as the inductive hypothesis:
2. K(A → B) → (KA → T

¬n
kB) and so:

3. ¬C(K(A → B) → (KA → T
¬n

kB)) 2, (gen ¬C)
4. K(A → B) → ¬C(KA → T

¬n
kB) 3, (C3), (KC)

5. K(A → B) → (KA → ¬CT
¬n

kB) 4, (C3), (KC)
6. K(A → B) → (KA → T

¬n+1
kB) 2, 5, (T¬m)

Therefore, by 1, 2, 6
7. for any n ­ 0, ⊢ K(A → B) ∧ KA → T

¬n
kB

8. ⊢ K(A → B) → (KA → KB) 7, (w-rule)
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In the proof of (.3) we use the following theses:

KA → T
¬n

kA for any n ­ 0 (L1)

¬K¬(A ∧ ¬B) → ¬KB (L2)

¬K¬A → ¬k¬A ∨ ¬C¬K¬A (L3)

¬KA → k¬KA (L4)

For (L1): By induction, using: (Kk1), (gen ¬C), (C3) and (KC).
For (L2): ⊢ B → ¬(A ∧ ¬B), (genK), (KK) and contraposition.
For (L3):

1. for any n ­ 0, ⊢ K¬A → T
¬n

k¬A (L1)
2. for any n ­ 0, ⊢ ¬C(K¬A → T

¬n
k¬A) 1, (gen ¬C)

3. ⊢ ¬C(A → B) ∧ ¬A ∧ C¬A → (B → ¬CB) (C4), (C1), (rep)
4. for any n ­ 0, ⊢ ¬K¬A ∧ C¬K¬A → (T¬n

k¬A → ¬CT
¬n

k¬A)
(2, 3)

5. for any n ­ 0, ⊢ ¬K¬A ∧ C¬K¬A → (T¬n
k¬A → T

¬n+1
k¬A)
4, (T¬m)

6. for any n ­ 0, ⊢ ¬K¬A ∧ C¬K¬A ∧ k¬A → T
¬n

k¬A 5
7. ⊢ ¬K¬A ∧ C¬K¬A → (k¬A → K¬A) 6, (w-rule)
8. ⊢ ¬K¬A ∧ k¬A → ¬C¬K¬A 7
9. ⊢ ¬K¬A → ¬k¬A ∨ ¬C¬K¬A 8

For (L4):

1. ⊢ ¬kKA → ¬KA (Kk2)
2. ⊢ k¬kKA → k¬KA (gen k), (Kk)
3. ⊢ ¬k¬KA → ¬k¬kKA 2
4. ⊢ ¬k¬KA → KA 3, (5k), (Tk)
5. ⊢ ¬KA → k¬KA 4

For (.3):

1. ⊢ k¬K¬(KA ∧ ¬B) → k(KB → A) (L2), (gen k), (Kk)
2. ⊢ ¬K¬(KA ∧ ¬B) → k(KB → A) 1, (L4)
3. ⊢ ¬K¬(KA ∧ ¬B) → T

¬0
k(KB → A) 2

We take as the inductive hypothesis:
4. ¬K¬(KA ∧ ¬B) → T

¬n
k(KB → A) and so:

5. ¬C(¬K¬(KA ∧ ¬B) → T
¬n

k(KB → A)) 4, (gen ¬C)
6. ¬K¬(KA ∧ ¬B) ∧ ¬C¬K¬(KA ∧ ¬B) → ¬CT

¬n
k(KB → A)

5, (C3), (KC)
7. ¬K¬(KA ∧ ¬B) ∧ ¬C¬K¬(KA ∧ ¬B) → T

¬n+1
k(KB → A)
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4, 6, (T¬m)
8. ¬K¬(KA ∧ ¬B) → ¬k¬(KA ∧ ¬B) ∨ ¬C¬K¬(KA ∧ ¬B) (L3)
9. ¬K¬(KA ∧ ¬B) → ¬k¬(KA) ∨ ¬C¬K¬(KA ∧ ¬B)

8, ⊢ ¬KA → ¬(KA ∧ B), (genk), (Kk), contraposition
10. ¬k¬KA → KA (L4)
11. ¬K¬(KA ∧ ¬B) → KA ∨ ¬C¬K¬(KA ∧ ¬B) 9, 10
12. for any j ­ 0, ⊢ KA → T

¬j
k(KB → A)

(TK), (gen k), (Kk), (gen ¬C), (Kk2), (C3), (KC)
13. KA → T

¬n+1
k(KB → A) 12

14. ¬K¬(KA ∧ ¬B) → T
¬n+1

k(KB → A) 11, 7, 13
15. for any n ­ 0, ⊢ ¬K¬(KA ∧ ¬B) → T

¬n
k(KB → A) 3, 4, 14

We have:
16. ⊢ ¬K¬(KA ∧ ¬B) → K(KB → A) 15, (w-rule)
17. ⊢ K(KA → B) ∨ K(KB → A) 16 ⊣

3. Soundness and completeness

We start with proving the soundness of LEC.

Theorem 2 (soundness). If A ∈ LEC, then A is logically valid.

Proof. The logical validity of (C1), (C2),(C3) and (C4) can be shown in
an analogus way as in [12, pp. 5–6]. The logical validity of (Kk1), (Kk2)
and (KC) can be obtained directly from satisfaction for K, k and C.

For (kC1) we assume that there are E ,y, s, n such that s ∈ d(n), and
E ,y, s |=n ¬kA∧C¬kA and E ,y, s 6|=n

k((A → ¬CA)∧(¬A → C¬A)).
We obtain E ,y, s |=n ¬k¬((A ∧ CA) ∨ (¬A ∧ ¬C¬A)). Thus, there is
t ∈ d(n), such that E ,y, t |= (A ∧ CA) ∨ (¬A ∧ ¬C¬A), and next
E ,y, u(t) |=n+1 ¬A. Using (u) and t ∈ d(n) we have that u(t) ∈ d(n+1).
We already have E ,y, s |=n ¬kA∧C¬kA, thus E ,y, u(s) |=n+1

kA, and
next with using (u) and s ∈ d(n), we have that u(s) ∈ d(n + 1), thus for
any u ∈ d(n + 1) we have (E ,y, u |=n+1 A) which yields a contradiction.

For (kC2) we assume that there are E ,y, s, n such that s ∈ d(n), and
E ,y, s |=n

kA∧¬CkA and E ,y, s 6|=n
k¬CA. We have E ,y, u(s) |=n+1

kA and u(s) ∈ d(n+1) and next for any t ∈ d(n+1) we have E ,y, t |=n+1

A. From E ,y, s 6|=n
k¬CA and E ,y, s |=n

kA, we state that there
is t ∈ d(n) such that E ,y, t |=n A ∧ CA and next with (u) there is
t ∈ d(n + 1) such that E ,y, t |=n+1 ¬A which gives a contradiction.

All primitive rules preserve logical validity. ⊣



52 Marcin Łyczak

To prove the completeness of LEC, we adopt Henkin construction
used in the completeness proof for LCS4 [see 13].

Our aim is to show for any given formula C with Lv(C) = i, if
C /∈ LEC, then there is an epistemic structure E⋆ and a history y⋆ which
falsify C. We need an epistemic structure E⋆ = 〈L⋆, S⋆, d⋆, u⋆〉 in which:

• L⋆ = {i, i + 1, i + 2, . . . }, where i = Lv(C),
• S⋆ is a family of sets of formulas, d⋆ : L⋆ → 2S⋆ and u⋆ : S⋆ → S⋆.

Furthermore, this structure is to meet the following conditions:

(E⋆1) there is an s ∈ S⋆ such that ¬C ∈ s and s ∈ d⋆(i);
(E⋆2) for all s ∈ S⋆ with s ∈ d⋆(n) and n ­ i, and formulas A and B of

the i-language:
(⋆¬) A ∈ s iff ¬A /∈ s,
(⋆→) A → B ∈ s iff either A /∈ s or B ∈ s,
(⋆C) CA ∈ s iff either both A ∈ s and A /∈ u⋆(s), or both A /∈ s

and A ∈ u⋆(s),
(⋆T ) for any m ­ 0: T

m A ∈ s iff ∀j∈{0,...,m}A ∈ u
j
⋆(s),

(⋆A) for any m ­ 0: A
m A ∈ s iff A ∈ u

m
⋆ (s),

(⋆k) kA ∈ s iff ∀t∈d⋆(n) A ∈ t,
(⋆K) KA ∈ s iff ∀m­n∀t∈d⋆(m) A ∈ t.

We start with the definition of a LEC-consistent set. A set X is LEC-
consistent iff there are no A1, . . . , An ∈ X such that ⊢ ¬(A1 ∧ · · · ∧ An).

We relativize the notion of maximal consistency to maximal LEC n-
consistency. A set X is maximally LEC n-consistent (we say: maximally
n-consistent) iff X is consistent, all elements of X are formulas of level n,
and for every formula A of level n: A /∈ X , then X ∪ {A} is inconsistent.

For given n, for maximally n-consistent sets, we have the following
lemmas, that we use in the proof of the completeness theorem. Firstly,
the following lemma can be proved in the standard way.

Lemma 1. If a set X is consistent, and all elements of X are formulas of

level n, then there exists a set Y such that X ⊆ Y and Y is maximally

n-consistent.

Secondly, in virtue of (gen ¬C), (C1), (C2), (C3) and (C4) we have
the following lemma [see 13, Fact 6].

Lemma 2. If X is maximally n-consistent, then {A : A ∧ ¬CB ∈ X} ∪
{¬A : A ∧ CA ∈ X} is a maximally n-consistent set.
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Thirdly, in a standard way, using only (gen k) and (Kk), we obtain:

Lemma 3. If X is maximally n-consistent, and ¬k¬A ∈ X then set

{A} ∪ {B : kB ∈ X} is consistent.

Now we consider the following:

Lemma 4. For any finite consistent set X of formulas and any formula F :
if for some n ­ 0 we have ¬A

n
KF ∈ X , then there is an m ­ 0 such

that X ∪ {¬A
n
T

¬m
kF} is consistent.

Proof. Assume for a contradiction that X is finite, consistent, and
for some n ­ 0 we have ¬A

n
KF ∈ X but for any m ­ 0 the set

X ∪ {¬A
n
T

¬m
kF} is inconsistent. Then for any m ­ 0 we have

⊢
∧

X → A
n
T

¬m
kF , where

∧

X is a conjunction of formulas from
X . Hence from (w-rule) we have ⊢

∧

X → A
n
KF , but ¬A

n
KF ∈ X ,

which means, that X is inconsistent. ⊣

For the formula C /∈ LEC we will now show how to build the structure
E⋆ that we are looking for. Assume that C with Lv(C) = i is not an LEC-
theorem. We have that {¬C} is consistent. We take the enumeration of
all formulas of level i: A0, A1, A2, . . . ; and we define the sequence (Sj):

S0 = {¬C}

S2j+1 =

{

S2j ∪ {Aj} if this is consistent

S2j ∪ {¬Aj} otherwise

For S2j+2 we consider two cases. If Aj belongs to S2j+1 and Aj =
¬A

n
KF , for some n ­ 0 and some formula F , then  in virtue of

Lemma 4  for some m ­ 0 we can put S2j+2 := S2j+1 ∪{¬A
n
T

¬m
kF}.

Otherwise, we put S2j+2 := S2j+1.
Let s =

⋃

j Sj . From Lindenbaum’s lemma we obtain that s is
maximally i-consistent and ¬C ∈ s. In the set s it is guaranteed that if
for any n ­ 0 we have A

i
T

¬n
kA ∈ s, then A

i
KA ∈ s.

Now we define the sequence W i, W i+1, . . . of families of sets

(s1) W i is such that:
(a) s ∈ W i;
(b) for any X ∈ W i, if ¬k¬A ∈ X , then for some Y ∈ W i we have

{A} ∪ {D : kD ∈ X} ⊆ Y and Y is maximally i-consistent set.
(s2) W n+1 (n ­ i) is such that:
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(a) for any X ∈ W n there is a Y ∈ W n+1 such that Y = {B :
B ∧ ¬CB ∈ X} ∪ {¬D : D ∧ CD ∈ X} and Y is maximally
i-consistent;

(b) for any X ∈ W n+1, if ¬k¬A ∈ X , then there is a Y ∈ W n+1

such that {A} ∪ {D : kD ∈ X} ⊆ Y and Y is maximally i-
consistent set.

It is well defined because of Lemmas 1–3.
All maximally i-consistent sets from the above sequence have the

following property:

if for any n ­ 0 we have A
i
T

¬n
kA ∈ Y , then A

i
KA ∈ Y .

This is a consequence of Lemma 8 that we prove later.3

The above sequence will be used to define the domain of the structure
that we are looking for.

We have that every X ∈ W n is maximally i-consistent. To each
X ∈ W n, we will add new atoms of all level m such that i < m ¬ n
(these atoms do not belong to the i-language). This will allow us to
check to which the language level the given state (which now will be a
set of formulas) is assigned.

We define E⋆ = 〈L⋆, S⋆, d⋆, u⋆〉, where:

(L⋆) L⋆ = {i, i + 1, i + 2, . . .};
(S⋆) S⋆ is the family of the sets of the form X ∪ {αm

j : αm
j ∈ Atm and

i < m ¬ n}, for some n ­ i and X ∈ W n;
(d⋆) d⋆ : L⋆ → 2S⋆ is such that:

• s ∈ d⋆(i) iff s is a maximally i-consistent set, and
• for any n > i, s ∈ d⋆(n) iff {αm

j : i < m ¬ n and αm
j ∈ Atm} ⊆ s;

(u⋆) u⋆ : S⋆ → S⋆ is such that for any n ­ i and s ∈ d⋆(n): u⋆(s) =
{B : B ∧ ¬CB ∈ s} ∪ {¬D : D ∧ CD ∈ s} ∪ {αm

j : αm
j ∈ Atm and

i < m ¬ n + 1}.

Lemma 5. E⋆ is an epistemic structure.

Proof. Conditions (d1), (d2) and (u) are fulfilled, by (d⋆) and (u⋆). ⊣

Lemma 6. In the structure E⋆ conditions (E⋆1), (⋆¬), (⋆→), (⋆C), (⋆T ),
(⋆A) are fulfilled.

3 In general, for LEC it is not the case that for any consistent set Y such that for
all n ­ 0 we have A

i
T

¬n
kA ∈ Y , it is guaranteed that Y ∪{¬A

i
KA} is inconsistent.
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Proof. Condition (E⋆1) is fulfilled by the definition of sequence (Sj)
and the definition of E⋆. Conditions (⋆¬) and (⋆→) are consequences of
the definition of the sequence of sets W i, W i+1, . . . , the definition of
E⋆ and the fact that each X ∈ W n is maximally i-consistent. Condition
(⋆C) is a consequence of the definition of the sequence of sets W i, W i+1,
. . . , and (⋆¬), (⋆→). We get (⋆T ), (⋆A) from (u⋆), (d⋆), (⋆¬), (⋆→) and
(⋆C). ⊣

Lemma 7. In the structure E⋆ condition (⋆k) is fulfilled.

Proof. We prove (⋆k) by induction. For any s ∈ d⋆(i) and any formula
A of the i-language, by S5 axioms for k and the definition of the sequence
of sets W i, W i+1, . . . , we obtain: kA ∈ s ⇐⇒ ∀t∈d⋆(i) A ∈ t. Assume
inductively that for any formula of the i-language (ih): ∀s∈d⋆(n)(kA ∈ s
⇐⇒ ∀t∈d⋆(n)A ∈ t). First we show, that for any formula A of the i-
language:

if s ∈ d⋆(n) and kA ∈ u⋆(s), then ∀t∈{u⋆(w) : w∈d⋆(n)}A ∈ t.

Assume for a contradiction that there exists formula F ∗ such that (a1):
kF ∗ ∈ u⋆(s) (s ∈ d⋆(n)) and there is t ∈ d⋆(n) such that (a2): F ∗ /∈
u⋆(t). From (ih), we have that for any formula A of the i-language, if
kA ∈ s then A ∈ t. We start with the proof of ¬k((F ∗ → ¬CF ∗) ∧
(¬F ∗ → C¬F ∗)) ∈ s. The proof is indirect. If k((F ∗ → ¬CF ∗) ∧
(¬F ∗ → C¬F ∗)) ∈ s and (ih), we obtain (F ∗ → ¬CF ∗) ∈ t and
(¬F ∗ → C¬F ∗) ∈ t. Using classical logic, we obtain (F ∗ → F ∗ ∧
¬CF ∗) ∈ t and (¬F ∗ → ¬F ∗ ∧ C¬F ∗) ∈ t. Now, from (⋆¬) (F ∗ ∈ t
or ¬F ∗ ∈ t) we get that either F ∗ ∧ ¬CF ∗ ∈ t or ¬F ∗ ∧ C¬F ∗ ∈ t.
Thus, F ∗ ∈ u⋆(t), but it is false (a2) and therefore k((F ∗ → ¬CF ∗) ∧
(¬F ∗ → C¬F ∗)) 6∈ s, i.e., ¬k((F ∗ → ¬CF ∗) ∧ (¬F ∗ → C¬F ∗)) ∈ s.
Now, we prove ¬kF ∗ ∈ s. The proof is indirect. From kF ∗ ∈ s, (a1)
and (⋆C) we get: ¬CkF ∗ ∈ s. Thus, kF ∗ ∧ ¬CkF ∗ ∈ s. Using
(kC2), we obtain k¬CF ∗ ∈ s. From (ih) and k¬CF ∗ ∈ s, we obtain:
¬CF ∗ ∈ t. From kF ∗ ∈ s and (ih), we have F ∗ ∈ t. Now, because
F ∗ ∧ ¬CF ∗ ∈ t, from (⋆C) we obtain F ∗ ∈ u⋆(t), but it is false (a2).
Therefore, kF ∗ 6∈ s; and so ¬kF ∗ ∈ s. We proved ¬kF ∗ ∈ s and
¬k((F ∗ → ¬CF ∗) ∧ (¬F ∗ → C¬F ∗)) ∈ s. Hence, using (kC1), we
obtain ¬C¬kF ∗ ∈ s. Therefore, by ¬kF ∗ ∧ ¬C¬kF ∗ ∈ s and (⋆C),
we get ¬kF ∗ ∈ u⋆(s); which contradicts assumption (a1). Having that
for any formula A of the i-language and every u⋆(s) with s ∈ d⋆(n): if
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kA ∈ u⋆(s), then ∀t∈{u⋆(w):w∈d⋆(n)}A ∈ t, we can extend it by condition
(b) of (s2) from the definition of the sequence of sets W i, W i+1, . . . ;
and S5 axioms to implication: if s ∈ d⋆(n) and kA ∈ u⋆(s), then for any
formula A of the i-language we have ∀t∈d⋆(n+1) A ∈ t.

For the converse implication, we assume that there exists formula A,
of the i-language and ∀t∈d⋆(n+1)A ∈ t and ¬kA ∈ s and s ∈ d⋆(n + 1).
Thus, from the definition of the sequence of sets W i, W i+1, . . . , and
(d⋆) there must be t ∈ d⋆(n + 1), such that A 6∈ t, which contradicts our
assumption. ⊣

Lemma 8. In the structure E⋆ condition (⋆K) is fulfilled.

Proof. “⇒” We assume that for some formula A of the i-language we
have: KA ∈ s, s ∈ d⋆(n) and for some m ­ n and t ∈ d⋆(m) we have
A 6∈ t. We have that there exists m0 ­ n and t0 ∈ d⋆(m0) such that
A /∈ t0. If m0 = n, then a contradiction arises because of (Kk1) and
(⋆k). Let m0 > n. We have, that KA ∈ s, thus from (KC) we obtain
KA ∧ ¬CKA ∈ s and therefore with (⋆C) KA ∈ u⋆(s), so again from
(KC) we obtain KA ∧ ¬CKA ∈ u⋆(s), and again from (⋆C) we have
KA ∈ u⋆(u⋆(s)). In this way, we will get to KA ∈ u⋆(u⋆(...(s)...) ∈
d⋆(m0); and so by using (Kk1) and (⋆k) we obtain A ∈ t0 which gives a
contradiction.

“⇐” We assume that for any l ­ n and v ∈ d⋆(l) we have A ∈ v and
¬KA ∈ s and s ∈ d⋆(n). First we show that ¬A

n−i
KA ∈ s (note, that

s is an element of d⋆(i) and formula ¬C ∈ s and Lv(C) = i). We assume
that A

n−i
KA ∈ s, then from (⋆A) KA ∈ u

n−i
⋆ (s) and u

n−i
⋆ (s) ∈ d(n).

Thus, using axiom (Kk2) we obtain kKA ∈ u
n−i
⋆ (s). Now, because

of u
n−i
⋆ (s) ∈ d⋆(n), and from (⋆k), we have KA ∈ s which is false by

assumption. Now, from ¬A
n−i

KA ∈ s and the definition of the sequence
(Sj), we obtain that ¬A

(n−i)
T

¬m
kA ∈ s for some m, therefore from

(⋆A) we have T
¬m

kA /∈ u
n−i
⋆ (s), for some m. Thus, from (⋆T ) there

exists a state t ∈ d⋆(j) such that n ¬ j ¬ m and ¬kA ∈ t. Therefore,
for some v with v ∈ d⋆(j) and n ¬ j ¬ m we have ¬A ∈ v from (⋆k),
which contradicts our assumption. ⊣

Theorem 3 (completeness). If A 6∈ LEC, then A is not logically valid.

Proof. Assume that C /∈ LEC and Lv(C) = i. We construct a state
s with ¬C ∈ s defined as in the sequence (Sj). Using the definition of
the sequence of sets W i, W i+1, . . . , we define E⋆ = 〈L⋆, S⋆, d⋆, u⋆〉 in
the way described by conditions (L⋆), (S⋆), (u⋆) and (d⋆), which fulfils
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(E⋆1), (⋆¬), (⋆→), (⋆C), (⋆T ), (⋆A), (⋆k), (⋆K) (Lemmas 5–8). Now, for
every n ­ i, yn is a function yn : d⋆(n) → 2Atn

such that for each atom
αj

i with j ¬ n and any s ∈ d⋆(n): αj
i ∈ yn(s) iff αj

i ∈ s. We now definey⋆ =
⋃

n yn and H⋆ = 〈E⋆,y⋆〉 and prove by induction with using (⋆¬),
(⋆→), (⋆C), (⋆T ), (⋆A), (⋆k), (⋆K) that for any formula A of the Lv(C)-
language, and for any state s ∈ S⋆, if s ∈ d⋆(n), then: E⋆,y⋆, s |=n A iff
A ∈ s. We have ¬C ∈ s. Thus, E⋆,y⋆, s 6|=i

C, so C is not valid in H⋆

and therefore C is not logically valid. ⊣

4. Comparison of LEC with the approach of epistemic

logics on discrete linear time

Let us make a few comparative remarks on LEC. We start our comparison
with the fact that LC with the definition of the operator ©, read “next
it is the case that”:

© A ↔ (A ↔ ¬CA)

is equivalent to the ©-fragment of linear temporal logic LTL extended
by the definition of the change operator C [cf. 13, pp. 520–523]:

CA ↔ (A ↔ © ¬A). (C)

Actually, LEC contains a definition of An and for n = 1, the operator
A

1 is described just like ©. Symbols A1 and © denote the same modality.
In general for ⋆ ∈ {k,K} we may take into account formulas of the

shapes:
⋆ ©A → © ⋆ A, (PR⋆)

© ⋆ A → ⋆ © A. (NL⋆)

The above are known respectively as: the principle of perfect recall and
the principle of no learning. Systems with (PRk) and (NLk) based on LTL

and S5 axioms for k (read just: “it is known that”) have been studied,
e.g., in [3]. In connection with what we said at the beginning, (PRk)
taken as an axiom allows the agent at most to reject possible states of
the world, along with obtaining new information. (NLk), in turn, taken
as an axiom allows the agent to consider, in time, new possible states of
the world, and not reject them.

Note that both (PRk), and (PRK) are not theses of LEC. If we consider
©-fragment of LTL extended by S5 modality k denoted it by ©-LTL ⊕
S5

k, we obtain that ©-LTL⊕S5
k ⊕ (NLk) ⊕ (C) is deductively equivalent
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to K-free fragment of LEC. Formula (NLK) is logically valid and thus
from completeness we know that it is also a thesis of LEC.

In our approach formulas (NLk) and (NLK) describe the situation in
which the agent is learning, in the sense that he always can discover
new states. He can describe them in his new richer language. Our idea
is that the agent adapts his states to his current knowledge, and does
not reject them as in the case of perfect recall. The extension of LEC

by (PRk) imposes a restriction of the class of E structures to the class
which additionally fulfils the following condition:

∀s,t∈d(n+1)∃s′,t′∈d(n)(u(s′) = s and u(t′) = t).

We have similar problems when we accept (PRK) as an axiom. This
shows that if the agent wants to make full use of the idea of a growing
language, he cannot accept the perfect recall postulate.

The changeability of the agent’s knowledge over time has been also
studied in the frame of branching-time temporal logic [9]. The idea of
using two primitive concepts of change interpreted in branching struc-
tures linked with the concept of growing language is elaborated in [7].
Perhaps this approach could be used as a starting point for a new version
of the epistemic formalism presented here.
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