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Abstract. The goal of this paper is to analyse Implicational Relevance
Logic from the point of view of refutability. We also correct an inaccuracy
in our paper “The RM paraconsistent refutation system” (DOI: 10.12775/

LLP.2009.005).
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1. Introduction

Propositional logics are usually motivated by positive properties and
conditions. However, negative motivations are also possible. A prime
example here is Paraconsistent Logic, which is obtained from Classical
Logic by rejecting the law of explosion. Another natural example is
Implicational Relevance Logic, in which the intuitionistic law

p → (q → p) (P)

is rejected. (P) (or Positive Paradox) says that a true proposition is
entailed by anything; so, of course, it is not acceptable for relevance
logicians. Church’s axioms for R→ (the implicational fragment of R) can
be viewed as obtained from those for H→ (the implicational fragment of
Intuitionistic Logic) by taking p → p instead of (P) [see 5].

If we assume that the meaning of the connective → is motivated
by the concept of (constructive) proof, then it is natural to require that
Implicational Relevance Logic should be a (proper) part of H→. In other
words, every formula that is not in H→ should be rejected.
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Yet another example is the variable-sharing property (VSP for short),
which can be presented as a negative property:

A → B is rejected, whenever A and B share no variable.

We will show that, in a large class of implicational logics, VSP is equiv-
alent to the simple property that (P) is rejected.

Our non-negative approach can be outlined as follows. Let L be a
logic (that is, a set of formulas closed under substitution, modus ponens,
and possibly some other rules), and let NEG be a set of formulas that
we want to reject. We present L as an axiomatic system consisting of
the inference rules together with some acceptable axioms POS ⊆ L in
such a way that no A ∈ NEG is derivable from POS .

In the standard positive approach, the new logic is the set of provable

formulas; that is formulas derivable from POS by the rules. Our non-
standard non-negative approach is different. We keep NEG, and we
declare the formulas in NEG rejected (or “refutation axioms”). We then
say that a formula A is refutable iff some B ∈ NEG is derivable from
A by using acceptable axioms (and rules). We have thus defined the
set Ref (POS , NEG) of refutable formulas. If the complement L

∗ (:=
−Ref (POS , NEG)) of this set is closed under the inference rules, then
L

∗ is our new logic disjoint with NEG.
In a nutshell: in the positive approach, we want what is good; and in

the non-negative approach, we prevent what is bad. These are the two
extremes of possible solutions.

In this paper, we analyse Implicational Relevance Logic from the
point of view of refutability. As acceptable axioms we take those of
the relevance logic RMO⊤

→ (RMO→ together with the axiom p → ⊤
for the constant ⊤, which proves useful here). Our refutation axiom is
(P) together with −H→. It turns out that the resulting logic H∗

→ is the
greatest extension of RMO⊤

→ that is weaker than H→.
We also correct an inaccuracy in the paper [10].

2. Implicational logic and relevance

The meaning of the intuitionistic connective → is determined by the
standard Deduction theorem [see, e.g., 1, 5]:

⊢ A1 → (A2 → · · · → (An → B) . . .) iff there is a deduction of B
from A1, . . . , An.
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Now, the meaning of the relevant connective → is provided by the
relevant deduction theorem (a modification of the above) [see 1, 5]:

⊢ A1 → (A2 → · · · → (An → B) . . .) iff there is a deduction of B
from A1, . . . , An, in which all members of {A1, . . . , An} are used.

For example, here is a deduction for (P).

1. | p hyp
2. | | q hyp
3. | | p 1, reit
4. | q → p 2, 3, →I
5. p → (q → p) 1, 4, →I

Hence (P) is a valid principle of H→. Note that q is not used in the above
deduction.

Following Avron [3, 4], we regard {A1, . . . , An} as a set. Thus, the
mingle axiom p → (p → p) has a relevant deduction.

Of course, the R→ axioms also have relevant deductions, so we get
the RMO→ axioms as our acceptable axioms.

Note that if you view {A1, . . . , An} as a multiset, then p → (p → p)
is not acceptable and you must replace it with p → p, obtaining the R→

axioms rather than the RMO→ ones.

3. The logic RMO⊤

→

Let For be the set of all formulas generated from the set

Var = {p, q, r, p1, p2, . . .}

by the connective → and the constant ⊤ (usually denoted by T ). By
a substitution we mean a function s from Var to For extended to all
formulas as follows:

s(⊤) = ⊤ and s(A → B) = s(A) → s(B).

We say that a set X of formulas is closed under substitution iff s(A) ∈
X whenever A ∈ X. Moreover, we say that a set X of formulas is closed

under modus ponens iff B ∈ X whenever A ∈ X and A → B ∈ X. We
note that for all X, Y ⊆ For :

• If X, Y are closed under substitution (resp. modus ponens), then so
is X ∩ Y .
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The logic RMO⊤

→ is the smallest set of formulas closed under sub-
stitution and modus ponens, and containing the following axioms [see,
e.g., 5]:

p → (p → p) (A1)

(p → q) → ((q → r) → (p → r)) (A2)

(p → (q → r)) → (q → (p → r)) (A3)

(p → (p → q)) → (p → q) (A4)

p → ⊤ (A5)

We also write ⊢ A instead of A ∈ RMO⊤

→. Notice that the following
formulas belong to RMO⊤

→:

p → p (C1)

p → ((p → q) → q) (C2)

(p → q) → ((r → p) → (r → q)) (C3)

((p → p) → q) → q (C4)

(p → (q → r)) → ((p → q) → (p → r)) (C5)

(p1 → (p → q)) → ((p1 → (q → r)) → (p1 → (p → r))) (C6)

(p → q) → (p → (p → q)) (C7)

(⊤ → (p → p)) → (p → (q → p)) (C8)

Proof. For (C1):
1. p → (p → p) (A1)
2. p → p 1, (A4), mp

For (C2):
1. (p → q) → (p → q) (A1)
2. p → ((p → q) → q) 1, (A3), mp

For (C3):
1. (r → p) → ((p → q) → (r → q)) (A2)
2. (p → q) → ((r → p) → (r → q)) 1, (A3), mp

For (C4): By (C1), (C2), mp.
For (C5):

1. (p → q) → ((q → (p → r)) → (p → (p → r))) (A2)
2. (p → q) → ((q → (p → r)) → (p → r)) 1, (A2), (A4), mp

3. (q → (p → r)) → ((p → q) → (p → r)) 2, (A3), mp

4. (p → (q → r)) → ((p → q) → (p → r)) 3, (A2), (A3), mp

For (C6): By (A2), (C5), mp.
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For (C7):
1. (p → q) → (p → (q → q)) (A1), (A2), (A3), mp

2. (p → q) → ((q → q) → (p → q)) (A2)
3. (p → q) → (p → (p → q)) 1, 2, (C6), mp

For (C8):
1. q → ⊤ (A5)
2. (⊤ → (p → p)) → (q → (p → p)) 1, (A2), mp

3. (⊤ → (p → p)) → (p → (q → p)) 2, (A2), (A3), mp

4. Refutability

Proposition 4.1. H→ is the axiomatic strengthening of RMO⊤

→ by (P).

Proof. Let RMO⊤(P)
→ be the least set containing RMO⊤

→ ∪ {(P)} and
closed under substitution and mp. Then H→ ⊆ RMO⊤(P)

→ (because (P),
C5 are in RMO⊤(P)

→ ). Also, both (P) and the axioms of RMO⊤

→ are in
H→, so RMO⊤(P)

→ ⊆ H→, which gives the result.

Note that ⊤ is redundant in H→, because both (p → p) → ⊤ and
⊤ → (p → p) (by (A3) and (P)) are in H→.

We define the matrix 3 := ({−1, 0, 1}, {0, 1}, →), where [see 7]:

x → y =

{

max(−x, y) if x ≤ y,

min(−x, y) otherwise.

A valuation in 3 is a function v from Var to {−1, 0, 1} extended as
follows:

v(⊤) = 1 and v(A → B) = v(A) → v(B).

We say that A is valid in 3 (in symbols A ∈ Val(3)) iff v(A) ∈ {0, 1}
for every valuation v. We remark that the set Val(3) is closed under
substitution, mp; and RMO⊤

→ ⊆ Val(3).
For any x ∈ {−1, 0, 1}, we define Gx ∈ For as follows:

G−1 = ⊤ → (p → p) G0 = p → p G1 = ⊤

Proposition 4.2. For all x, y ∈ {−1, 0, 1} we have:

⊢ (Gx → Gy) → Gx→y

⊢ Gx→y → (Gx → Gy)
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Proof. ⊢ (G1 → G1) → G1 (A5)
⊢ G1 → (G1 → G1) (A1)
⊢ (G1 → G0) → G−1 (C1)
⊢ G−1 → (G1 → G0) (C1)
⊢ (G0 → G1) → G1 (A5)

⊢ G1 → (G0 → G1)
1. (p → p) → ⊤ (A5)
2. ⊤ → (⊤ → ⊤) (A1)
3. (p → p) → (⊤ → ⊤) 1, 2, (A2), mp

4. ⊤ → ((p → p) → ⊤) 3, (A3), mp

⊢ (G0 → G0) → G0 (C4)
⊢ G0 → (G0 → G0) (A1)
⊢ (G0 → G−1) → G−1 (C4)

⊢ G−1 → (G0 → G−1)
1. (p → p) → ((p → p) → (p → p)) (A1)
2. (⊤ → (p → p)) → (⊤ → ((p → p) → (p → p))) 1, (C3), mp

3. (⊤ → (p → p)) → ((p → p) → (⊤ → (p → p))) 2, (A2), (A3), mp

⊢ (G−1 → G1) → G1 (A5)

⊢ G1 → (G−1 → G1)
1. ⊤ → ((⊤ → (p → p)) → (p → p)) (C2)
2. (p → p) → ⊤ (A5)
3. ((⊤ → (p → p)) → (p → p)) → ((⊤ → (p → p)) → ⊤)

2, (A2), (A3), mp

4. ⊤ → ((⊤ → (p → p)) → ⊤) 1, 3, (A2), mp

⊢ (G−1 → G0) → G1 (A5)

⊢ G1 → (G−1 → G0)
1. (⊤ → (p → p)) → (⊤ → (p → p)) (C1)
2. ⊤ → ((⊤ → (p → p)) → (p → p)) 1, (A3), mp

⊢ (G−1 → G−1) → G1 (A5)

⊢ G1 → (G−1 → G−1)
1. (⊤ → (p → p)) → (⊤ → (p → p)) (C1)
2. (⊤ → (p → p)) → (⊤ → (⊤ → (p → p))) (C7)
3. (⊤ → (p → p)) → (⊤ → (⊤ → (p → p))) 1, 2, (A2), mp

4. ⊤ → ((⊤ → (p → p)) → (⊤ → (p → p))) 3, (A3), mp
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For any valuation v in 3, we define the corresponding substitution sv

as follows (for any a ∈ Var): sv(a) := Gv(a). Note that sv(A) results
from A by substituting (in a uniform way) Gv(a) for every propositional
variable a occurring in A.

Lemma 4.3. For any A ∈ For , ⊢ sv(A) → Gv(A) and ⊢ Gv(A) → sv(A).

Proof. By induction on the complexity of A.
If A ∈ Var , then sv(A) = Gv(A). So the lemma is true by (C1).
Assume that the lemma holds for simpler formulas. If A = ⊤, then

v(⊤) = 1 and Gv(A) = ⊤, so sv(A) = A = Gv(A). Thus, we may
assume that A = B → C. Let s = sv. By the induction hypothesis,
we have: ⊢ s(B) → Gv(B), ⊢ Gv(B) → s(B), ⊢ s(C) → Gv(C) and
⊢ Gv(C) → s(C). We only show that ⊢ s(A) → Gv(A). By (A2), we
have ⊢ (GvB → sB) → ((sB → sC) → (GvB → sC)). By (C3), we
have ⊢ (sC → GvC) → ((GvB → sC) → (GvB → GvC)). Hence, by mp,
⊢ (sB → sC) → (GvB → sC) and ⊢ (GvB → sC) → (GvB → GvC). So,
by (A2) and mp, we have ⊢ sA → (GvB → GvC).

Also by Proposition 4.2, ⊢ (Gv(B) → Gv(C)) → Gv(A). Therefore, by
(A2) and mp, we have ⊢ s(A) → Gv(A), as required.

By an extension of RMO⊤

→ we mean a set L ⊆ For containing RMO⊤

→

and closed under substitution and modus ponens.

Corollary 4.4. For any extension L of RMO⊤

→ we have:

L has the variable-sharing property iff (P) 6∈ L.

Proof. “⇒” Suppose that L has VSP but (P) ∈ L. Then q → (p →
p) ∈ L, by (A3) and mp. Hence L lacks VSP, which is a contradiction.

“⇐” Suppose that (P) 6∈ L but L lacks VSP. Then some A and
B share no variable but A → B ∈ L. Let v be a valuation in 3 such
that v(a) = 1 for every variable a occurring in A, and v(b) = 0 for
every variable b occurring in B. Then v(A) = 1 and v(B) = 0. So
v(A → B) = −1. Hence sv(A → B) → (⊤ → (p → p)) ∈ L, by
Lemma 4.3). So sv(A → B) → (P) ∈ L, by (A2), (C8), mp). Also,
sv(A → B) ∈ L, because A → B ∈ L and L is closed under substitution.
So (P) ∈ L, which is a contradiction.

We now modify and simplify the concept of a symmetric inference sys-
tem (introduced in [9]) as follows. The inference rules are fixed (substi-

tution, mp), so we focus on positive/negative axioms: S = (POS , NEG),
where POS = (A1)–(A5) and NEG = {P} ∪ (For − H→).



26 Tomasz Skura

Let L ⊆ For . We say that L is S-closed iff POS ⊆ L, NEG ∩ L = ∅
and L is closed under substitution and modus ponens. Moreover, we say
that a formula A is S-refutable iff some B ∈ NEG is derivable from A by
using substitution, mp and POS .

For any A ∈ For : A ∈ Ref (S) iff A is S-refutable. Moreover, we put
H∗

→ := For − Ref (S).

Proposition 4.5 (9, Proposition 3.1). If L is S-closed, then L ⊆ H∗
→.

Theorem 4.6. H∗
→ = Val(3) ∩ H→.

Proof. “⊇” The set Val(3) ∩ H→ is closed under substitution and mp,
because so are Val(3) and H→. Also, Val(3) ∩ H→ contains POS and
(P) 6∈ Val(3), so the set Val(3) ∩ H→ is S-closed. Hence, by Proposi-
tion 4.5, Val(3) ∩ H→ ⊆ H∗

→.
“⊆” Assume that A 6∈ Val(3)∩H→. If A 6∈ H→ then A is S-refutable,

so let us assume that A 6∈ Val(3). Then there is a valuation v in 3 such
that v(A) = −1. Hence, by Lemma 4.3, we have ⊢ sv(A) → (⊤ →
(p → p)). So ⊢ sv(A) → (P), by (A2), (C8) and mp. Therefore A is
S-refutable, So A 6∈ H∗

→, which gives the result.

Remark 4.1. Theorem 4.6 provides the following refutation system ax-
iomatising the complement of Val(3) ∩ H→ [for more on refutation sys-
tems see, e.g., 11]:
Refutation axioms: Every A ∈ NEG.
Refutation rules:
(Reverse substitution) B/A where B is a substitution instance of A.
(Reverse modus ponens (RMO⊤

→)) B/A where A → B ∈ RMO⊤

→.

Let L ⊆ For be closed under substitution and modus ponens. We
say that L is a relevant analogue of H→ iff RMO⊤

→ ⊆ L ⊆ H→ and L

has the variable-sharing property. From Corollary 4.4 we obtain:

Proposition 4.7. Let L ⊆ For be closed under substitution and modus
ponens. L is a relevant analogue of H→ iff L is S-closed.

Corollary 4.8. H∗
→ is the greatest relevant analogue of H→.

Proof. By Theorem 4.6, H∗
→ is S-closed. Also, by Proposition 4.5, if L

is S-closed, then L ⊆ H∗
→. Hence, by Proposition 4.7, H∗

→ is the greatest
relevant analogue of H→.

Corollary 4.9. H∗
→ is the greatest extension of RMO⊤

→ that is weaker

than H→.
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Proof. Let RMO⊤

→ ⊆ L ⊂ H→. Then (P) 6∈ L. (Otherwise H→ ⊆ L,
so H→ = L, which is impossible.) So L is a relevant analogue of H→

(by Proposition 4.7). By Corollary 4.8, L ⊆ H∗
→. Also, by Theorem 4.6,

RMO⊤

→ ⊆ H∗
→ ⊂ H→, which gives the result.

5. Miscellany

5.1. Extensions of RMO⊤

→

We are going to use the following formulas, where we write |A| for A → A,
for any formula A [see 3]:

(|q| → |p|) → (((p → q) → p) → p) (B1)

((p → |q|) → p) → p (B2)

(|p| → |r|) → ((|q| → |r|) → (|p → q| → |r|)) (B3)

Firstly, notice that:

Proposition 5.1. H∗
→ 6= Val(3).

Proof. It is easy to check that (B1) ∈ Val(3). But (B1) 6∈ H→ because
|q| → |p| ∈ H→ and (B1) H→-entails Peirce’s law ((p → q) → p) → p,
which is not in H→ [see, e.g., 6].

Secondly, we prove that the class of proper extensions of RMO⊤

→ that
are weaker than H→ has more elements than one.

Let S = 〈S, ⊔, 0〉 be a join semilattice with zero, i.e., for any x, y ∈ S
we have: 0 ⊔ x = x, x ⊔ y = y ⊔ x, (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z), x ⊔ x = x.
Recall that a model for RMO⊤

→ based on S is any pair 〈S, V 〉, where V
is a function (valuation) assigning a subset of S to each propositional
variable a such that for all x, y ∈ S: x ⊔ y ∈ V (a) iff x, y ∈ V (a) [see,
e.g., 2]. We extend V to all formulas as follows (we will write x |= A
instead of x ∈ V (A)):

• x |= A → B iff for any y ∈ S either not y |= A or x ∪ y |= B,
• x |= ⊤.

We say that a formula A is true in a model 〈S, V 〉 iff 0 |= A. We say
that A is valid in S (in symbols A ∈ Val(S)) iff A is true in any model
〈S, V 〉 based on S. We remark that Val(S) is closed under substitution
and mp. Moreover, RMO⊤

→ ⊆ Val(S).
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For any n ∈ {1, 2, . . .}, let Sn be the join semilattice consisting of
all subsets of the set {1, . . . , n}, where 0 := ∅ and ⊔ is the set-theoretic
operation ∪. We will write 0 for ∅ and x1 . . . xi for {x1, . . . , xi}, where
x1, . . . , xi belong to {1, . . . , n}. Notice that S1 has two elements 0 and
1 and S3 has eight elements: 0, 1, 2, 3, 12, 23, 13, 123.

Lemma 5.2. (i) (B2) 6∈ Val(S1).
(ii) (B3) 6∈ Val(S3).

(iii) (B3) ∈ Val(S1).

Proof. (i) Let |= be a valuation in S1 such that 1 |= p, 1 6|= q, 0 6|= p
and 0 |= q. Then 1 6|= |q|. So 0 6|= p → |q|. Hence 0 |= (p → |q|) → p,
because 1 |= p. Therefore 0 6|= (B2).

(ii) Let |= be a valuation in S3 such that 0 |= p, 0 |= q, 3 |= p, 3 |= r
and moreover:

• if x 6= 0 then x 6|= q,
• if x 6= 3 then x 6|= r.
• if x 6∈ {0, 3} then x 6|= p.

Then 123 6|= |r| and 123 |= |p → q|, because x 6|= p → q for every x.
So 0 6|= |p → q| → |r| and if x 6= 0, then x 6|= |q|. So 0 |= |q| → |r|,
because 0 |= |r|). Hence 0 6|= (|q| → |r|) → (|p → q| → |r|). Moreover,
0 |= |p| → |r| (for both x 6|= |p| if x 6∈ {0, 3} and 3 |= |r|). Therefore,
0 6|= (B3).

(iii) Suppose that 0 6|= (B3) for some valuation |= in S1. Then for
some y we have y |= |p| → |r| and y 6|= (|q| → |r|) → (|p → q| → |r|).
We consider the following two cases.

For y = 1 we have 1 |= |r|, because 0 |= |p|. But for any formulas
A, B either 1 |= A → B or 1 6|= B. So 1 6|= |r|. This is a contradiction.

For y = 0 we consider two subcases. First, 1 |= |q| → |r| and
1 6|= |p → q| → |r|. Hence 1 |= |r|, since 0 |= |q|. But 1 6|= |r|. This is
a contradiction. Second, 0 |= |q| → |r| and 0 6|= |p → q| → |r|. Since
0 |= |r|, we get 1 |= |p → q| and 1 6|= |r|. Moreover, since we have
assumed that 0 |= |p| → |r|, we get 1 6|= |p| and 1 6|= |q|. Hence 0 |= p,
1 6|= p, 0 |= q, 1 6|= q. So 0 |= p → q and 1 6|= p → q. Therefore
1 6|= |p → q|. This is a contradiction.

We now establish the following facts:

Proposition 5.3. (I) (B2) ∈ H∗
→.

(II) L1 ⊆ H→, where L1 := Val(S1) ∩ H→.
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(III) RMO⊤

→ ⊆ L1.

(IV) L1 ⊆ H∗
→.

(V) L1 ⊂ H∗
→.

(VI) (B3) ∈ L1.

(VII) RMO⊤

→ ⊂ L1.

(VIII) RMO⊤

→ ⊂ L1 ⊂ H∗
→.

Proof. Ad (I): Because (B2) ∈ Val(3) and (B2) ∈ H→.
Ad (III): Because RMO⊤

→ ⊆ Val(S1) and RMO⊤

→ ⊆ H→.
Ad (IV): By (II), (III) and Corollary 4.9.
Ad (V): By (I) and Lemma 5.2(i).
Ad (VI): By Lemma 5.2(iii) and the fact that (B3) ∈ H→.
Ad (VII): By (VI), Lemma 5.2(ii), since RMO⊤

→ ⊆ Val(S3).
Ad (VIII): By (V) and (VII).

5.2. Characterising NEG

The refutation system described in Remark 4.1 may seem unsatisfactory
because the set NEG (of refutation axioms) is infinite. This set, however,
is defined in a constructive way. Indeed, H→ is characterized by the
class of finite binary trees [see, e.g., 6, 8]. So the complement of H→

is recursively enumerable. Hence H→ is decidable (because H→, being
finitely axiomatizable, is recursively enumerable as well). Also, H∗

→ has
a nice semantic characterization (3 plus all finite binary trees). Whether
H∗

→ has an elegant syntactic characterization is an open problem.

5.3. Val(3)

However, if we relax our assumptions by requiring that our logic should
be a subset of C→ (the purely implicational fragment of Classical Logic)
rather than H→, then an elegant syntactic characterization is possible.

The symbol 2 will stand for the (classical) matrix obtained from 3

by removing 0. So 2 = ({−1, 1}, {1}, →), and we have: x → y = −1 iff
x = 1 and y = −1. We put C→ := Val(2). Notice that if v and v′ are is
valuations in 2 (resp. 3) such that v(a) = v′(a) for each a ∈ Var , then
v(A) = v′(A), for each A ∈ For .

Let S′ result from S by replacing NEG with NEG′ = {(P)} ∪ (For −
C→). We define C∗

→ to be the set of all formulas that are not S’-refutable.
Notice that, respectively in virtue of the proof of Theorem 4.6 and the
fact that Val(3) ⊆ C→, we obtain:
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• Val(3) ∩ C→ = C∗
→,

• Val(3) = C∗
→.

5.3.1. Refutation system for Val(3)

Since Val(3) ⊆ C→, it can be shown (by using Lemma 4.3 and the fact
that Val(3) = C∗

→; see the proof of Theorem 4.6) that the following
refutation system axiomatizes the complement of Val(3):

• refutation axiom: (P);
• refutation rules: reverse substitution, reverse modus ponens (RMO⊤

→).

We remark that our axiomatization is simpler than any (positive) ax-
iomatization for Val(3) that can be found in the literature [see 3].

5.4. Open problems

Can we obtain such results without ⊤ (or without the mingle axiom)?
It seems hard. Anyway, we leave the following open problems:

1. Let S1 = (POS1, NEG0), where POS1 is the set of the RMO→ axioms
and NEG0 := {A → B : A, B share no variable}. Characterize
Ref (S1) or its complement.

2. Let S2 = (POS2, NEG0), where POS2 is the set of the R→ axioms.
Characterize Ref (S2).

6. A correction to [10]

Recall that we are now dealing with the set FOR of all formulas generated
from Var by ¬, ∧, ∨ and →. In the proof of Lemma 2 in [10, p. 69]
the inference from P → (sv(C) ≡ Gv(C)) ∈ RM and P → (sv(D) ≡
Gv(D)) ∈ RM to P → (¬sv(C) ≡ ¬Gv(C)) ∈ RM and P → ((sv(C) ⊗
cv(D)) ≡ (Gv(C) ⊗ Gv(D))) ∈ RM, where ⊗ ∈ {∧, ∨, →}, is justified by
modus ponens and

(3) (A → (B ≡ C)) → (A → (D ≡ D(B/C))),

where D(B/C) results from D by replacing some occurrences of B by C.
But neither (3) nor the preceding formula belongs to RM.

Indeed, let F := (r → (p ≡ p)) → (r → (p ∧ q ≡ p ∧ q)) and
G := (p ≡ p) → (p ∧ q ≡ p ∧ q), and let v be a valuation in 3 such that
v(p) = 1, v(q) = 0, v(r) = 1. Then v(F ) = −1 and v(G) = −1, so these
formulas are not RM laws.



Implicational logic, relevance, and refutability 31

However, the above inference is correct, but (3) should be replaced
with

(3′) if P → (A ≡ B) ∈ RM then P → (H ≡ H(A/B)) ∈ RM,

where P = p ∧ ¬p. We now outline a proof of (3′).

Lemma 6.1. The following formulas are in RM.

A ∧ B → A A ∧ B → B

A ∧ B → B ∧ A

(A → B) ∧ (A → C) → (A → B ∧ C)

(A → B) → ((C → A) → (C → B))

(A → B) → (¬B → ¬A)

(A → B) ∧ (C → C) → ((A ∧ C) → (B ∧ C)) (⋆)

(A → B) ∧ (C → C) → ((A ∨ C) → (B ∨ C))

Proof. We only check (⋆). Let v be a valuation in M. We consider
three cases.

1. v(C) ≥ max(v(A), v(B)). Then v(A ∧ C) = v(A) and v(B ∧ C) =
v(B). So v(A ∧ C → B ∧ C) = v(A → B).

2. v(C) ≤ min(v(A), v(B)). Then v(A ∧ C) = v(C) and v(B ∧ C) =
v(C). So v(A ∧ C → B ∧ C) = v(C → C).

3. min(v(A), v(B)) < v(C) < max(v(A), v(B)). If v(A) ≤ v(B), then
v(A ∧ C) = v(A) and v(B ∧ C) = v(C). Moreover. if v(C) ≥ 0, then
v(C → C) = C, and so v((A → B) ∧ (C → C)) ≤ v(C) ≤ v(A → C) =
v((A ∧ C) → (B ∧ C)). If, however, v(C) < 0, then v(C → C) = v(¬C).
Also, v(¬C) ≤ v(¬A), because v(A) ≤ v(C). Hence v((A → B) ∧ (C →
C)) ≤ v(¬C) ≤ v(¬A) ≤ v(A → C) = v((A ∧ C) → (B ∧ C)).

If v(A) > v(B), then v(A ∧ C) = v(C) and v(B ∧ C) = v(B). Also,
v(¬A) ≤ v(¬C), so min(v(¬A), v(B)) ≤ v(¬C). Hence v((A → B) ∧
(C → C)) ≤ min(v(¬A), v(B)) ≤ min(v(¬C), v(B)) = v((A ∧ C) →
(B ∧ C)).

Lemma 6.2. For any A ∈ RM, P → A ∈ RM.

Proof. Assume that A ∈ RM and v be a valuation in M. Then v(P ) ≤
0 and v(A) ≥ 0. Hence v(P → A) ∈ D. Therefore, P → A ∈ RM.

Proposition 6.3. If P → (A ≡ B) ∈ RM then P → (H ≡ H(A/B)) ∈
RM.
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Proof. By induction on the complexity of H.
If H ∈ Var , then H = H(A/B), so P → (H ≡ H(A/B)) ∈ RM, by

Lemma 6.2.
Suppose that the proposition holds for simpler formulas. We only

check the case where H = C ∧ D. Assume that P → (A ≡ B) ∈ RM.
By the induction hypothesis, we have:

• if P → (A ≡ B) ∈ RM then P → (C ≡ C(A/B)) ∈ RM,
• if P → (A ≡ B) ∈ RM then P → (D ≡ D(A/B)) ∈ RM.

Moreover, P → (D → D) ∈ RM, by Lemma 6.2. Hence, by Lemma 6.1,
mp and adjunction) we get:

• P → (C ≡ C(A/B)) ∧ (D → D) ∈ RM.

Since (C ≡ C(A/B)) ∧ (D → D) → (C → C(A/B)) ∧ (D → D) ∈ RM
and (C → C(A/B)) ∧ (D → D) → (C ∧ D → C(A/B) ∧ D) ∈ RM, we
finally obtain P → (C ∧ D ≡ C(A/B) ∧ D) ∈ RM, by Lemma 6.1, mp,
adjunction.

In a similar way, the following is established:

• P → (C(A/B) ∧ D ≡ C(A/B) ∧ D(A/B)) ∈ RM.

Therefore, by (2) in [10] and mp, P → (H ≡ H(A/B)) ∈ RM.
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