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SYNTACTIC PROOFS FOR YABLO’S

PARADOXES IN TEMPORAL LOGIC

Abstract. Temporal logic is of importance in theoretical computer science
for its application in formal verification, to state requirements of hardware
or software systems. Linear temporal logic is an appropriate logical envi-
ronment to formalize Yablo’s paradox which is seemingly non-self-referential
and basically has a sequential structure. We give a brief review of Yablo’s
paradox and its various versions. Formalization of these paradoxes yields
some theorems in Linear Temporal Logic (LTL) for which we give syntactic
proofs using an appropriate axiomatization of LTL.
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Introduction

Yablo’s paradox that seemingly avoids self-reference was published by
Stephen Yablo in [1993]. There have been a lot of discussions on the
issue of self-referentiality or circularity of this paradox [see e.g., Beall,
2001; Bringsjord, 2003; Bueno and Colyvan, 2003a,b; Ketland, 2004,
2005; Priest, 1997; Sorensen, 1998; Yablo, 2004]. Unlike the liar para-
dox, which uses a single sentence, Yablo’s paradox applies an infinite
sentences, each of which refers only to later ones in the sequence. There
is no consistent way to assign truth values to all the statements, although
no statement directly refers to itself. Yablo considers the following se-
quence of sentences {Yi}:

Y1 : ∀k > 1; Yk is untrue,

Y2 : ∀k > 2; Yk is untrue,
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Y3 : ∀k > 3; Yk is untrue,

...

The paradox follows from the following deductions. Suppose Y1 is true.
Then for any k > 1, Yk is not true. In particular, Y2 is not true. Also,
Yk is not true for any k > 2. But this is exactly what Y2 says, hence
Y2 is true after all. Contradiction! Suppose then that Y1 is false. This
means that there is a k > 1 such that Yk is true. But we can repeat
the reasoning, this time with respect to Yk and reach a contradiction
again. No matter whether we assume Y1 to be true or false, we reach a
contradiction. Hence the paradox.

Yablo’s paradox can be viewed as a non-self-referential liar’s paradox;
it has been used to give alternative proof for Gödel’s first incompleteness
theorem [Cieśliński and Urbaniak, 2013; Leach-Krouse, 2014]. Recently
in [Karimi and Salehi, 2014, 2017], a formalization of Yablo’s paradox
is proposed in linear temporal logic. For the semantical interpretation,
appropriate class of Kripke models in linear temporal logic is used. How-
ever, in [Karimi, 2017] a non-self-reference version of Brandenburger-
Keisler paradox [Brandenburger, 2006] is presented in epistemic game
theory based on Yablo’s strategy in his paradox. In this paper, after
a short discussion on Yablo’s paradox and w-inconsistency, we present
a way to have formal versions of Yablo’s paradoxes in Linear Temporal
Logic (LTL). An axiomatization for LTL and syntactic proofs for these
formal versions of Yablo’s paradox will be presented.

The rest of paper is organized as follows: Section 1 shows the exis-
tence of Yablo formulas using diagonal techniques. Section 2 discusses
on Yablo’s paradox and w-inconsistency. Section 3 gives a brief review
on Linear Temporal Logic, and will focus on the formalization of Yablo’s
paradoxes in LTL. Finally, Section 4 will propose an axiom system for
LTL as well as syntactic proofs for various versions of Yablo’s paradox.

1. Yablo’s paradox

Let S be a theory formulated in the language LT , a language of first order
arithmetic extended with a one place predicate T (x). By ∀xT (pϕ(ẋ)q)
we mean: for all natural numbers x, the result of substituting a numeral
denoting x for a variable free in ϕ is true.
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Definition 1.1 (Cieśliński, 2013). Let S be a theory in the language
LT . Formula Y (x) is called a Yablo formula in S if it satisfies the Yablo
condition, i.e., if S ⊢ ∀x

[

Y (x) ≡ ∀z > x ¬T (pY (ż)q)
]

. Yablo sentences
are obtained by substituting numerals for x in Y (x).

It is easy to prove the existence of Yablo formulas for all theories
extending Robinson’s arithmetic [Ketland, 2005; Priest, 1997]. For this,
we apply the generalized diagonal lemma:

Theorem 1.1 (Generalized Diagonal Lemma). Let S be a theory in LT

extending Robinson’s arithmetic. Then for any formula G(x, y) in LT ,

there is a formula ϕ(x) such that

S ⊢ ϕ(x) ≡ G
(

x, pϕ(x)q
)

.

To construct Yablo formula, consider an arithmetized formula of
Yablo’s sequence as follows:

G(x, y) := ∀z > x ¬T
(

Sub(y, ż)
)

,

where Sub(y, ż) is the substitution function. Applying diagonal lemma
for G(x, y), there exists a Yablo formula Y (x) for which

S ⊢ Y (x) ≡ ∀z > x ¬T
(

Sub(pY (x)q, ż)
)

.

Yablo’s paradox appears in several varieties [Yablo, 2004]:

Yn ⇐⇒ ∀ i > n (Yi is not true) (always Yablo’s paradox)
Yn ⇐⇒ ∃ i > n (Yi is not true) (sometimes Yablo’s paradox)
Yn ⇐⇒ ∃ i > n ∀j ­ i (Yi is not true)

(almost always Yablo’s paradox)
Yn ⇐⇒ ∀ i > n ∃j ­ i (Yi is not true)

(infinitely often Yablo’s paradox)

Sometimes Yablo’s paradox is the dual version of the Always one.
Indeed, using ¬Yn instead of Yn in Always Yablo’s paradox, one can
easily derive the Sometimes Yablo’s paradox.

To see that the Almost Always version is paradoxical, let Y0, Y1,
Y2, . . . be a sequence of sentences that each sentence says “all sentences,
except finitely many, after this sentence are false”:

Y0 : ∃ i > 0 ∀j ­ i (Yj is not true),

Y1 : ∃ i > 1 ∀j ­ i (Yj is not true),
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Y2 : ∃ i > 2 ∀j ­ i (Yj is not true),

...

Assigning truth values in a consistent way to all sentences Yi’s leads us
to a paradox. To this end, assume for a moment that there is a sentence
Yn which is true; so there exists i > n for which all Yj with j ­ i are
untrue. In particular, Yi is untrue. Since all the sentences Yi+1,Yi+2,
. . . are untrue, so Yi has to be true. Therefore, Yi is true and false the
same time, which is a contradiction. Whence, all Yn’s are untrue, so Y0

is true: a contradiction!
Note that, applying ¬Yn instead of Yn in Almost Always Yablo’s

paradox, we see that the Infinitely Often version of Yablo’s paradox is
the dual version of this paradox.

2. Yablo’s paradox and w-inconsistency

Ketland [2005] shows that Yablo’s sentences have a non-standard model.
He argues that the list of Yablo sentences is w-paradoxical, in the sense
that it is unsatisfiable on the standard model N of arithmetic. Ketland
has translated Yablo’s paradox into first-order logic which is call the
Uniform Homogeneous Yablo Scheme (UHYS) in [Ketland, 2005]:

∀x
(

ϕ(x) ↔ ∀y[xRy → ¬ϕ(y)]
)

, (UHYS)

where R is a binary relation symbol, with the auxiliary axioms stating
that R is serial and transitive:

∀x∃y(xRy), (SER)

∀x, y, z(xRyRz → xRz). (TRANS)

A Yablo-like argument can show that the formula ¬(UHYS∧SER∧TRANS)
is a first-order tautology [Karimi and Salehi, 2014], i.e. (UHYS) is incon-
sistent, together with (SER) and (TRANS). Note that the inconsistency
of (UHYS) arises irrespective of what ϕ means, provided that R is serial
and transitive. However, Ketland [2005] shows that the associated set
of numerical instances of (UHYS) is consistent as it has a non-standard
model.

Barrio [2010] argues that Yablo’s sequences yield new boundaries to
the expressive capabilities of certain axiomatic theories of truth. He
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shows that one can produces an w-inconsistent, but consistent theory of
truth by adding Yablo’s sentences and the Local Yablo Disquotational
Scheme to first-order arithmetic. This is the reason why Ketland states
Yablo’s Paradox is not strictly a paradox but actually an w-paradox
[Ketland, 2005].

Barrio [2010] shows that Yablo’s sentences have no model in sec-
ond order PA, but even in this case, the sequence is consistent. Barrio
and Picollo [2013] show that adopting w-inconsistent truth theories for
arithmetic in the second-order case leads to unsatisfiability.

Yatabe [2011] reviews Yablo’s paradox to analyze the computational
content of w-inconsistent theories and explains the correspondence be-
tween co-induction and w-inconsistent theories of truth. Yatabe argues
in favour of w-inconsistent first-order theories of truth as he believes that
they are intrinsically equipped with a machinery, co-induction, which is
useful for proving properties of infinite structures, e.g. infinite streams,
infinite trees, infinite process or infinite data structures. Co-induction
is of importance as it enables us to represent infinite process and it is
widely used in computer science. Against Yatabe, Barrio and Da Ré
[2018] present some undesirable philosophical features of w-inconsistent
theories. They focus on the classical theory of symmetric truth FS and
the non-classical theory of naïve truth based on Łukasiewicz infinitely-
valued logic PAŁT in which they identify five conceptual problems as
results of w-inconsistency.

3. Formalization of Yablo’s paradoxes in LTL

Paradoxes are interesting in philosophy and mathematics as they can
be turned into concrete theorems by the way of formalizing them in
some appropriate logics. For example, Liar’s paradox when translated
into the propositional logic is a sentence L such that L ↔ ¬L, which is
inconsistent. Here, the inconsistency is equivalent to the fact that the
formula ¬

(

ϕ ↔ ¬ϕ
)

is a tautology in propositional logic. As another
example, Forster and Goré [2016] demystify Yablo’s paradox by showing
that the formula 2(p ↔ 2¬p) is unsatisfiable in the modal logic KD4
characterized by frames that are strict partial orders without maximal
elements. For others, see [Karimi and Salehi, 2014].

Luna [2009] analyses the structure of Yablo’s paradox to show that
beginning-less step-by-step determination processes can be used to pro-
voke paradoxes. Applying temporal version of Yablo’s setup, he shows
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that the ungroundedness, under the form of a beginningless time or time-
like process, leads to incompatible intuitions. To give an outline, Luna
imagines a time without a beginning inhabited only by an infinite row of
temporally successive thinkers with no first thinker, each of which is in
the absolute past of all the following thinkers and thinks or states only
this: “nobody has ever been right”. He calls such thinkers “Yabloesque
thinkers”. Yabloesque thinkers are exactly the same as Yablo’s sentences
but in the past-time temporal logic with a beginningless time. Luna
[2009] argues that if the chain of the Yabloesque thinkers existed, each
thinker in it would succeed in asserting a definite state of affairs to which
Excluded Middle would apply; therefore, each thinker would succeed in
making a statement with a definite truth-value which is impossible and
leads us to a paradox.

Here, we show that there is another way to have a formal version of
Yablo’s paradox, and that is in Linear Temporal Logic (LTL) [Karimi
and Salehi, 2014, 2017]. The (propositional) linear temporal logic is a
logical formalism that can refer to time; in LTL one can encode formulas
about the future, e.g., a condition will eventually be true, a condition
will be true until another fact becomes true, etc.

3.1. Linear Temporal Logic

Linear Temporal Logic (LTL) was first proposed for the formal verifica-
tion of computer programs by Pnueli [1977]. We assume the reader is
familiar with the general framework of LTL, but for the sake of accessi-
bility, we list the main notations and definitions which will be referred
to later on. For more details [see Kröger and Merz, 2008].

Let V be a set of propositional constants. The alphabet of a basic
language LLTL(V) (also shortly: LLTL) of propositional linear temporal
logic LTL is given by all the propositional constants of V and the symbols
{false,→,#,2, (, )}. The Backus-Naur form for well-formed formulas of
linear temporal logic is as follows:

ϕ ::= false | v | ϕ → ϕ | #ϕ | 2ϕ,

where v ∈ V is a propositional constant. Connectives ¬,∨,∧,↔, true are
defined as in classical logic, and the operator ♦ as ♦ϕ ≡ ¬2¬ϕ. Formu-
las #ϕ, 2ϕ, and ♦ϕ are read as “next ϕ”, “always ϕ”, and “sometime ϕ”.

For the semantical interpretations of LTL we use Kripke structures.
Let V be a set of propositional constants. A temporal (or Kripke)



Syntactic proofs for Yablo’s paradoxes 759

structure for V is an infinite sequence K = (η0, η1, η2, . . .) of mappings
ηi : V → {ff, tt} called states, and η0 is called the initial state of K. For
K and i ∈ N, we define Ki(F ) ∈ {ff, tt} for every formula F inductively
as follows:
1. Ki(v) = ηi(v) for v ∈ V.
2. Ki(false) = ff.
3. Ki(ϕ → ψ) = tt ⇐⇒ Ki(ϕ) = ff or Ki(ψ) = tt.
4. Ki(#ϕ) = Ki+1(ϕ).
5. Ki(2ϕ) = tt ⇐⇒ Kj(ϕ) = tt for every j ­ i.

The formula #ϕ informally means “ϕ holds in temporal state” and
2ϕ means “ϕ holds in all forthcoming states including the present one”.
Truth values for other formula are defined as follows:
6. Ki(¬ϕ) = tt ⇐⇒ Ki(ϕ) = ff.
7. Ki(ϕ ∨ ψ) = tt ⇐⇒ Ki(ϕ) = tt or Ki(ψ) = tt.
8. Ki(ϕ ∧ ψ) = tt ⇐⇒ Ki(ϕ) = tt and Ki(ψ) = tt.
9. Ki(ϕ ↔ ψ) = tt ⇐⇒ Ki(ϕ) = Ki(ψ).
10. Ki(true) = tt.
11. Ki(♦ϕ) = tt ⇐⇒ Kj(ϕ) = tt for some j ­ i.

Definition 3.1 (Kröger and Merz, 2008). A formula ϕ of LLT L(V) is
called valid in the temporal structure K for V (or K satisfies ϕ), denoted
by |=K ϕ, if Ki(ϕ) = tt for every i ∈ N. The formula ϕ is called a
consequence of a set F of formulas (F |= ϕ) if |=K ϕ holds for every K
such that |=K ψ for all ψ ∈ F . The formula ϕ is called (universally)
valid (|= ϕ) if ∅ |= ϕ. A formula ϕ is called (locally) satisfiable if there
is a temporal structure K and i ∈ N such that K(ϕ) = tt.

The following theorem will be used in our arguments.

Theorem 3.1 (Kröger and Merz, 2008). LTL |= ϕ if and only if ¬ϕ is

not satisfiable.

3.2. Yablo’s paradox in linear temporal logic

In order to formalize Yablo’s sentences, we consider a version of (Always)
Yablo’s paradox in the form:

∀n
(

Yn ↔ ∀ i > n ¬Yi

)

where the variables range over N. We go further by thinking of the Yn

in the statement of Yablo’s paradox not as an infinite family of atomic
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propositions but as a single proposition evaluated in lots of worlds in
a (temporal) Kripke model. So, an interpretation of each sentence of
(Always) Yablo’s paradox in linear temporal logic is a sentence ϕ that
satisfies the equivalence ϕ ↔ #2¬ϕ [Karimi and Salehi, 2014].

The temporal counterpart of Yablo’s paradox is the temporal formula

2
(

ϕ ↔ #2¬ϕ
)

which says: always (in the temporal states) is it the case that ϕ holds
iff from the next step onward ϕ is not true. Therefore, the inconsistency
here is equivalent to the fact that the formula ¬2

(

ϕ ↔ #2¬ϕ
)

is a
tautology in propositional linear temporal logic. The proof is exactly
the same as Yablo’s argument but this time in linear temporal logic
[Karimi and Salehi, 2014]:

Theorem 3.2 (Always Yablo’s Paradox). LTL |= ¬2(ϕ ↔ #2¬ϕ).

Proof. To show this formula is valid we will follow exactly the line
of Yablo’s reasoning to obtain his paradox, this time in LTL. By The-
orem 3.1, to prove the formula ¬2(ϕ ↔ #2¬ϕ) is valid in LTL, we
need to show the formula 2(ϕ ↔ #2¬ϕ) is not satisfiable. For a mo-
ment assume that there is a Kripke structure K and n ∈ N for which
Kn

(

2(ϕ ↔ #2¬ϕ)
)

= tt. Then ∀i ­ n Ki(ϕ ↔ #2¬ϕ) = tt which
implies that ∀i ­ n Ki(ϕ) = Ki(#2¬ϕ) = Ki+1(2¬ϕ). We distinguish
two cases:

(1) For some j ­ n we have Kj(ϕ) = tt. Then Kj+1(2¬ϕ) = tt

so Kj+l(ϕ) = ff for all l ­ 1. In particular Kj+1(ϕ) = ff whence
Kj+2(2¬ϕ) = ff which is in contradiction with Kj+1(2¬ϕ) = tt.

(2) For all j ­ n we have Kj(ϕ) = ff. So ff = Kn(ϕ) = Kn+1(2¬ϕ)
hence there must exist some i > n with Ki(ϕ) = tt which contradicts (1)
above.

Thus, the formula 2(ϕ ↔ #2¬ϕ) cannot be satisfiable in LTL. ⊣

Each version of Yablo’s paradox can be seen as a theorem in lin-
ear temporal logic for which we will give syntactic proofs based on an
appropriate axiomatization of LTL.

Theorem 3.3 (Karimi and Salehi, 2014).

LTL |= ¬2(ϕ ↔ #♦¬ϕ) (Sometimes Yablo′s Paradox)

LTL |= ¬2(ϕ ↔ #♦2¬ϕ) (Almost Always Yablo′s Paradox)

LTL |= ¬2(ϕ ↔ #2♦¬ϕ) (Infinitely Often Yablo′s Paradox)
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4. Syntactic proofs for Yablo’s paradoxes

Now, we present a syntactic argument. Consider axioms and rules for
LTL as follows:

#¬ϕ ↔ ¬#ϕ (Ax1)

#(ϕ → ψ) → (#ϕ → #ψ) (Ax2)

2ϕ → (ϕ ∧ #2ϕ) (Ax3)

ϕ, ϕ → ψ

ψ
(mp)

ϕ → ψ, ϕ → #ϕ

ϕ → 2ψ
(ind)

ϕ

#ϕ
(nex)

Theorem 4.1 (Deduction Theorem for LTL [Kröger and Merz, 2008]).
Let ϕ, ψ be formulas in LTL and F be a set of formulas. If F ∪ {ϕ} ⊢ ψ

then F ⊢ 2ϕ → ψ. In particular, if ϕ ⊢ ψ then ⊢ 2ϕ → ψ.

Theorem 4.2. Using axioms and rules of LTL, following rules and for-

mulas are derivable in LTL:

1.
ϕ → ψ

#ϕ → #ψ

2. 2ϕ → 22ϕ

3. #2ϕ → 2#ϕ

4. 2#ϕ → #2ϕ

5. if
ϕ

ψ
, then

#ϕ

#ψ

6. (#ϕ → #ψ) → #(ϕ → ψ)

7. ϕ ∧ #2ϕ → 2ϕ

8.
ϕ

2ϕ

9.
ϕ → ψ

2ϕ → 2ψ

Using the axioms and rules, we can directly show:

Theorem 4.3. LTL ⊢ ¬2(ϕ ↔ #2¬ϕ).
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Proof. For a moment, assume that LTL ⊢ 2(ϕ ↔ #2¬ϕ), then we
have LTL ⊢ 2(ϕ ↔ 2#¬ϕ). Thus,

1. 2(ϕ ↔ 2#¬ϕ)
2. 2(ϕ ↔ 2#¬ϕ) → (ϕ ↔ 2#¬ϕ) ∧ #2(ϕ ↔ 2#¬ϕ) (Ax3)
3. ϕ ↔ 2#¬ϕ (1), (2), (mp), (prop)
4. #ϕ ↔ #2#¬ϕ (nex), (Ax1), (mp)
5. ϕ ↔ #¬ϕ ∧ #2#¬ϕ (3), (Ax3)
6. ϕ ↔ #¬ϕ ∧ #ϕ (4), (5)
7. ϕ ↔ false (6), (prop)
8. ¬ϕ (7)
9. #¬ϕ (8), (nex)

10. 2#¬ϕ (9)
11. ϕ (3), (10), (mp)
12. ⊥ (8), (11)

Therefore, LTL ⊢ ¬2(ϕ ↔ #2¬ϕ). ⊣

Theorem 4.4. LTL ⊢ ¬2(ϕ ↔ #♦¬ϕ).

Proof. Applying the proof of Theorem 4.3 for the formula ¬ϕ instead
of ϕ yields the assertion. ⊣

Theorem 4.5. LTL ⊢ ¬2(ϕ ↔ #2♦¬ϕ).

Proof. For a moment, assume that LTL ⊢ 2(ϕ ↔ #2♦¬ϕ), then

1. 2(ϕ ↔ #2♦¬ϕ)
2. (ϕ ↔ #2♦¬ϕ) ∧ #2(ϕ ↔ #2♦¬ϕ) (Ax3) , (mp)
3. ϕ ↔ #2♦¬ϕ (2), (prop)
4. ϕ ↔ #(♦¬ϕ ∧ #2♦¬ϕ) (Ax3), Theorem 4.2(7)
5. 2ϕ ↔ 2#2♦¬ϕ (1), Theorem 4.2(9)
6. 2ϕ ↔ #22♦¬ϕ (5), Theorem 4.2(3,4)
7. 2ϕ ↔ #2♦¬ϕ (6), Theorem 4.2(2)
8. ϕ ↔ #(♦¬ϕ ∧ 2ϕ) (4), (7)
9. ϕ ↔ #(¬2ϕ ∧ 2ϕ) (8)

10. ϕ ↔ ⊥ (9), (prop)
11. ¬ϕ (10), (prop)
12. ¬ϕ ↔ ¬#2♦¬ϕ (3), (prop)
13. ¬ϕ ↔ #♦2¬¬ϕ (12), Theorem 4.2(3,4)
14. ¬ϕ ↔ #♦2ϕ (13), (prop)
15. ¬ϕ ↔ #♦(2ϕ ∧ #2ϕ) (14), (Ax3), Theorem 4.2(7)
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16. ¬ϕ ↔ #♦(#2♦¬ϕ ∧ #2ϕ) (7), (15)
17. ¬ϕ ↔ #♦#(2♦¬ϕ ∧ 2ϕ) (16)
18. ¬ϕ ↔ ##♦(2♦¬ϕ ∧ 22ϕ) (17), (Ax1), (definition of ♦)
19. ¬ϕ ↔ ##♦2(♦¬ϕ ∧ 2ϕ) (18)
20. ¬ϕ ↔ ##♦2(¬2ϕ ∧ 2ϕ) (19)
21. ¬ϕ ↔ ⊥ (20), (prop)
22. ¬ϕ (21), (prop)
23. ϕ ∧ ¬ϕ (11), (22)
24. ⊥ (23), (prop)

Thus, LTL ⊢ ¬2(ϕ ↔ #2♦¬ϕ). ⊣

Theorem 4.6. LTL ⊢ ¬2(ϕ ↔ #♦2¬ϕ).

Proof. Applying the proof of Theorem 4.5 for the formula ¬ϕ instead
of ϕ yields the assertion. ⊣

5. Conclusions

Paradoxes are of great importance in philosophy and mathematics as
they can be turned into concrete theorems by means of formalization
in appropriate logics. Linear temporal logic is a logical environment in
which Yablo’s paradox can be formalized as basically it has a sequential
structure. In this paper, we have turned Yablo’s paradox into a theorem
in Linear Temporal Logic (LTL). We have also use this approach to other
versions of Yablo’s paradox, including the original version and its dual
(Sometimes Yablo’s paradox), as well as Almost Always Yablo’s paradox
and its dual (Infinitely Often Yablo’s paradox). Therefore, each version
of Yablo’s paradox is appeared as a theorem in linear temporal logic for
which we give syntactic proofs based on an appropriate axiomatization
of LTL.
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