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Abstract. Standard deontic logic (SDL) is defined on the basis of possible
world semantics and is a logic of alethic-deontic modalities rather than
deontic modalities alone. The interpretation of the concepts of obligation

and permission comes down exclusively to the logical value that a sentence
adopts for the accessible deontic alternatives. Here, we set forth a different
approach, this being a logic which additionally takes into consideration
whether sentences stand in relation to the normative system or to the system
of values under which we predicate the deontic qualifications. By taking
this aspect into account, we arrive at a logical system which preserves laws
proper to a deontic logic but where the standard paradoxes of deontic logic
do not arise. It is a logic of strictly-deontic modalities DR.
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1. Main goals and outline

In this paper we present a certain modification of a possible world seman-
tics for standard deontic logic (SDL) where we will show the following:

1. How SDL is weakened but without the loss of important laws of
deontic logic or the properties of the logical consequence relation.

2. How the problem of the relation between sentences under a given
normative system (deontic relationship) is analyzed by specifying
the truth-conditions for normative sentences and how, on this basis,
quasi-deontic (alethic-deontic) modalities can be distinguished from
strictly-deontic modalities.
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3. How various paradoxes of deontic logic can be solved and how, ac-
cording to the notion of deontic relationship we introduce, the para-
doxical formulas cannot be laws of the deontic logic.

4. How to construct a tableau-system for the logic.

The main goal of the paper is to improve SDL by the introduc-
tion of the notion of a deontic relationship and the distinction of the
quasi-deontic (alethic-deontic) modalities �,♦ from the strictly-deontic
modalities O, P.

In Section 2 we discuss a problem of association between sentences
and normative systems. We refer to some examples of sentences and
normative systems where logical truth is not sufficient for an obligation
while logical falsity is not sufficient for a prohibition. In this section some
problems of SDL are discussed and the ideas of quasi-deontic and strictly-
deontic modalities are presented. In Section 3 we introduce a language
and semantics for the logic DR of strictly-deontic modalities. We also
consider a language consisting of all deontic modalities, which enables us
to define the logic DR�. In this section we define a formal notion of de-
ontic relationship. Section 4 is entirely devoted to an analysis of the well
known paradoxes of deontic logic and to a problem of the interpretation
of logical connectives in a range of strictly-deontic modalities. In Sec-
tion 5 we focus on laws of the logics DR and DR�  a logic of strictly as
well as quasi-modalities  and on possible extensions of DR. In this sec-
tion we also analyse a rule of cautious monotonicity which in our opinion
is a better tool for the logical investigation of deontic sentences, espe-
cially if the notion of a deontic relationship is considered. In Section 6 we
propose a tableau approach to our proposed systems of logic, and finally
in Section 7 we give a handful of intuitions to sum up our investigations.

2. Introduction

2.1. The main idea: sentences related by normative systems

In this paper, we start from the empirical observation that obligatory
and permitted sentences have that status relative to a system of values
or a normative system.1 So there are no absolutely obligatory or ab-
solutely permitted sentences. Therefore, when speaking of obligations,

1 We shall use these terms interchangeably with this hope that the ethicists
forgive us this simplification. Our concern is to go straight to logical matters but
without losing sight of the motivations for deontic logics.
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prohibitions and permissions, we do so with respect to a system of values
that determines what is obligatory, permissible and prohibited.

This observation leads to the conclusion that the sentences that do
not stand in a relation to a normative system are neither obligatory nor
prohibited by it  they are simply neutral. While the sentences that
are neutral with respect to a given normative system are undoubtedly
permitted by it, as they cannot be prohibited, since they are neutral.
Another observation makes us believe that no sentence which is oblig-
atory relative to a given normative system can be neutral in relation
to it. In particular, the normative system cannot oblige us to what it
does not pertain to. Both observations compel us to add a new item
to SDL in order to take account of their consequences of these obvious
observations.

A normative system, in a simplified manner, may be understood as
a collection of sentences that are somehow interlinked. For instance,
in a normative system of Catholicism, the sentence describing a child
birth and a sentence on the fact of its baptism are interlinked due to
this system of values. By contrast, a sentence describing the birth of a
child and a sentence stating that the child resides in Warsaw have no
interconnection because the Catholic system of values has nothing to say
about residing Warsaw  any such statement is neutral with respect to
this system of values.

Let us in more detail consider the following example: the Highway
Code which is in force in the countries of Europe (for short: HC) 
which is probably similar to the highway codes that are effective in other
countries. Obviously, the HC is a normative system. Sentence:

(s1) Jan is intoxicated

stands in relation to HC. It is specifically prohibited when the following
sentence holds too:

(s2) Jan is driving a car.

In turn, (s2) is not only prohibited in conjunction with (s1), but also
itself stands in relation to HC.2 Without the occurrence of (s1), it may
be permitted if no other exclusive circumstances occur such as e.g. lack
of a driving license. In turn, sentence:

(s3) Jan enjoys eating sweets

2 After all HC, inter alia, regulates the behaviours and actions of drivers.
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is not only permitted by HC, but also absolutely not related to this
normative system. HC is about something else entirely. However, if we
take account of another normative system, e.g. a normative system of
an athlete who controls their weight, (s3) is related to this system and
truth of (s3) may lead to some new deontic conclusions.

The main idea behind our study is to enhance standard deontic logic,
based on possible world semantics, with an additional element: a rela-
tion between sentences with respect to a given normative system which
forms the basis for making deontic qualifications and establishing logical
consequences.

This seemingly slight modification leads to serious consequences for
the system of logic. The article validates this approach, demonstrating
that well-known paradoxes of deontic logic, such as Ross’s paradox and
the Good Samaritan paradox, do not occur in the logic we set forth (see
Section 4). At the same time, our logic preserves properties and laws
that are desirable for a deontic logic to have (see Section 5).

2.2. SDL, some of its problems, and possible worlds semantics

In SDL, that is the modal logic D, the concepts of obligation and permis-
sion correspond respectively to the concepts of necessity and possibility
in an alethic logic. A technical or semantic assumption that distinguishes
SDL in the family of all modal logics is the occurrence of axiom (D),
which corresponds to the serial relation of accessibility across worlds.

[. . . ] the ‘standard semantics’ [i.e. possible worlds semantics] of deontic
logic [. . . ] gives an intuitively plausible account of the meanings of
simple deontic sentences when the deontic alternatives to a given world
u are taken to be worlds (or situations) in which everything that is
obligatory at u is the case; they are worlds in which all obligations are
fulfilled. Hence, the worlds related to a given world u by R [accessibility
relation] may be termed deontically perfect or ideal worlds (relative
to u). (Hilpinen, 2001, p. 163)

The deontic alternatives are different possible variants of the actual world
in which simultaneously occur desirable deontic values from the view-
point of a normative system. Consequently, what is obligatory is to
occur in all such worlds, whereas what is permitted is to occur in at
least one of them.

These deontic alternatives are also ‘deontically perfect worlds’ of sorts:
all obligations, both these that obtain in the actual world and those
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that would obtain in such an alternative possible world, are assumed
to be fulfilled in each of them. (Hintikka, 1969, p. 189)

Let us indicate, however, that in such worlds there may also be sen-
tences that are true that will not be obligations of a given normative
system; in other words, sentences that are neutral rather than obliga-
tory. For instance, in all deontic alternatives it could be that nobody
smokes, but it does not have to mean that smoking is forbidden (see
Wansing, 1998, pp. 195–196). What if, in any deontic alternative, any
of our alteregos drinks milk daily? Can we then claim that it is obliga-
tory that we drink a glass of milk daily? Or maybe we should consider
obligations as something different from truths which are not related to
a given normative system (see Solt, 1984, pp. 350–351).

So how should we separated those sentences that are true and related
to a given normative system from those that are true though neutral?
How can we express in a formal way that something is related or neutral
with respect to a given normative system? The standard approach does
not allow us to answer this question. And in case of many non-standard
approaches the problem is not specified or at least not in the presented
form. In the case of our logic, the distinction we need will be available.

What is more  as we know very well  the standard approach leads
to various paradoxes, widely described in the literature on the subject
(see Hilpinen, 2001, pp. 163–167; Hilpinen and McNamara, 2013, pp. 58–
64; Carmo and Jones, 2002, pp. 268–270).3 The source of some of them
is the closure of the obligation operator O under the relation of logical
consequence also known as the monotonicity rule.

A first group of paradoxes has its origin in the closure of the O-operator
under logical consequence (that is, in the fact that SDL, like any normal
modal logic, contains the (RM)-rule: if ⊢ A → B, then ⊢ OA → OB).

(Carmo and Jones, 2002, p. 268)

Another problem is the closure of tautologies under the operator
O (necessitation rule), which causes that any tautology is always oblig-
atory (cf. Wright, 1980, p. 402).4

3 Solving deontic paradoxes is a common motivation for the development of new
approaches. For example, Kulicki and Trypuz (2015, p. 1241) write: “it is also shown
that the existing definitions of obligation in these systems are unacceptable due to
their non-intuitive interpretation or paradoxical consequences”.

4 Such closure together with axiom (K), classical logic and the detachment rule,
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A second problem of SDL has to do with the O-necessitation rule it-
self, according to which any tautology (more generally, any theorem) is
obligatory, which is incompatible with the idea that obligations should
be possible to fulfill and possible to violate.

(Carmo and Jones, 2002, p. 270)

This property is also strange for a slightly different reason, namely
that the sentences that make up a given tautology may stand in no
relation to the normative system which produces the grounds on which
we consider a given obligation. For instance, as per the above-mentioned
HC, the sentence:

(s4) Jan is a dark-haired man or Jan is not a dark-haired man

is not obligatory in any case. So, even though this sentence is true in each
possible world and thus also in any world in which the HC is absolutely
respected, it specifies no obligation with respect to HC at all. So, the con-
cept of obligation with which we are dealing in SDL, is too broad. Logical
truths do not have to be obligatory, which is always the case in SDL.

Looking further ahead, no countertautology in SDL is permitted,
although even simple sentences forming parts of one of the countertau-
tologies may be absolutely neutral with respect to the normative system
under which we predicate the permission. This is perhaps a more striking
concern.

Even if a given sentence must not occur for logical reasons (is self-
contradictory), how could it not be permitted by any normative sys-
tem? Most of the normative systems lead to a prohibition of only such
sentences that interfere with the deontic values of those systems. The
prohibition of self-contradiction is a property at the very outside, which
can be borne by a normative system used by logicians in their metalogical
considerations. Still, logicians too require some relation of the sense or
contents between sentences they consider. Let us check the following
countertautology:

(s5) Jan is a dark-haired man and Jan is not a dark-haired man.

In terms of SDL, (s5) is not permitted and is even prohibited  as in
each of the possible worlds it is false. But from the viewpoint of the
majority of normative systems, this sentence exceeds the scope of their

obviously enables the introduction of (RM). Hence, it allows a derivation of the same
paradoxes which we get due to (RM) (cf. Carmo and Jones, 2002, pp. 268–270).
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operation. Let us therefore repeat the question: how can it be generally
prohibited?

For example, how would HC prohibit the occurrence of (s5)? This
sentence  howsoever logically impossible and therefore false  is abso-
lutely permitted from the viewpoint of HC. Would the occurrence of
(s5)  even though it cannot occur for logical reasons  violate any of
HC’s provisions? No, it would not, because HC does not regulate hair
colour. The permissibility of (s5) from the viewpoint of HC follows from
the absence of a relation between this sentence and HC or its property
of being neutral with respect to HC.

To sum up, neither is truth in all possible worlds a sufficient condition
for an obligation to hold (although probably it is a necessary condition),
nor is falsity in all worlds a sufficient condition for a prohibition to hold
(although it is also probably a necessary condition). These are among
the postulates met by the logic we set forth. Thus, the strictly-deontic
modalities that we shall define below include the issue of the truth of
the deontic alternatives but also the relations with other sentences.

The dominance of possible worlds semantics in the research on the
philosophical logic seems to be coming to an end. This is apparent, for
example, in the context of deontic logic. However, it does not mean that
SDL and its extensions are completely ignored in the descriptions of the
new types of deontic logics. Very often new logics have been compared to
the old ones in terms of axioms, rules of inference and metalogical prop-
erties. One of the common features of many of the new proposals is that
they endeavour to improve SDL in some chosen way, such as by removing
paradoxes. Other common features include, for example: (i) making use
of the concept of the classical relation of logical consequence, e.g. in order
to determine the meaning of the obligation operator; (ii) attempting to
provide standards with a direct representation in the model; and (iii)
justifying of a logic by analysing various specific problems related to
obligations and prohibitions often drawn from everyday life. A good
example of an approach featuring these properties is the non-monotonic
deontic logic of Horty (1997) which makes use of Reiter’s default theory
on the basis of deontic logic. Such a solution is particularly interesting in
the context of the problem of normative conflicts. Another interesting
example is the input/output logic featured in (Makinson and van der
Torre, 2000) or the logic of imperatives and imperative structures, anal-
ysed in detail by Hansen (2001). It is worth noting that Hansen refers
in his studies not only to SDL, but also to many non-standard deontic
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logics, exploring, among other things, the possibility of expressing such
logics by means of the imperative structures he analyses.

In the context of our deliberations, it is worth stressing the use of the
classical relation of consequence. It is, after all, clear that involving such
a relation in research into the relationship between standards and their
consequences entails the risk of irrelevance. Obviously, we could modify
various innovative approaches, replacing the classical relation with one
taken from some other relevant logic. However, what do we actually
mean by relevance in such a case? Will such meaning be coincident
with the concept of deontic relationship we have introduced? Will such
relevance be more than just so-called derivational utility? The article
proposes a different approach. We start with some examples, drawing
on intuitions and recognitions of relevance (or better a relationship) from
the viewpoint of the normative system. We will then recast them in a
formal system. To this end, we use the common semantics of possible
worlds. It is a good idea to develop a new approach on the basis of a
familiar one. Possible world semantics is familiar and well-understood
and so it will prove easier to develop our approach by enrich such a
semantics. This translates, for example, into an analysis of the prob-
lems of decidability, axiomatization or how to introduce other syntactic
approaches such as tableau systems or sequent calculus. A modification
of possible worlds semantics is only the beginning and the initial test
of the formal analysis of the deontic relationship we describe. Having
mastered the method of enriching the relational structures with possible
worlds by a family of additional relations and undertaken the develop-
ment of a proof theory for the logic in the light of a consideration of
more complex structures, we can attempt to analyse the problem of the
deontic relationship on the basis of various innovative approaches.

2.3. Sentences related by normative system  technical solution

In order to take account of the aspect of standing in a relation to a
normative system, we complement possible worlds semantics with addi-
tional elements: relations between sentences which hold according to the
normative system from the viewpoint of which we establish obligations
and permissions. In our approach, to be related to a normative system
(to be deontically related) will mean that there is a relation between some
sentences according to a given normative system. The worlds accessible
from a given world must therefore, not only within the philosophical in-
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terpretation, but above all within the technical implementation, comply
with the rules of the normative system from the viewpoint of which we
ascribe deontic properties to sentences.

The standard model of deontic logic is a triple 〈W, Q, v〉, where W is
a set of possible worlds, Q is the accessibility (serial) relation for deontic
logic, and v assigns a set of possible worlds to propositional letters. Our
logic enhances this with the addition of a new element to produce a
quadruple: 〈W, Q, v, {Rw}w∈W 〉.

The set {Rw}w∈W is a family of indexed by possible worlds binary
relations, defined on the Cartesian product of the set of formulas. There-
fore, for each possible world w ∈ W , there is exactly one such relation
Rw. The relation will be the technical representation of the fact that the
two sentences are related in a given world. We call this relation a relating
relation. This relation enables us to express that two sentences, from the
point of view of the given normative system, are connected (cf. Jarmużek,
2020; Jarmużek and Klonowski, 2020).

Let us emphasize that our semantics does not feature a normative
system as such but is influenced by one through the way in which relates
sentences in individual worlds. Such a system might be an agent who
issues obligations and prohibitions. Whereas in an epistemic logic the
agent knows that p, in a deontic logic an agent obliges that p. In both
cases, the agents’ point of view should be taken into account.

Let us now note several historical facts pertaining to the relation de-
fined on the Cartesian product of formulas, i.e. the relating relation and
logics defined by means of valuations and relating relations, i.e. relating
logics (cf. Jarmużek, 2020; Jarmużek and Klonowski, 2020). The idea
underlying a semantics based on the binary relation defined on a set of
formulas probably has its origin in (Walton, 1979; Epstein, 1979). An ex-
ample of its application may be the analysis of the content relationships
which is the foundation of the so-called relatedness logics and dependence
logics defined by Epstein with particular conditions imposed on models
(see Epstein, 1990, pp. 61–84, 115–143). A more general approach 
without assumptions imposed on the relating relation  was proposed
in (Jarmużek and Kaczkowski, 2014). This work also suggested some
philosophical interpretations of relating relations; for example, causal,
temporal and analytical ones (see Jarmużek and Kaczkowski, 2014; Jar-
mużek, 2020; Jarmużek and Klonowski, 2020). It should, however, be
stressed that a casual interpretation of the relating relation, as one of the
many philosophical interpretations of such relations, was also suggested
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by Walton (1979, p. 131). The aim of these papers was to examine
various propositional logics that consider both the logical properties of
sentences and their non-logical connections, the latter permitting a richer
understanding of relationships of content between them.5

In this work, we propose interpreting the relating relation as relating
sentences with respect to a normative system and a range of deontic
alternatives. Another novelty of our approach is that we mix the relat-
ing relation with possible world semantics. It is a further step in the
applications of this technique. It is clear that it can be used to rein-
force/improve any logics based on possible worlds semantics (see also
Jarmużek and Malinowski, 2019b).

The introduction to the model of representations of the deontic re-
lations between sentences {Rw}w∈W produces a major change in truth-
conditions for obligations and permissions. In the proposed approach,
a sentence is obligatory if it occurs in all accessible possible worlds and
stands in relation to a normative system, which means that a proper
relation holds between some sentences from the viewpoint of the system.
In turn, a sentence is permitted when in an accessible possible world it
is true or is not related to the normative system, being neutral.

2.4. From deontic necessity to obligation

The general idea behind deontic necessity and possibility, i.e. quasi-
deontic modalities, is as follows. The deontic necessity of a sentence
implies its occurrence in each deontic alternative. Even so, it does not
have to stand in these worlds in a relationship to a given normative
system. In turn, a sentence is deontically possible when it is true in a
deontic alternative.

In order to better clarify the idea of the deontic necessities and possi-
bilities, let us again consider the example of HC as a normative system.
Although this system  at least in its European variants  obliges the
passengers and the driver to fasten seatbelts, it does not order, in the
sense of obligation, that there exist places where seatbelts can be pur-
chased. Furthermore, seatbelts can be damaged and need repair and it
is likewise not ordered that there be places where this can happen. Of
course, HC does not order the existence of points of sale or distribution
of car seatbelts or parts thereof. A sentence asserting the existence of a

5 It is worth saying that the idea has also been used to emulate the semantics for
connexive logics (see Jarmużek and Malinowski, 2019a).
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place where seatbelts can be purchased must undeniably be true in any
world in which HC is in force, although HC does not oblige the exis-
tence of such a place. Therefore, a sentence expressing the availability of
seatbelts must be deontically necessary. Where HC is in force, seatbelts
must be things that can be acquired, even though this is not the “must”
of an obligation.

Still, in the context of HC, not everything permitted by this code
must be deontically possible. As already established, HC allows for what
(s5) claims because this sentence is neutral with respect to HC. Although
this sentence is permitted with regard to HC, it is not alethically possi-
ble  it is a counter-tautology after all. But it is not deontically possible
either. In no possible world in which HC holds to the same extent as in
the actual world it is true.

So, sentences deontically necessary and deontically possible are sen-
tences that, even though they do not have to be related to normative
system, have logical value dependant on the states of worlds which form
the deontic alternatives.

Assuming that in the model 〈W, Q, v, {Rw}w∈W 〉 the relation Q is
of a serial nature, an assumption we must surely make, the modalities
� and ♦, which stand for deontic necessity and possibility respectively,
correspond to the standard interpretation of deontic modalities in logic
D, they behave as such. We claim that so far SDL has analysed the deon-
tic modalities which corresponded to our weak modalities �, ♦ wrongly
treating them as O, P. It is for this reason that the so-called paradoxes
of deontic logic have arisen.

Meanwhile, modalities �, ♦ are just a step towards the real deontic
modalities O, P. Therefore, in the logic we shall develop, we will con-
sider these two types of modalities although, ultimately, our logic DR is
a logic of sentences built by means of the obligation operator O and the
permission operator P.

3. Language and semantics

In this section, we will define the language in which we will develop
our deontic logic. This will be a richer language as we want to develop
a modal logic for two types of modality. Furthermore, we will also in-
troduce and portray a function of formula demodalization and introduce
the concept of a deontic relationship. Thanks to them we will be able to



346 Tomasz Jarmużek, Mateusz Klonowski

provide the basic semantic concepts for the logic DR and for the modal
logic that employs them.

3.1. Language

Let us now define two sets of formulas. They will enable us to examine
the relations between the two types of modality we mentioned. The
smallest of the sets is a set on which we will ultimately define our DR
logic.

The most general of the sets of formulas contains expressions com-
posed of: propositional letters p1, p2, p3, . . . , classical connectives ¬, ∧,
∨, →, ↔, deontic connectives (or: deontic operators, deontic modalities)
�, ♦, O, P and brackets ), (. A set of propositional letters is denoted by
Var. A set of formulas is defined in the standard way.

Definition 3.1. A set of formulas For
� (resp. For) is the smallest set

X such that:

• Var ⊆ X ;
• if A, B ∈ X and ∗ ∈ {∧, ∨, →, ↔}, then (A ∗ B) ∈ X ;
• if A ∈ X and ∗ ∈ {�,♦, O, P, ¬} (resp. ∗ ∈ {O, P, ¬}), then ∗ A ∈ X .

In the cases where this does not lead to ambiguities, we will omit
external brackets for ease of reading along with internal ones, taking
account of the strength of binding of Boolean and modal connectives.
Finally, we will use p, q, r etc. rather than p1, p2, p3 etc.

Let us note that a subset of each of the distinguished sets is a set F

of formulas of Classical Propositional Logic (conditions 1–2 and 3 with
negation only). Obviously we have F ⊂ For ⊂ For

�.

3.2. Demodalization

Let us now prepare for the technical representation of the fact that sen-
tences stand in a deontic relationship or that they are deontically related.
To this end, we will introduce the concept of the demodalization of for-
mulas, this being the idea of stripping them of their modal properties.

We assume that relations between sentences modulo a given norma-
tive system do not pertain to their modal nature, but only to the factual
content they bear. Therefore, the relating relation of two formulas A, B,
in a deontic context, is a matter of their content irrespective of their
modal features. Therefore, we assume that sentences:
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(s6) Jan is a driver
(s7) It is deontically necessary/possible that Jan is a driver
(s8) It is obligatory/permitted that Jan is a driver

may equally be related to a sentence:

(s9) Jan is sober

under HC. This is because what is important is the positive relation
between the common, content-type component of (s6)–(s9), that is de
facto (s6) and (s9). Therefore, we assume  in accordance with the clas-
sical view  that the modalities do not change the content of sentences,
but only indicate their modus or manner of occurrence. The content of
a sentence is what remains after the modality gets removed.

We also expand our view to include the negation. We will naturally
also consider it as a modality.6 So let us consider a sentence:

(s10) It is not the case that Jan is a driver.

We assume that (s10) is also in a relation to (s9), as long as (s6) is in
relation to (s9), which we have admitted after all. For, even though
(s10) states that Jan is not a driver, in terms of content it is related to
the sobriety/insobriety of Jan. Both these issues undoubtedly lie within
HC’s scope, even if we assume that the relation of (s10) is negative in
nature, whereas the relation of (s6) is positive, in a sense that the latter
exposes Jan to sanctions while the former does not.

Let us note that the concepts of demodalization and deontic relation-
ship that we will introduce only tell us about potential relations between
sentences. In fact, these relations will follow from the premises adopted
by the inferences along with the ascribed modalities of obligation and
permission.

Although demodalization for the formulas from set For
� may be fur-

ther discussed, our ultimate aim here is the definition of logic DR on the
set of formulas For. Therefore ultimately, demodalization only pertains
to obligation and permission.

Generally, we shall understand demodalization as defined below.

Definition 3.2 (Demodalization of formula). Let d : For
� −→ F be a

function such that for any A ∈ For
� we put:

• if A ∈ Var, then d(A) = A;

6 Negation is treated in modal logic as a modality (see Chellas, 1980, p. 29).
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• if A := B ∗ C, for some ∗ ∈ {∧, ∨, →, ↔}, then d(A) = d(B) ∗ d(C);
• if A := ∗ B, for some ∗ ∈ {�,♦, O, P¬}, then d(A) = d(B).7

A demodalization of formula A is formula d(A).

A demodalization of a given formula is its modality-free and negation-
free aspect that takes account of its structure and content. It therefore
contains just propositional letters and Boolean connectives and so in
practice represents a simple or complex sentence stating something about
the world. Notice that demodalization is an idempotent operator.

3.3. Semantics

The semantics we offer for our DR logic is an extension of possible worlds
semantics with a family of relating relations indexed by possible worlds,
introduced in Section 2. Of course, it shall take account of the entire
set of formulas For

�, with all modalities that occur in formulas from the
set For

�. But the crucial fragment will specify the logic DR that is of
interest here.

3.3.1. Deontic relationship

As we have seen, an important concept in our philosophical analysis is
that of a deontic relationship, which establishes whether a given sentence
is or is not neutral. In formal terms, the deontic relationship shall be
specified in the following way:

Definition 3.3 (Deontic relationship). Let 〈W, Q, v, {Rw}w∈W 〉 be a
model and w ∈ W . Formula A is deontically related in w (for short:
rw(A)) iff the following conditions hold:

1. if A ∈ Var, then ∀u∈W ∃B∈For�
(Ru(A, d(B)) or Ru(d(B), A))

2. if A := B ∗ C, for some ∗ ∈ {∧, ∨, →, ↔}, then Rw(d(B), d(C))
3. if A := ∗ B, for some ∗ ∈ {�,♦, O, P, ¬}, then rw(d(B)).

The property of being deontically related means that in world w a
given sentence  simple or complex  stands in a relation to the nor-
mative system from which we predicate obligation or permission. We
will cover all the cases present in the above definition in turn. Let us,
however, start from the fact that although the deontic relationship is

7 Demodalization is similar to erasure transformation defined for example in
(Chellas, 1980, pp. 22–23), except for case of demodalization of negation that is also
a modality (see also Jarmużek and Malinowski, 2019b).
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defined on all formulas, ultimately it refers to sentences without modali-
ties  they are demodalized by function d, provided they do not contain
any modalities at all. The deontic modalities are qualifications we only
ascribe to such sentences.

For the sentences featuring a structure of propositional letters A ∈
Var, we assume that rw(A) occurs when this sentence in each deontically
possible world is related to a demodalised sentence or a demodalised sen-
tence is related to it. In other words, a simple sentence does not have to
be related to another, distinct sentence in order to be considered suitable
for deontic qualifications. As an example, let us consider a sentence:

(s11) Jan drives a car.

Sentence (s11) is always in a relation to HC. Due to normative system
HC, this sentence always stands in relation with something, because it
constitutes one of the central reference points of the deontic qualifications
in HC. Let us also notice that if a propositional letter is related in some
world it is related in any world. By definition 3.3, therefore, we have the
following fact.

Fact 3.4. Let 〈W, Q, v, {Rw}w∈W 〉 be a model and A ∈ Var. Then

rw(A), for some w ∈ W , iff ru(A), for any u ∈ W .

Another case is the case of complex sentences containing at least one
binary connective. Then we have: rw(A) iff Rw(d(B), d(C)), if A :=
B ∗ C, for some ∗ ∈ {∧, ∨, →, ↔}. Therefore, a sentence that consists of
two sentences combined by a Boolean connective is deontically related iff,
following demodalization, these two sentences stand in a deontic relation.
So, for example, the sentence:

(s12) Jan drives a car and Jan is intoxicated

is deontically related by virtue of HC since it relates (s11) with the
sentence:

(s13) Jan is intoxicated.

The sentence:

(s14) If Jan drives a car, then Jan has two daughters

is not deontically related by virtue of HC, as HC does not relate (s11)
with the sentence:

(s15) Jan has two daughters.
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Notice that if a formula A∗B with a Boolean connective ∗ as a main
connective is deontically related, then any other formula A ⋆ B with any
Boolean connective ⋆ as a main connective is deontically related.

When it comes, in turn, to sentences with negation, we assume that
rw(¬A) iff rw(d(¬A)) iff rw(d(A)) meaning that a negated sentence is
deontically related by virtue of a given normative system iff if the sen-
tence with no negation and no modalities is deontically related. So,
for instance, sentence (s11) is deontically related by virtue of normative
system HC in world w exactly when its negation is deontically related
by virtue of this system, i.e. the sentence:

(s16) Jan is not a driver.

Of course, as we will see later, it does not mean either that both these
sentences are obligatory or that they are permitted. But both remain in
a relation to HC: they are deontically related according to it.

The last of the cases is the case of a sentence preceded by a modality.
Obviously, the property of the deontic relationship rw(A) iff rw(d(A)), if
A := ∗ B, for some ∗ ∈ {�,♦, O, P}, forces the modalities to be removed
as the deontic relations cover sentences without modal qualifications.
Justification for this was given in Section 3.2 devoted to the function of
demodalization.

As a sort of metalanguage denotation, we adopt a tilde operator.
It shall mean a metalanguage negation which acts classically. So, for
instance, expressions rw(A) and ∼ ∼ rw(A) are equivalent, while ∼ rw(A)
contradicts them.

Let us remark that in our approach the notion of a relationship is
understood in a slightly different way than in mainstream relevance logic
(see Read, 2012, pp. 114–130). Our notion is to some extent close to the
idea of a meaning relationship, since sentences stand in some of relation
in virtue of their content from the point of view of a given normative
system. This raises the important question of whether there are any
connections between our approach and approaches presented in, for ex-
ample (Lokhorst, 2006, 2008; Stelzner, 1992; Cheng and Tagawa, 2002).
It is an interesting issue but it is not one that we will address in this
article. At least three differences, however, should be emphasized. First,
our approach is different, since we start with a semantic investigation
and claim that a deontic relationship is a semantic one. Second, we
try to introduce the idea of a sentence being related to a normative
system directly by means of a relating relation. Third, we do not want
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to explore a relevance-logic concept of entailment but rather focus on
deontic relations between sentences.

3.3.2. Truth conditions

Let us now go to the definition of the truth conditions for sentences
constructed by considered logical connectives. These conditions shall as-
sign a different meaning to the formulas constructed using quasi-deontic
modalities �,♦, and strictly-deontic modalities O, P.

Definition 3.5 (Truth in a model). Let M = 〈W, Q, v, {Rw}w∈W 〉 be
a model and w ∈ W . For propositional letters and classical connectives
we put standart conditions, while for modalities as follows:

M, w |= �A ⇐⇒ ∀u∈W (wQu ⇒ M, u |= A),

M, w |= ♦A ⇐⇒ ∃u∈W (wQu & M, u |= A),

M, w |= OA ⇐⇒ ∀u∈W (wQu ⇒ M, u |= A & ru(A)),

M, w |= PA ⇐⇒ ∃u∈W (wQu & (M, u |= A or ∼ ru(A))).

For any X ⊆ For
�, in the case ∀A∈X M, w |= A, we shall write

M, w |= X . Moreover, for any A ∈ For
�, in a standard way, X |=� A iff

for any M and w ∈ W : if M, w |= X then M, w |= A. Having narrowed
down the set of formulas, in accordance with the observation For ⊂ For

�,
we shall obtain various relations of consequence. The relation defined
on set ℘(For) × For, we shall denote as |=. The logic |= of strict deontic
modalities O and P we shall name DR, while by DR� we shall specify
the multimodal logic |=�, of strictly-deontic modalities O, P and quasi-
deontic modalities � and ♦.

Under the observations that F ⊂ For ⊂ For
� and definition 3.5 of

truth in a model the following relation occurs: |= ⊂ |=�. What is more,
our logics are closed under substitution. Therefore, DR� also includes
laws of DR, but expressed in a richer language. Similarly DR and DR�

include all formulas of For and For
� respectively which are instances of

laws of Classical Propositional Logic.

4. Paradoxes of deontic logic

In this section, we will take a closer look at some paradoxes of deontic
logic. We will explain why these formulas should not be tautologies
and we will prove that they indeed are not tautologies of DR. When
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analysing various paradoxes, to better illustrate the selected problems,
we will again refer to HC.

The paradoxes form a group of formulas which are often cited as prob-
lematic by various experts (see, e.g., Carmo and Jones, 2002, pp. 268–
277; Hilpinen and McNamara, 2013, pp. 58–97; Hilpinen, 2001, pp. 163–
173; Wright, 1980, pp. 415–418). We skip, however, the famous riddle of
Chisholm, other paradoxes showing problems of representation of condi-
tional obligations and paradoxes concerning situations where obligations
conflict. These issues require a separate study. We also leave aside the
paradoxes that would require us to extend our language with new con-
nectives (e.g. epistemic ones).

In addition to the standard paradoxes discussed in the literature, we
will also present several problematic formulas which are not tautologies
of DR, even though they are laws of SDL. It is far from certain that such
formulas should be tautologies of the smallest deontic logic  we believe
they should not be. Nevertheless, we will show how to extend DR in
order to demonstrate their tautological nature under the approach we
propose. Furthermore, we will also examine Gödel’s (necessitation) rule
for O.

4.1. Ross’s paradox

Let us begin with the Ross’s paradox (see, e.g., Ross, 1941; Carmo
and Jones, 2002, pp. 268–269; Hilpinen and McNamara, 2013, pp. 63;
Hilpinen, 2001, pp. 165–166), where we have a formula of the following
form:

OA → O(A ∨ B). (RP)

In order to see the problem, consider the following instance of (RP): if
it is obligatory that the driver stops at a red light, then it is obligatory
either that a driver stops at a red light or doesn’t stop at a stop sign.

In other words (RP) permits us to conclude that the disjunction
of what is obligatory by a given system is obligatory by this system.
But that one of disjuncts of an disjunction is deontically related does
not warrant that the disjunction itself be deontically related. For this
reason, (RP) should not be a tautology of DR.

Let us consider a model M defined as follows: W = {w1}, Q =
{〈w1, w1〉}, Rw1

= {〈p, p〉} and for every A ∈ Var we put:

v(A) =

{

{w1}, if A = p

∅, if A 6= p.
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Hence M, w1 |= p. We have Rw1
(p, p), so ∀w∈W ∃C∈For(Rw(p, d(C)) or

Rw(d(C), p)), and hence rw1
(p). Thus ∀w∈W (Q(w1, w) =⇒ (M, w |=

p and rw(p))), so M, w1 |= Op. We also have ∼ Rw1
(p, q), so ∼ rw1

(p∨q).
Thus ∃w∈W (Q(w1, w) and (M, w 6|= p ∨ q or ∼ rw(p ∨ q))), so M, w1 6|=
O(p ∨ q). Therefore, (RP) is not a tautology of DR.

4.2. Free choice permissions paradox

By the free choice permissions paradox (see, e.g., Carmo and Jones,
2002, p. 269; Hilpinen and McNamara, 2013, pp. 61–63; Hilpinen, 2001,
pp. 166–167) we mean a formula of the following form:

P(A ∨ B) → PA ∧ PB. (FCPP)

In this case we consider a formula that is not a law of SDL.

At first glance, formula (FCPP) seems to state something that we
might intuitively agree on. For example, we are aware that an emergency
vehicle is permitted to violate a road traffic regulation. In particular,
it is permitted for an ambulance with the siren on to break a red light
or to not stop at a stop sign. This means that an ambulance with the
siren on can ignore both a red light and a stop sign. In this case, we
understand the permission as something more than a lack of prohibition.
This is because we are dealing here with something explicitly authorised
by a normative system. Such permissions obviously entail the lack of
prohibition. However, the lack of prohibition itself does not necessarily
mean something has been authorized. Let us therefore simply stay with
the assumption that what is not prohibited is permitted. Then, e.g. the
following disjunction is permitted: you will break a red light or drink
some water, because in some deontically possible world, in a deontic al-
ternative, this sentence is true or its disjuncts are not deontically related.
Despite this fact, it would be wrong to conclude that breaking a red light
is permitted  at least in the case of a regular road user  and drinking
water is permitted. Thus we see that when adopting a weaker sense of
permission, (FCPP) is not true.

Let us consider a model M defined as follows: W = {w1}, Q =
{〈w1, w1〉}, Rw1

= {〈p, p〉} and v(Var) = {∅}. We have ∼ Rw1
(p, q),

so ∼ rw1
(p ∨ q). Thus ∃w∈W (Q(w1, w) and (M, w |= p ∨ q or ∼ rw(p ∨

q))), so M, w1 |= P(p ∨ q). Moreover Rw1
(p, p), so ∀w∈W ∃C∈For(Rw

(p, C) or Rw(C, p)), and thus rw1
(p). So we have ∀w∈W (Q(w1, w) =⇒
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(M, w 6|= p and rw(p))), and thus M, w1 6|= Pp. Hence M, w1 6|= Pp ∧ Pq.
Therefore, (FCPP) is not a tautology of DR.

4.3. The Good Samaritan paradox

The Good Samaritan paradox (see, e.g., Prior, 1954; Carmo and Jones,
2002, p. 269; Hilpinen and McNamara, 2013, pp. 63–64), we call a for-
mula of the following form:

O(A ∧ B) → OB. (GSP)

Formula (GSP) according to (Hilpinen and McNamara, 2013, pp. 63–
64) would allow, for example, that if assistance should to be provided to
someone who has been robbed, then it is obligatory for this person to
be robbed. Here’s another example. Assume that someone is obliged to
drive in a built-up area where a speed limit of maximum 50km per hour
is in force. Therefore, the person is obliged to drive in a built-up area and
not faster than 50km per hour. But this implies the person was obliged
to drive not faster than 50km per hour. Obviously, the consequent of
this implication is not unconditionally true.

In the case of (GSP) the problem of how to understand the logical
connectives occurring within the scope of deontic operators is evident.
For SDL, we understand these connectives extensionally. In our exam-
ples, we can use conjunction both to express that the clauses are true
and that they are interrelated. More specifically, it allows us to state
that two situations only produce an obligatory state of affairs when an
appropriate interconnection is present.

The above examples show that conjunction can be used to describe a
complex situation in which not everything that takes place is obligatory,
but it only provides a context or background for what is obligatory.
Because of this (GSP) should not be a tautology of DR.

Let us consider model M defined as follows: W = {w1, w2}, Q =
{〈w1, w1〉, 〈w2, w2〉}, Rw1

= {〈p, q〉}, Rw2
= ∅ and for any A ∈ Var:

v(A) =

{

{w1}, if A ∈ {p, q}

∅, if A 6∈ {p, q}.

Hence M, w1 |= p and M, w1 |= q, so M, w1 |= p ∧ q. We have Rw1
(p, q),

so rw1
(p ∧ q). Thus ∀w∈W (Q(w1, w) =⇒ (M, w |= p ∧ q and rw(p ∧

q))), so M, w1 |= O(p ∧ q). Moreover ∃w∈W ∀C∈For(∼ Rw(q, d(C)) and
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∼ Rw(d(C), q)), thus ∼ rw1
(q). Hence ∃w∈W (Q(w1, w) and (M, w 6|=

q or ∼ rw(q))), so M, w1 6|= Oq. Thus, (GSP) is not a tautology of DR.

4.4. The paradoxes of derived obligations

From among the known problems for SDL, let us also consider the para-
doxes of derived obligations, which form deontic counterparts of the strict
implication paradoxes (see, e.g., Prior, 1958), meaning the formulas of
the following forms:

O¬A → O(A → B), (P1)

OB → O(A → B). (P2)

Formula (P1) states that:

the doing of what is forbidden commits us to the doing of anything
whatsoever. (Stealing, e.g.  supposing that to be forbidden  commits
us to committing adultery; and also of course, to not committing adul-
tery.) (Prior, 1954, p. 64)

Whereas (P2) states that:

if the omission of any act is not permitted, i.e. if the act is obligatory,
then we are ‘committed’ to it by any act whatsoever.

(Prior, 1954, p. 64)

Formulas (P1) and (P2) suggest one more thing, namely that what is
prohibited and what is obligatory are always parts of a more complex
conditional obligation. But this does not appear to be justified since it
rules out the existence of absolute prohibitions and obligations that are
not parts of any more complex obligations. For example in the case of
the Ten Commandments, we have the prohibition against killing without
any specification of sanctions that will result if we break it as well as an
unconditional obligation to respect our parents but not specification of
any conditions under which we have to have respect our parents.

We can therefore state that both (P1), and (P2) should not always
be true. On the other hand, it is worth analysing logics for which mod-
ifications of the given formulas would be tautologies. Such logics could
describe systems in which any content of a non-complex obligation or
prohibition would at the same time form a component of some complex
obligation or prohibition.

In order to demonstrate that (P1) is not a tautology of DR, let
us consider model M defined as follows: W = {w1}, Q = {〈w1, w1〉},
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Rw1
= {〈p, p〉} and v(Var) = {∅}. We have M, w1 6|= p, so M, w1 |= ¬p.

Moreover Rw1
(p, p), so ∀w∈W ∃C∈For(Rw(p, d(C)) or Rw(d(C), p)). Thus

rw1
(p), so rw1

(¬p). So ∀w∈W (Q(w1, w) =⇒ (M, w |= ¬p and rw(¬p))),
and hence M |= O¬p. We have ∼ Rw1

(p, q), so ∼ rw1
(p → q). Hence

∃w∈W (Q(w1, w) and (M, w 6|= p → q or ∼ rw(p → q))), so M, w1 6|=
O(p → q). Therefore, (P1) is not a tautology of DR.

In order to demonstrate that (P2) is not a tautology of DR let us
consider model M defined as follows: W = {w1}, Q = {〈w1, w1〉}, Rw1

=
{〈q, q〉} and for every A ∈ Var we put:

v(A) =

{

{w1}, if A = q

∅, if A 6= q.

Hence M, w1 |= q. We have Rw1
(q, q), so ∀w∈W ∃C∈For(Rw(q, d(C)) or

Rw(d(C), q)), thus rw1
(q). Hence ∀w∈W (Q(w1, w) =⇒ (M, w |= q and

rw(q))), so M |= Oq. Moreover ∼ Rw1
(p, q), so ∼ rw1

(p → q). Hence
∃w∈W (Q(w1, w) and (M, w 6|= p → q or ∼ rw(p → q))), so M, w1 6|=
O(p → q). Therefore, (P2) is not a tautology of DR.

4.5. Commutative, associative laws and distribution of O

In the case of DR, the following formulas are not tautologies:

O(A ∧ B) → O(B ∧ A) (4.1)

P(A ∧ B) → P(B ∧ A) (4.2)

O(A ∨ B) → O(B ∨ A) (4.3)

P(A ∨ B) → P(B ∨ A). (4.4)

Let us consider model M defined as follows: W = {w1}, Q =
{〈w1, w1〉}, Rw1

= {〈p, q〉} and v(Var) = {W}. We notice that the occur-
rence of relation Rw1

(p, q) does not have to entail Rw1
(q, p). Therefore,

rw1
(p ∧ q) and ∼ rw1

(q ∧ p). So (1) fails. Similarly we can falsify the rest
of the formulas.

There is, however, a valid question as to whether formulas of forms
(4.1)–(4.4) should be tautologies of the minimal deontic logic or, to put
it another way, whether the relating relation should be symmetrical in
a deontic context. The question is how to understand conjunction and
disjunction in the range of deontic operators. In the case of temporal
and causal relations, interchangeability is not desirable. For instance, it
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may be obligatory for Jan to graduate and find a job without it being
obligatory for Jan to find a job and graduate (a similar example could
be found for the permission operator).

However, if we treat conjunction in the scope of the deontic operators
only extensionally, DR will be too weak. We therefore propose extensions
to take account of the symmetry.

In the case of DR the following formulas are also not tautologies:

O(A ∧ (B ∧ C)) ↔ O((A ∧ B) ∧ C), (4.5)

P(A ∧ (B ∧ C)) ↔ P((A ∧ B) ∧ B), (4.6)

O(A ∨ (B ∨ C)) ↔ O((A ∨ B) ∨ C), (4.7)

P(A ∨ (B ∨ C)) ↔ P((A ∨ B) ∨ B). (4.8)

Let us consider model M defined as follows: W = {w1}, Q = {〈w1, w1〉},
Rw1

= {〈p, q ∧ r〉} and v(Var) = {W}. We notice that the occurrence
of relation Rw1

(p, q ∧ r) does not have to entail Rw1
(p ∧ q, r). Therefore

rw1
(p, q ∧ r) and ∼ rw1

(p ∧ q, r). So (5) fails. Similarly we can falsify the
rest of formulas.

Here is another interesting question: should formulas of forms (4.5)–
(4.8) be tautologies of the minimal deontic logic  i.e., should the de-
ontic relation be associative in some sense? Again, the question is how
we understand conjunction and disjunction in the range of the deontic
operators. For instance, one could believe that it is permitted for Jan
to be a driver, and then to be intoxicated, but sober up; while it is not
permitted for Jan to be a driver and to be intoxicated, and then sober up.
So, sentences under the deontic operators may be as well understood as
standing in temporal-casual relations. Furthermore, a sentence (A ∧ B)
within a sentence ((A ∧ B) ∧ C) in the range of a deontic operator may
state something beyond the extensional conjunction of A and B, as there
must have been a reason for the brackets being such as they are. The
issues waits for further philosophical discussion.

One again, if we treat conjunction and disjunction under the deontic
operators only extensionally, then DR is too weak. We will late propose
an extension which will be sensitive to the property of associativity, and
thus formulas (4.5)–(4.8) shall become logical laws.

In addition, in the case of DR, axiom (K) for operator O is not a
tautology:

O(A → B) → (OA → OB).
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Initially, we find it reasonable as the fact that sentence A and sentence
A → B are deontically related to a normative system does not have to
imply that sentence B alone is such.

Let us consider a model M defined as follows: W = {w1, w2}, Q =
{〈w1, w1〉, 〈w2, w1〉}, Rw1

= {〈p, q〉}, Rw2
= {〈p, p〉} and v(Var) = {W}.

Then M, w1 |= p and M, w1 |= q. Moreover, Rw1
(p, q), so rw1

(p →
q). Thus we have ∀w∈W (Q(w1, w) =⇒ (M, w |= p → q and rw(p →
q))). Thus M, w1 |= O(p → q). Moreover, ∀w∈W ∃C∈For(Rw(p, C) or
Rw(C, p)), so rw2

(p). Therefore we have ∀w∈W (Q(w1, w) =⇒ (M, w |=
p and rw(p))). Consequently, M, w1 |= Op. Let us note that ∃w∈W ∀C∈For

(∼ Rw(q, C) and ∼ Rw(C, q)). Thus ∼ rw2
(q). Therefore we have ∃w∈W

(Q(w1, w) and (M, w 6|= q or ∼ rw(q))). So M, w1 6|= Oq. Therefore
M, w1 6|= O(p → q) → (Op → Oq).

We see that the occurrence of rw1
(p → q) and rw1

(p) does not have
to guarantee rw1

(q). But if someone considers formula of the form of
(K) intuitive in the deontic contexts, he should consider an appropriate
extension of DR. The details of such an extension are provided in one
of the further sections.

4.6. Gödel’s rule

Gödel’s rule also does not hold for O. For instance, |=DR p ∨ ¬p, but
6|=DR O(p ∨ ¬p). Obviously, in each model M |= p ∨ ¬p, but for some
M 6|= O(p ∨ ¬p).

Let us consider model M defined as follows: W = {w1}, Q =
{〈w1, w1〉}, Rw1

= ∅ and v(Var) = {∅}. Consequently, ∼ Rw1
(p, ¬p)

and ∼ rw1
(p ∨ ¬p). Therefore we have ∃w∈W (Q(w1, w) and (M, w 6|=

p ∨ ¬p or ∼ rw(p ∨ ¬p))). Thus M, w1 6|= O(p ∨ ¬p), so 6|= O(p ∨ ¬p).

4.7. Summary of paradoxes and puzzles

The above considerations show that DR is appropriately weak and does
not allow for the undesirable laws. It is a natural starting point as
the logic determined for all classes of models in the above-defined sense.
Therefore, we find DR as the basic deontic logic of strictly-deontic modal-
ities. For the analysis of stronger logical relations between deontic sen-
tences, we may use its extensions, the details of which we will cover
later.



On logic of strictly-deontic modalities 359

5. Some laws of logic DR and DR�

Logic DR� contains modalities �, ♦, O, P. In our article we consider
modalities �, ♦ in order to show that they are only quasi-deontic modal-
ities, incorrectly interpreted as proper deontic modalities, and to present
some of their relations with obligations and permissions. Ultimately, a
deontic logic should only contain obligation and permission operators,
this logic is the logic DR, which is a sublogic of DR�.

5.1. Laws of DR�

Let us go to the issue of laws of our logics. Quasi-deontic modalities
� and ♦ behave as in the modal logic D. So Gödel’s rule holds: if
|= A, then |= �A. In addition Aristotelian laws hold: �A ↔ ¬♦¬A,
♦A ↔ ¬�¬A, axiom (K): �(A → B) → (�A → �B), and of course
axiom (D): �A → ♦A. Quasi-deontic modalities are therefore standard
deontic modalities, and their logic is SDL.

Let us now take a look at some bridging laws between the quasi-
deontic modalities �, ♦ and the strictly-deontic modalities O and P. It
is obvious that what is obligatory is also deontically necessary in DR�:

OA → �A

Let M = 〈W, Q, v, {Rw}w∈W 〉 be a model and w ∈ W . Assume that
M, w |= OA. Let u ∈ W and Q(w, u). Then M, u |= A. Therefore
∀u∈W (Q(w, u) =⇒ M, u |= A), that is M, w |= �A. However in the logic
DR� the opposite dependence does not occur, that is: 6|= �A → OA.
For, what is deontically necessary, occurring in each deontic alternative,
does not need to be obligatory itself; it may be simply an inevitable
result of what is obligatory.

But there is a dependence saying that what is deontically possible is
also permitted:

♦A → PA (5.1)

Let M = 〈W, Q, v, {Rw}w∈W 〉 be a model and w ∈ W . Assume that
M, w |= ♦A. Therefore for some u ∈ W , Q(w, u) and M, u |= A.
And thus M, u |= A or ∼ ru(A). Therefore ∃u∈W (Q(w, u) and (M, u |=
A or ∼ ru(A))). Thus M, w |= PA. However, in the logic DR� the
opposite dependence does not occur that is: 6|= PA → ♦A. For, what
is permitted does not have to be deontically possible; it may be simply
deontically irrelevant, even if for instance logically contrary.
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From the previous section, we know that for the modality O axiom
(K) does not hold. Instead we have weaker and more reasonable forms
of this axiom based on deontic necessity collaborating with obligation.

O(A → B) → (OA → �B)

Let M = 〈W, Q, v, {Rw}w∈W 〉 be a model and w ∈ W . Assume that
M, w |= O(A → B) and M, w |= OA. Therefore M, w |= OA and
M, w |= O(A → B). Let u ∈ W and Q(w, u). Then M, u |= A and
M, u |= A → B. Thus M, u |= B. Therefore ∀u∈W (Q(w, u) =⇒ M, u |=
B), that is M, w |= �B.

�(A → B) → (OA → �B) (5.2)

Let M = 〈W, Q, v, {Rw}w∈W 〉 be a model and w ∈ W . Assume that
M, w |= �(A → B) and M, w |= OA. Therefore M, w |= OA and
M, w |= �(A → B). Let u ∈ W and Q(w, u). Then under M, u |= A
and M, u |= A → B. Thus M, u |= B. Therefore ∀u∈W (Q(w, u) =⇒
M, u |= B), that is M, w |= �B.

Moreover, we have the following interesting law:

(OA ∧ ♦B) → ♦(A ∧ B) (5.3)

Let M = 〈W, Q, v, {Rw}w∈W 〉 be a model and w ∈ W . Assume that
M, w |= OA and M, w |= ♦B. Therefore M, u |= A, for some u ∈ W
such that Q(w, u) and M, u |= B. Then M, u |= A ∧ B. Thus M, w |=
♦(A ∧ B). As a consequence of laws (5.1) and (5.3) we have:

(OA ∧ ♦B) → P(A ∧ B). (5.4)

Law (5.3) and (5.4) state that an obligatory sentence and deontically
possible sentence are jointly possible and jointly permitted. This way
we can combine sentences under the modalities P and ♦.

5.2. Laws of DR

We now consider the logic DR, which means that we will be restricted to
the modalities O and P. In the subsection on the paradoxes of deontic
logic, we indicated many non-intuitive or somewhat problematic formu-
las along with Gödel’s rule that are not satisfied in DR. So let us now
cover some important laws which make our logic a good starting point
for the development of deontic logic.
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DR is weaker than D, but it is incomparable with normal modal logic
K. We already know that for O, neither Gödel’s rule holds, nor axiom
(K). Nevertheless, under the definition of truth in a model 3.5 in logic
DR Aristotelian laws hold: OA ↔ ¬P¬A, PA ↔ ¬O¬A. Of course, for
this logic we have an important for deontic logic axiom (D) for strictly-
deontic operators: OA → PA, due to a serial relation in the models. We
also have a kind of limited rule of monotonicity (RM). We can call it the
cautious rule of monotonicity.

For any formula A of DR we introduce a function s of structural
similarity that preserves brackets, but removes the main logical connec-
tives in formula d(A). By definition 3.2, formula d(A) does not consist
of negation and any modalities. The function s removes the other main
connectives.

Definition 5.1 (Structural similarity). Let s : For −→ Var ∪ (F × F) be
a function such that for any A ∈ For we put:

• if A ∈ Var, then s(A) = A,
• if A := B ∗ C, for some ∗ ∈ {∧, ∨, →, ↔}, then s(A) = 〈d(B), d(C)〉,
• if A := ∗ B, for some ∗ ∈ {O, P, ¬}, then s(A) = s(d(B)).

Formulas A and B are structurally similar iff s(A) = s(B).

For example, s(O(p ∨ q)) = s(O¬(¬p ∧ ¬q)), while s(((p ∨ q) ∨ r)) 6=
s((p ∨ (q ∨ r))), although both pairs of sentences are logically equivalent
in DR, as can be easily checked.

Fact 5.2. Let A, B ∈ For, 〈W, Q, v, {Rw}w∈W 〉 be a model and w ∈ W .

Then if s(A) = s(B) then (rw(A) iff rw(B)).

Proof. Let us take two formulas A, B, model 〈W, Q, v, {Rw}w∈W 〉,
w ∈ W and assume that s(A) = s(B).

Expressions s(A), s(B): either (a) can be propositional letters or (b)
can have form s(A) = 〈d(A1), d(A2)〉 and s(B) = 〈d(B1), d(B2)〉, for
some formulas A1, A2, B1, B2, by the definition of structural similarity
5.1. When (a) holds the thesis is obviously satisfied. In turn, if (b) holds,
then d(A1) = d(B1) and d(A2) = d(B2), and thus also rw(A) iff rw(B),
by the definition of a deontic relationship 3.3, point (2). ⊣

So by fact 5.2 and definition 3.5, we have the limited rule of mono-
tonicity:

If s(A) = s(B), then
|=DR A → B

|=DR OA → OB
(O-CRM)
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By PA ↔ ¬O¬A, some classical inferences, and (O-CRM), we get a
version for P:

If s(A) = s(B), then
|=DR A → B

|=DR PA → PB
(P-CRM)

These formulas with one of the rules seem to be good candidates for an
axiomatization of DR. As we have seen, DR is an example of a weak
modal logic, one that prevents the generation of puzzles and paradoxes,
but is at the same time strong enough to permit desirable inferences in
deontic logics. That is why it is a better initial, minimal deontic logic
than SDL.

5.3. Extensions of logic DR

Logic DR is a starting point for further extensions of deontic logic. We
can restrict the models of DR using various conditions in order to accom-
modate new laws that we find important. Let us introduce some of the
many possible extensions on offer. We leave the problem of dependence
of conditions for further examination, since subsets of the conditions
together with the basic notions can be logically dependent.

5.3.1. Distribution of O

Even though we do not believe that axiom (K) should hold someone
could argue the opposite. Therefore, to validate it, we might consider a
class of models 〈W, Q, v, {Rw}w∈W 〉, where the following condition is to
be satisfied for any A, B ∈ For and w ∈ W :

(rw(A → B) and rw(A)) =⇒ rw(B), (Dis)

Application of this condition guaranties the tautological nature of for-
mulas having (K)’s form. Let M = 〈W, Q, v, {Rw}w∈W 〉 be a model
that satisfies (Dis) and w ∈ W . Assume that M, w |= O(A → B) and
M, w |= OA. Then ∀u∈W (Q(w, u) =⇒ (M, u |= A → B and ru(A →
B))), and ∀u∈W (Q(w, u) =⇒ (M, u |= A and ru(A))). Let us take any
t ∈ W and assume that Q(w, t). Then M, t |= A → B, rt(A → B),
M, t |= A and rt(A). And if M, t |= A → B and M, t |= B, so M, t |= B.
Furthermore, if rt(A → B) and rt(A), so rt(B). Therefore M, w |= OB.
If (Dis) is satisfied, then we also get O(A ↔ B) → (OA → OB) and
O(A ∧ B) → (OA → OB) as tautologies, by definition 3.3.
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5.3.2. Aggregation laws for O

If we want to have the laws of aggregation as tautologies, then we may
consider a class of models 〈W, Q, v, {Rw}w∈W 〉 such that for any A, B ∈
For and w ∈ W :

(rw(A) and rw(B)) =⇒ rw(A ∧ B) (Ag1)

rw(A) =⇒ rw(A ∨ B) (Ag2)

rw(B) =⇒ rw(A ∨ B). (Ag3)

Again, by the definition of a deontic relationship 3.3, in the class of
models such that (Ag3) is satisfied formula OB → O(A → B) is also a
tautology.

5.3.3. Commutative laws for O and P

If we would like to have the commutative laws as tautologies, we can
assume a class of models 〈W, Q, v, {Rw}w∈W 〉 such that for any A, B ∈
For, w ∈ W and ∗ ∈ {∧, ∨}:

rw(A ∗ B) =⇒ rw(B ∗ A). (Com∗)

Once again by the definition of a deontic relationship 3.3, if (Com∗) is
satisfied we also get O(A ↔ B) → O(B ↔ A) and P(A ↔ B) → P(B ↔
A) as tautologies.

By the considerations that we presented in context of the Good
Samaritan paradox, it might be said that the main constituents of com-
plex formulas in the scope of deontic modalities can be understood as if
they were in temporal or causal relations. If we do not want to accept
such an interpretation, we can assume the symmetry of the relevant
deontic relations.

5.3.4. Associative laws for O and P

If we want to have the associative laws as deontic laws, we may take
a class of models 〈W, Q, v, {Rw}w∈W 〉 such that for any A, B, C ∈ For,
w ∈ W and ∗ ∈ {∧, ∨}:

rw(A ∗ (B ∗ C)) =⇒ rw((A ∗ B) ∗ C) (Asc1∗)

rw((A ∗ B) ∗ C) =⇒ rw(A ∗ (B ∗ C)) (Asc2∗)

The conditions guarantee that formulas like P(A → (B ∧ C)) → P((A ∧
B) → C) become tautologies, by definition 3.3.
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6. Tableau systems of quasi- and strictly-deontic modalities

We shall now outline the tableau approach to our logics. We will be gov-
erned here by a strategy adopted in (Jarmużek, 2014) which introduced
a formalized tableau theory derived from some modal logics. Let us,
however, not focus too much on the formal aspects but stress instead the
crucial points which determine the completeness of the tableau approach
related to the semantically designated consequence relation.

For this purpose, we shall need a new language: a language of tableau
proofs. As we know, a tableau proof for a logic determined by a possible
world semantics is usually carried out in a set of formulas with labels
that are natural numbers. We would like to call them indexes. However,
in our context we must extend the tableau language even more. Let N

be the set of natural numbers. A set of tableau expressions Ex is a union
of the following sets:

• {irj : i, j ∈ N},
• For × N,
• For × {i◦ : i ∈ N, ◦ ∈ {+, −}},
• {(A, B) : A, B ∈ For} × {i◦ : i ∈ N, ◦ ∈ {−, +}}.

Where possible, we will omit the angle brackets and so, for example,
instead of 〈A, i〉, we will just write A, i etc. Let us now explain what the
particular expressions are intended to encode. Expressions of the form
irj naturally encode in the tableau language an accessibility relation
between worlds i and j. The expression A, i traditionally encodes that
a formula A is true at a world denoted by i.

The remaining expressions are novel. They do not represent logical
values of formulas at worlds, but generally just state that a formula in a
given world i is (i+) or is not (i−) deontically related. So, for example,
in the third case we have A, i+ (resp. A, i−) which means A is (resp. is
not) deontically related in deontic alternative i. Due to the complexity
of formulas in our proofs we assume also the last case, so expressions
like (A, B), i+ (resp. (A, B), i−) which means that A and B are (resp.
are not) related by relating relation in deontic alternative i. The last
two cases are the result of the definition of a deontic relationship 3.3 we
formerly introduced and discussed.

Now, all tableau proofs are carried out in language Ex. A tableau
inconsistent set of expressions (that closes a given branch) comprises at
least one of the following:
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1. at least one of the pairs:
• A, i and ¬A, i
• A, i+ and A, i−

• (A, B), i+ and (A, B), i−, for some A, B ∈ For and i ∈ N

2. A, i+ and A, j−, for some A ∈ Var and i, j ∈ N.

The justification for the last point is by fact 3.4, since the relevance of
propositional letters is inherited in all deontic worlds in a model.

Finally, we say that a set of tableau expressions is tableau consistent
iff it is not a tableau inconsistent set.

6.1. Tableau rules for DR
�

and DR

We propose a set of tableau rules for DR� (and thus also for DR).
Let us go to the tableau rules. For the formulas with main Boolean
connectives, we shall assume the standard tableau rules. We do not need
to list or elaborate on them as they have been thoroughly examined in
many papers (for example here Goré, 1999; Jarmużek, 2014; Priest, 2008;
Pietruszczak and Jarmużek, 2018).

The quasi-deontic modalities � and ♦ behave like modalities in modal
logic D. So we assume the following standard tableau rules for them:

(R¬�)
¬�A, i

♦¬A, i
(R¬♦)

¬♦A, i

�¬A, i
(R�)

�A, i
irj

A, j

(R♦)

♦A, i

irj
A, j

where rule (R♦) is obviously limited by the clause that index j is new
on the branch.

Since accessibility relation Q in a model is supposed to be serial, we
assume also a rule:

(Rser)
irj

where i previously appeared on the branch and j is new.

Now we introduce tableau rules for the strictly-deontic modalities:
O, P. The strictly-deontic modalities include an aspect of a deontic
relationship. We propose the following tableau rules:

(R¬O)
¬OA, i

P¬A, i
(R¬P)

¬PA, i

O¬A, i
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Rules (R¬O) and (R¬P) are self-explanatory, since strictly-deontic
modalities are interdefiniable in terms of negation. So we will concentrate
on the introduction and explanation of the rules for O and P without
negation.

(RO)

OA, i
irj

A, j
A, j+

(RP)
PA, i

irj irj
A, j A, j−

Rule (RP) is obviously limited by the clause that index j is new on the
branch. Rule (RO) expresses the semantic idea that what is obligatory is
not only true at any accessible deontic alternative, but is also deontically
related. By contrast rule (RP) says that what is permitted at least at one
accessible deontic alternative is true or is not deontically related there.
So, an application of tableau rule (RP) generates two branches.

Now we present the rules that are responsible for a transformation
of expressions that encode information about deontic relationships in
deontic alternatives. We can say that taken together, they form some
kind of tableau calculus of being deontically related. For the main unary
connectives we have:

(R◦

∗)
∗A, i◦

A, i◦

where ∗ ∈ {¬,�,♦, P, O} and ◦ ∈ {+, −}. Tableau rule (R◦

∗) removes
external unary connectives (all kinds of modalities, including negation),
preserving simultaneously the fact that the proposition is (is not) in a
deontic relationship. Next for the main binary connectives we have the
rule:

(R◦

⋆)
A ⋆ B, i◦

(A, B), i◦

where ⋆ ∈ {∧, ∨, →, ↔} and ◦ ∈ {+, −}. Tableau rule (R◦

⋆) removes a
main binary connective ⋆ in a formula, since according to 3.3 and 3.2
the deontic relationship does not depend on a main connective, but on
whether its components are deontically related, after demodalization.

That is why, finally, we have a tableau rule that corresponds to the
demodalization of internal expressions. Let us assume that for any for-
mulas A and ∗B, where ∗ ∈ {¬,�,♦, P, O} formula A(∗B/B) is the
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result of replacement of all occurrences of formula ∗B in formula A by
formula B. Now, we can introduce the last basic tableau rule:

(R◦

rep∗)
(A, B), i◦

(A(∗C/C), B(∗C/C)), i◦

where ∗ ∈ {¬,�,♦, P, O} and ◦ ∈ {+, −}. Using tableau rule (R◦

rep∗) we
can ultimately remove all internal occurrences of modalities and negation
and reveal a pure relation (or lack of it) between formulas A and B
according to definition 3.3. Let us notice again that rules (R◦

∗), (R◦

⋆)
and (R◦

rep∗) do not transform the truth-value properties of expressions
in a model, but structures of expressions that are related in given worlds
which are independent of logical values at these worlds.

In the subsequent sections of the paper we will extend the set of
tableau rules and prove metalogical properties of DR�. Of course,
modalities ♦,� are identical to the modalities of SDL. But the collec-
tion of the tableau rules includes rules for DR, so we have a quite general
starting point, including our strictly-deontic modalities P, O, however.
Consequently, we adopt the following tableau rules:

1. tableau rules for Boolean connectives,
2. tableau rules that are intended for DR: (Rser) (because we still need

a serial accessibility relation), (R¬O), (R¬P), (RO), (RP), (R◦

∗), (R◦

⋆),
(R◦

rep∗),
3. tableau rules for ♦,�: (R¬♦), (R¬�), (R♦), (R�)  they are intended

for extension of DR to DR�.

The set of all of these tableau rules is denoted by TR
� (its subset is

the set of tableau rules for DR  the rules from points 1 and 2, which
obviously is a keynote of our paper  and can be denoted as TR).

6.2. Tableau rules for extensions of DR� and DR

Here we propose some tableau rules for extensions of DR� and DR given
in Section 5.3. If we opt for axiom (K), we assume the rule:

(RDis)

(A, B), i+

A, i+

B, i+

Tableau rule (RDis) enables to expresses that the second component of
some formula is deontically related, if this formula and its first compo-
nent also have this property.
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In order to prove the aggregation laws we can adopt the following
rules:

(RAg
1
)

A, i+

B, i+

(A, B), i+

(RAg
2
)

A, i+

(A, B), i+
(RAg

3
)

B, i+

(A, B), i+

In case of rule (RAg
2
) and (RAg

3
) formula B and A respectively, previ-

ously appeared on the branch as subformulas. Such a restriction allows
us to make some tableau proofs shorter, since we can use formulas which
have already been introduced in the proof.

The rule for the commutativity law is of the following form:

(RCom)
(A, B), i+

(B, A), i+

Using tableau rule (RCom) we can easily express using the tableau ap-
proach, the symmetry of the deontic relationship, which obviously cor-
responds to the idea of commutativity.

Finally we have two rules for the associative laws:

(RAsc1∗)
(A, (B ∗ C)), i+

((A ∗ B), C), i+
(RAsc2∗)

((A ∗ B), C), i+

(A, (B ∗ C)), i+

where ∗ ∈ {∧, ∨}. Tableau rules (RAsc1∗) and (RAsc2∗) enable us to re-
arrange brackets in case of formulas build by binary operators according
to the associative laws.

6.3. Completeness result

For simplicity’s sake, let us call the expressions in a tableau rule numer-
ator input, while those in denominator output. Some rules, e.g. (RP) and
some of those for the Boolean connectives (like negation of conjunction
etc.) may have more than one output and they generate more than one
branch.

Let us now introduce two concepts which are important for the
tableau issues.

Definition 6.1 (Set of indexes). Let X ⊆ Ex. By function Ind : X −→
℘(N) we mean a mapping satisfying condition, for all i, j ∈ N, A, B ∈ For

and ◦ ∈ {−, +}:

• if X = {irj} then Ind(X) = {i, j},
• if X = {〈A, i〉} then Ind(X) = {i},
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• if X = {〈A, i◦〉} then Ind(X) = {i},
• if X = {〈(A, B), i◦〉} then Ind(X) = {i},
• Ind(X) =

⋃

{Ind(y) : y ∈ X}.

Function Ind collects indexes contained in expressions from a given subset
of Ex.

Now, we can extend in a certain sense the concept of truth in a model
from the formulas to all expressions from Ex.

Definition 6.2 (Model suitable to a set of expressions). Let M =
〈W, Q, {Rw}w∈W , v〉 be a model and X ⊆ Ex. Model M is suitable to X
iff there exists a function f from the set of indexes contained in expres-
sions from X to W , i.e. f : Ind(X) −→ W such that, for any A, B ∈ For

and i, j ∈ N:

• if irj ∈ X then Q(f(i), f(j)),
• if 〈A, i〉 ∈ X then M, f(i) |= A,
• if 〈A, i+〉 ∈ X then rf(i)(A),
• if 〈A, i−〉 ∈ X then ∼ rf(i)(A),
• if 〈(A, B), i+〉 ∈ X then Rf(i)(d(A), d(B)),
• if 〈(A, B), i−〉 ∈ X then ∼ Rf(i)(d(A), d(B)).

Making use of the concept of a suitable model and conducting an
inspection of the provided tableau rules, we are able to demonstrate
that if model M of a given type, fulfilling some of conditions introduced
in Section 5.3 is suitable for a set of expressions X ⊆ Ex, then the
application of a selected tableau rule for the relevant conditions extends
the set X with new expressions for which M is still suitable.

Let C be a set of conditions introduced in Section 5.3 and TC be a
set of tableau rules introduced in Section 6.2. For convenience with for-
mulation of the further theorems, we introduce function τ : C → TC such
that for any (X) ∈ C we put τ((X)) = (RX). For example, rules (RDis),
(RCom∗) are assigned, respectively, to conditions (Dis) and (Com∗), we
have τ((Dis)) = (RDis) and τ((Com∗)) = (RCom∗), etc.

Let us establish the following:

Lemma 6.3. Let:

• X ⊆ Ex,

• M = 〈W, Q, v, {Rw}w∈W 〉 be a model satisfying conditions contained

in some Y ⊆ C,

• M be suitable to X .
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If any tableau rule from TR
� or τ(Y ) has been applied to set X , then M

is suitable to the union of X and at least one output obtained through

the application of this rule.

Proof. Assume all the hypotheses. Let f : Ind(X) −→ W be a function
as in definition 6.2. For cases of applications of rules from set TR

�,
except rules (RO), (R¬O) (RP), (R¬P), (R◦

∗), (R◦

⋆) and (R◦

rep∗), the proof
is standard (see Goré, 1999; Jarmużek, 2014; Priest, 2008; Pietruszczak
and Jarmużek, 2018).

Suppose (RO) has been applied to X . Then 〈OA, i〉 ∈ X and irj ∈ X
and we get output 〈A, j〉, 〈A, j+〉. Since the model is suitable to X , we
have M, f(i) |= OA and Q(f(i), f(j)). Thus, by definition 3.5, also for
the output M, f(j) |= A and rj(A).

Suppose (R¬O) has been applied to X . Then 〈¬OA, i〉 ∈ X and we
get output 〈P¬A, i〉. Since the model is suitable to X , we have M, f(i) |=
¬OA. Thus, by definitions 3.5 and 3.3, Q(f(i), j) and M, j |= ¬A or
∼ rj(¬A), for some j ∈ W . Hence, by definition 3.5, M, f(i) |= P¬A.

Suppose (RP) has been applied to X . Then 〈PA, i〉 ∈ X and we get
two outputs irj, 〈A, j〉 and irj, 〈A, j+〉, where j is a new index. Since
the model is suitable to X , we have M, f(i) |= PA. Thus, by definition
3.5, Q(f(i), u) and either M, u |= A or ∼ ru(A), for some u ∈ W . Let
g : Ind(X) ∪{j} −→ W be a function such that, for any x ∈ Ind(X) ∪{j}
we put:

g(x) =

{

f(x), if x 6= j

u, if x = j.

Hence, for the outputs, Q(g(i), g(j)) and we have that either M, g(j) |= A
or ∼ rg(j)(A).

Suppose (R¬P) has been applied to X . Then 〈¬PA, i〉 ∈ X and we get
output 〈O¬A, i〉. Since model is suitable to X , we have M, f(i) |= ¬PA.
Thus, by definition 3.5, if Q(f(i), j), then M, j |= ¬A and rj(¬A), for
any j ∈ W . Hence, for the output by definition 3.5 and by the definition
of a deontic relationship 3.3, M, f(i) |= O¬A.

Suppose (R◦

∗) (resp. (R◦

⋆)), where ∗ ∈ {¬,�,♦, O, P} (resp. ⋆ ∈
{∧, ∨, →, ↔}) and ◦ ∈ {+, −}, has been applied to X . Then 〈∗A, i◦〉 ∈ X
(resp. 〈A ⋆ B, i◦〉 ∈ X) and we get output 〈A, i◦〉 (resp. 〈(A, B), i◦〉).
Since model is suitable to X , we have rf(i)(∗A) (resp. rf(i)(A ⋆ B)), if
◦ = + and ∼ rf(u)(∗A) (resp. ∼ rf(i)(A⋆B)), if ◦ = −. By the definition
of a deontic relationship 3.3, rf(i)(A) iff rf(i)(d(A)), for any A ∈ For
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(resp. rf(i)(A ⋆ B) iff Rf(i)(d(A), d(B)), for any A, B ∈ For). Thus, for
output, rf(i)(A) (resp. Rf(i)(d(A), d(B)), if ◦ = + and ∼ rf(i)(A) (resp.
∼ Rf(i)(d(A), d(B))), if ◦ = −.

Suppose (R◦

rep∗), where ∗ ∈ {¬,�,♦, O, P} and ◦ ∈ {+, −}, has been
applied to X . Hence 〈(A, B), i◦〉 ∈ X and we get output 〈(A(∗C/C),
B(∗C/C)), i◦〉. Since model is suitable to X , Rf(i)(d(A), d(B)), if ◦ =
+ and ∼ Rf(i)(d(A), d(B)), if ◦ = −. Notice that, by definition 3.2,
d(A) = d(A(∗C/C)). Thus, for the output, Rf(i)(d(A), d(B)), if ◦ = +
and ∼ Rf(i)(d(A(∗C/C)), d(B(∗C/C))), if ◦ = −.

Suppose that a tableau rule (RC) ∈ τ(Y ) has been applied to X and
M is such that condition (C) is satisfied. Hence, the input of (RC) must
be in X and M is suitable to this input. Thus, by condition (C), M must
be also suitable to an output of (RC). Let us consider two examples,
since the remaining ones are similar.

Suppose (RDis) has been applied to X . Hence 〈(A, B), i+〉 ∈ X ,
〈A, i+〉 ∈ X and we have got output 〈B, i+〉. Since the model is suitable
to X , Rf(i)(d(A), d(B)) and rf(i)(A). Hence, for output by condition
(Dis), rf(i)(B).

Suppose (RAg1
) has been applied to X . Hence 〈A, i+〉 ∈ X , 〈B, i+〉 ∈

X and we have got output 〈(A, B), i+〉. Since the model is suitable to X ,
rf(i)(A) and rf(i)(B). Hence, for output by condition (Ag1), rf(i)(A∧B).
By the definition of a deontic relationship 3.3 Rf(i)(d(A), d(B)). ⊣

The proof of completeness of our tableau methods in relation to the
presented semantics still requires a fact in the opposite direction. Let us
introduce the concept of a model produced by a set of expressions.

Definition 6.4 (Model generated by a branch). Let X ⊆ Ex. Set
AT (X) is defined as follows: x ∈ AT (X) iff one of the following condi-
tions holds:

• x ∈ X ∩ {irj : i, j ∈ N},
• x ∈ X ∩ (Var × N),
• x ∈ X ∩ Var × {i◦ : i ∈ N, ◦ ∈ {+, −}},
• x ∈ X ∩ {〈(A, B), i+〉 : A, B ∈ For, i ∈ N}.

Model 〈W, Q, v, {Rw}w∈W 〉 is generated by X iff

1. W = {i : i ∈ Ind(AT (X)} ∪ {ω}, where ω 6∈ N,
2. Q is the smallest relation Y such that {〈i, j〉 : irj ∈ AT (X)} ⊆ Y

and 〈ω, ω〉 ∈ Y ,
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3. for every A ∈ Var, i ∈ W : i ∈ v(A) iff 〈A, i〉 ∈ AT (X),
4. for every i ∈ W , Ri is a minimal relation that satisfies the conditions:

a. {〈d(A), d(B)〉 : 〈(A, B), i+〉 ∈ AT (X)} ⊆ Ri,
b. for every j ∈ W , if for some x ∈ Var, 〈x, j+〉 ∈ AT (X), then there

is such B ∈ For that Ri(x, d(B)) or Ri(d(B), x),
5. for every i ∈ W , if for some x ∈ Var, 〈x, i−〉 ∈ AT (X), then for no

B ∈ For: Rω(x, d(B)) or Rω(d(B), x).

Let us cast a bit of light on the definition of generated model 6.4.
By the minimality of Ri, if such a model exists, there is only one such
model.

Point 1 of the definition indicates a set of worlds that is determined
by indexes that occur in a branch, but with one exception. We add world
ω to set W to have a world at which we can verify the fact that 〈x, i−〉,
for x ∈ Var, if it is needed. We will examine the details about ω and
〈x, i−〉 later.

Point 2 without doubt defines the accessibility relation Q. Also
point 3 is natural: only the propositional letters that occur in X with
an index i are true at world i in the model.

However, we must consider some nuances concerning relation Ri. We
see it must be a minimal relation that fulfills some constraints.

According point 4a, for all worlds i in the model, relation Ri collects
all such pairs 〈d(A), d(B)〉 that 〈(A, B), i+〉 belongs to X . This also
seems self-explanatory. A more controversial condition may be point 4b,
though. If for some x ∈ Var, 〈x, j+〉 ∈ AT (X), then there must be
such formula B ∈ For that Ri(x, d(B)) or Ri(d(B), x). Notice that it is
possible under some condition.

Assume that some x ∈ Var, 〈x, j+〉 ∈ AT (X). If there is such formula
B ∈ For that 〈(x, d(B)), i+〉 ∈ X or 〈(d(B), x), i+〉 ∈ X , then point 4b
is satisfied by 4a. However, if there is no such formula, we must take
some B that is not a member of X . It is absolutely possible if X is
a finite set (or at least finite in a sense we will define few paragraphs
later: formula-finite). Then we take any formula B that is not a part of
any tableau expression in X as a subformula and we define Ri(x, d(B)).
Consequently, point 4b is satisfied, but let us observe that if some formula
B is not employed in the expressions that are in X (it is not necessary,
but sufficient).

Finally, point 5 says that if 〈x, i−〉 ∈ AT (X), for x ∈ Var, then we
take world ω and put that for no B ∈ For: Rω(x, d(B)) or Rω(d(B), x),



On logic of strictly-deontic modalities 373

which means letter x is not deontically related in world i. It may happen
that world ω is unneeded since for some other world letter x might be not
related to any formula. However, world ω generally make us sure that
the condition for propositional letters from definition 3.3 is not satisfied.

Before we proceed we must explain one thing. Since we have a serial
relation of accessibility and as a consequence tableau rule (Rser), so no
complete tableau proof can be of a finite length. Nevertheless, even
infinite proofs can include a finite number of formulas from For as parts
of more complex expressions. For formal reasons we will introduce a
special function that picks out all formulas that are parts of any tableau
expression.

Definition 6.5. Let X ⊆ Ex. By function φ : X −→ ℘(For) we mean a
mapping satisfying condition, for all i, j ∈ N, A, B ∈ For and ◦ ∈ {−, +}:

• if X = {irj}, then φ(X) = ∅,
• if X = {〈A, i〉} then φ(X) = {A},
• if X = {〈A, i◦〉} then φ(X) = {A},
• if X = {〈(A, B), i◦〉} then φ(X) = {A, B},
• φ(X) =

⋃

{φ(y) : y ∈ X}.

Function φ collects formulas contained in expressions from a given subset
of Ex.

Now, let X ⊂ Ex. We define X to be a formula-finite set of expres-
sions iff φ(X) is a finite subset of For. It is obvious that any Y ⊆ Ex may
be at the same time infinite as well as a formula-finite set of expressions.

Assume that we have a set of tableau rules T = TR
�∪τ(Y ), for some

set of conditions Y ⊆ C. TR
�. Now, if we take a formula-finite set of

expressions X ⊆ Ex such that:

• it is closed under all rules from T, for all expressions from X to which
one of the rules is applicable, there exists at least one output in X ,

• X is a tableau consistent set of expressions,

then there is a model M generated by set X . It is a model for DR�,
but we will show how to convert it into a model for conditions Y ⊆ C.
Therefore, we have one more proposition.

Lemma 6.6. Let X be such a formula-finite subset of Ex that:

• X is a tableau consistent set

• X is closed under TR
� ∪ τ(Y ), for some set of conditions Y ⊆ C.
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Then there is a model N such that:

1. for any 〈A, i〉 ∈ X ∩ (For × N), N, i |= A,

2. model N is such that conditions contained in Y are satisfied.

Proof. Assume all the hypotheses. Since X is tableau consistent and
formula-finite, so there is a generated model M = 〈W, Q, v, {Rw}w∈W 〉,
according to definition 6.4.

First, notice that for all i ∈ W , for all propositional letters A ∈ Var:

(a1) if expression 〈A, i+〉 belongs to X , then ri(A)
(a2) if expression 〈A, i−〉 belongs to X , then ∼ ri(A).

We have this by the definition of a generated model 6.4 and definition
of a deontic relationship 3.3. Also for all i ∈ W , A, B ∈ For, if an
expression:

(b1) 〈(A, B), i+〉 belongs to X , then Ri(d(A), d(B))
(b2) 〈(A, B), i−〉 belongs to X , then ∼ Ri(d(A), d(B)),

which is a consequence of the definition of a generated model 6.4.

Now we can consider any formula A ∈ For, such that for some i ∈ W ,
〈A, i+〉 ∈ X .

If A ∈ Var, then ri(A). If A is more complex, then since X is closed
under tableau rules (so among others rules: (R◦

∗), (R◦

⋆) and (R◦

rep∗)), A
is reduced to a propositional letter or expression 〈(d(B), d(C)), i+〉. But
in both cases ri(A), by (a1) or (b1) respectively. In a similar way we
prove that ∼ ri(A) for any A ∈ For, such that i ∈ W and 〈A, i−〉 ∈ X .
So, finally we state that for any A ∈ For and i ∈ W :

(α+) if 〈A, i+〉 belongs to X , then ri(A)
(α−) if 〈A, i−〉 belongs to X , then ∼ ri(A).

Now, we can conduct a proof by induction on the complexity of
expressions contained in X .

The initial step is for letters and negated letters. Let 〈A, i〉 ∈ X ∩
(Var × W ), for some i ∈ N. Then by the definition of v in a generated
model 6.4, i ∈ v(A), and so M, i |= A. Let 〈¬A, i〉 ∈ X ∩ (For × W ),
for some i ∈ N, where A ∈ Var. Since X is tableau consistent, so
〈A, i〉 6∈ X . Then, by definition 6.4, we have i 6∈ v(A); and so M, i 6|= A.
In consequence M, i |= ¬A.

The inductive step. We assume that for any expression 〈A, i〉 ∈
X ∩(For×W ), where A is of the complexity n, for some n ∈ N, M, i |= A.
We will consider cases of formula B of the complexity n + 1.
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Again the cases for classical connectives: ¬, ∧, ∨, →, ↔ and �, ♦,
¬�, ¬♦ are obvious and have been thoroughly examined (see Goré, 1999;
Jarmużek, 2014; Priest, 2008; Pietruszczak and Jarmużek, 2018). So we
concentrate on new cases for: O, P, ¬O, and ¬P and the rules for the
additional conditions.

Let B := 〈OA, i〉 ∈ X ∩ (For × W ), for some A ∈ For and i ∈ N.
Since X is closed under tableau rules TR

�, it is also closed under (Rser).
Hence, there is at least one j ∈ N such that irj ∈ X . So by (RO) the set
of all expressions of the form: 〈A, k〉 and 〈A, k+〉 that belong to X , for
some irk ∈ X , is non-empty. By the construction of a model, Q(i, k),
6.4, for any such k ∈ N, that irk ∈ X . However, since by the induction
hypothesis M, k |= A and rk(A) by (α+), therefore M, i |= OA.

Let B := 〈PA, i〉 ∈ X ∩ (For×W ), for some A ∈ For and i ∈ N. Since
X is closed under tableau rules TR

�, it is also closed under (RP). Hence,
to X belongs (1) either a pair irj, 〈A, j〉, or (2) a pair irj, 〈A, j−〉, where
j ∈ N. In both cases we have Q(i, j), by the construction of a model
6.4. If (1) happens, then by the induction hypothesis M, j |= A, and
M, i |= PA. If (2) happens, then ∼ rj(A) by (α−), and M, i |= PA.

Let B := 〈¬OA, i〉 ∈ X ∩ (For × W ), for some A ∈ For and i ∈
N. Since X is closed under tableau rules TR

�, it is also closed under
(R¬O), then to X belongs 〈P¬A, i〉. By Aristotelian law 5.2, ¬OA is
logically equivalent to P¬A. But formula ¬A is of complexity n. So,
with reference to case we considered for 〈P¬A, i〉, for any i ∈ W , we
have M, i |= P¬A, and so for M, i |= ¬OA. Analogous reasoning applies
to the case B := 〈¬PA, i〉 ∈ X ∩ (For × W ), for some A ∈ For and i ∈ N.

The model we have generated is sound with respect to the empty set
of conditions Y ⊆ C. However, Y may be non-empty. For example, we
assume that Y includes (Dis) or (Ag2). The remaining cases are similar.

Let us analyse the case (Dis). Let ri(A → B) and ri(A), for some
i ∈ W in model M. So, by the construction of model 6.4 and the
definition of a deontic relationship 3.3, 〈(A, B), i+〉 and 〈A, i+〉 ∈ X .
Since X is closed under tableau rule (RDis), so 〈B, i+〉 ∈ X , and by
(α+), ri(B), which means that (Dis) is satisfied by M.

Now, we examine case of (Ag2). Let ri(A), for some i ∈ W in model
M. So, by the construction of model 6.4 and the definition of a deontic
relationship 3.3, 〈A, i+〉 ∈ X . If we take such a formula B that B ∈ φ(X)
then by (RAg

2
), 〈(A, B), i+〉 ∈ X , and by the construction of model 6.4

and the definition of a deontic relationship 3.3, ri(A ∨ B). If we take
such a formula B that B 6∈ φ(X), then we just add to Ri in the model
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pair 〈A, B〉, which by the definition of a deontic relationship 3.3 means
that ri(A ∨ B). The extension of relation Ri converts model M into new
model N. Model N satisfies the thesis of our lemma. ⊣

We have finally arrived a theorem on the completeness of tableau
and relating semantics for the deontic models we have discussed.

Theorem 6.7 (Completeness theorem). Let Y ⊆ C. Let |= ⊆ P(For) ×
For be the consequence relation defined by a class of models designated

by the set of conditions Y . Then for any X ⊆ For, A ∈ For the following

facts are equivalent:

1. X |= A,

2. there is a finite subset Z ⊆ X and index i ∈ N such that each closure

of the set {〈B, i〉 : B ∈ Z ∪ {¬A}} under the set of tableau rules

TR
� ∪ τ(Y ) is a tableau inconsistent set of expressions.

Proof. Let us adopt the assumptions. In the proof of the theorem,
we make use of the prior propositions. For (1) ⇒ (2), Lemma 6.6 is
sufficient. In turn, for (2) ⇒ (1), Lemma 6.2 is sufficient. ⊣

6.4. Termination problem

One of the goals of our work was to present the method of automated
reasoning for the logic DR. In the paper we have introduced a tableau
system to determine whether a given formula is a tautology. However,
as we noted above, the straightforward applications of the defined rules
do not exclude infinite tableau proofs. Nevertheless, due the inclusion
DR ⊆ D tableau methods accepted for the logic D  in the case where
the problem of infinite proofs does not occur  can be appropriately used
for the logic DR. This is because: (a) from the point of view of possible
world semantics the frames of DR are identical to the frames of D, (b)
relation R in a given world always requires a finite decomposition of
formulas only in that world, since the formulas consist of finite number
of subformulas. So the problem of termination is reduced to the strictly
modal part, which for logic D is obviously solved.

This also applies to the problem of computation analysis provided
by tableaus which, however, goes beyond the scope of our work since
it demands a computational interpretation of proofs (cf. Goré, 1999,
p. 305).
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Regardless of an adaptation of well-known tableau methods used in
the analysis of the logic D, below we define modifications of rules that
are responsible for infinite proofs. Of course, the problem appears only
in the case of open complete tableaus.

First we modify the rule for seriality. We assume the following mod-
ification:

(Rser)
A, i

irj

where j is new and for any k ∈ N, irk did not previously appear on the
branch.8

Let us notice that having made this modification, a model read off
from a complete, open branch might be unsuitable. But it is not a
problem. We can expand the model, assuming that a world with no
accessible world has access to itself.

Similarly, we can modify the elimination rules for operators P and ♦

by assuming the analogous modification:

(RP)
PA, i

irj irj
A, j A, j−

(R♦)

♦A, i

irj
A, j

where j is new and for any k ∈ N, irk, A, k together did not previously
appear on the branch.9

7. A handful of intuitions to sum up

In our proposed approach, the formulas beyond the reach of modalities
O and P behave purely extensionally, in accordance with their Boolean
meaning. But their inclusion in the scope of the obligation and per-
mission operators somewhat alters this meaning. They become more
intensional  their truth or falsity turns on more than just the logical
values they possess in appropriate possible worlds. Another important
thing is the component of the content relation with the deontic system
under which we predicate obligations or permissions.

8 This modification was suggested in (Jarmużek, 2014, 2013). Note that in all
modifications discussed here the clauses refer to branches, since some metatheory of
tableau proofs in the cited works has been developed.

9 The modification for ♦ was first proposed in (Jarmużek, 2014, 2013) and it has
been rewritten for P here.
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In turn, operators � and ♦ in no way alter the meanings of formu-
las that occur within their scope. While at the same time we expect
this from these formulas. Most (perhaps all?) deontic paradoxes stem
from the fact that the extensional functors, formally speaking, at the
philosophical level are intensional. We can resolve these problems by
introducing strictly-deontic modalities.
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