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LEIBNIZ’S LAWS OF CONSISTENCY
AND THE PHILOSOPHICAL FOUNDATIONS

OF CONNEXIVE LOGIC

Abstract. As an extension of the traditional theory of the syllogism, Leib-
niz’s algebra of concepts is built up from the term-logical operators of con-
junction, negation, and the relation of containment.

Leibniz’s laws of consistency state that no concept contains its own
negation, and that if concept A contains concept B, then A cannot also
contain Not-B. Leibniz believed that these principles would be universally
valid, but he eventually discovered that they have to be restricted to self-

consistent concepts.
This result is of utmost importance for the philosophical foundations

of connexive logic, i.e. for the question how far either “Aristotle’s Thesis”,
¬(α → ¬α), or “Boethius’s Thesis”, (α → β) → ¬(α → ¬β), should be
accepted as reasonable principles of a logic of conditionals.

Keywords: connexive logic; Leibniz’s logic; term logic vs. propositional logic

1. Introduction

Connexive logic may briefly be described as a (non-classical) logic in
which the implication operator, →, is connexive. The latter condition
may in turn be explained by the requirement that “no formula provably
implies or is implied by its own negation” [see 13]. At some greater
length, Pizzi/Williamson put forward the following claims about an “in-
tuitively conceived relation of implication”:

(1) No proposition implies its own negation.
(2) No proposition implies each of two contradictory propositions.
(3) No proposition implies every proposition.
(4) No proposition is implied by every proposition. [12, p. 569]
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Aristotle, Boethius, Chrysippus, and Abelard are often considered as ad-
vocates of a connexive conception of implication. In particular, principle

Arist ¬(α → ¬α)

has been claimed by McCall [11, p. 415] to represent Aristotle’s view
about implication; therefore it is commonly referred to as “Aristotle’s
[first] thesis”. Closely related to Arist is the subsequent principle:

Boeth If (α → β), then not (also) (α → ¬β).

It has been dubbed “Boethius’ thesis” because, according to McCall,
Boethius defended the view that “the two implications ‘If q then r’ and
‘If q then not-r’ are incompatible”.1

In formulas Arist, Boeth and throughout this paper, ‘¬’ symbolizes
propositional negation and ‘→’ some kind of strict or logical implication.
Furthermore, we use ‘∧’ and ‘∨’ as symbols for (propositional) conjunc-

tion and disjunction; ‘♦’, ‘�’ as symbols for the modal operators ‘it is
possible that’ and ‘it is necessary that’; and ‘∀x’ and ‘∃x’ to abbreviate
the quantifiers ‘for every x’ and ‘for at least one x’.

It almost goes without saying that the whole issue of connexive logic
does not concern the operator of material implication (symbolized by
‘⊃’) because ¬(α ⊃ ¬α) is truth-functionally equivalent to (α ∧ ¬¬α),
i.e. α ∧ α, or simply α. Hence, if the ‘→’ in Arist were understood in
the sense of ‘⊃’, “Aristotle’s thesis” would amount to the absurd claim
that every proposition α is true!

According to Sextus Empiricus, Chrysippus considered a conditional
as “sound when the contradictory of its consequent is incompatible with
its antecedent”. With the help of a binary operator ‘•’ denoting that α

is compatible with β, McCall formalized this Chrysippian definition of
implication as follows:

Chrys (α → β) ↔ ¬(α • ¬β).2

1 Cf. [11, p. 416]. McCall further pointed out that as one of his “centrepieces of
[a] theory of conditionals” Abelard defended the following variant of Boeth: ¬[(α →

β)∧(α → ¬β)]. In [11, p. 417] this principle is stated with ‘∼’ as a symbol of negation,
‘&’ as a symbol of conjunction and ‘p’ and ‘q’ as propositional variables instead of ‘α’
and ‘β’.

2 Cf. [10, p. 435], McCall uses ‘A’, ‘B’ instead of ‘α’, ‘β’, and he denotes the
negation of A by Ā.
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As McCall showed in [10, p. 435], Chrys entails Boeth provided that
one presupposes “the plausible thesis that if α implies β, α is compatible
with β”, i.e. provided that one accepts the following thesis:

McCall If (α → β), then (α • β).

It seems important to scrutinize the historical sources in order to find
out whether the ancient logicians really defended a connexive concep-
tion of implication as expressed in theses Arist, Boeth, Chrys (and
McCall). For reasons of space, however, this rewarding task cannot be
carried out here but must be reserved for another occasion. The present
paper will instead focus on Leibniz’s logic, which sheds some important
light on the philosophical foundations of connexive implication.

After giving a brief survey of the traditional theory of the syllogism
in Section 2, Leibniz’s algebra of concepts will be outlined in Section 3.
In Section 4 it will be shown how this term logic may be transformed
into a system of propositional logic. This system constitutes a calculus
of strict implication in which the following restrictions of Arist and
Boeth become provable:

Leib 1 If ♦α, then ¬(α → ¬α)
Leib 2 If ♦α, then if (α → β), then not (also) (α → ¬β).

In section 5 it will be argued that the acceptance of the unrestricted

axioms of connexive implication would be tantamount to assuming that
(even) a contradictory proposition doesn’t entail its own negation:

Conn 1 If ¬♦α, then ¬(α → ¬α).

As a corollary of Conn 1 one obtains in particular:

Conn 2 ¬((α ∧ ¬α) → ¬(α ∧ ¬α)).

Hence any «hardcore» connexivist has to bite the bullet and maintain
that the self-contradiction (α ∧ ¬α) does not entail the tautology ¬(α ∧
¬α))!

2. The Theory of the Syllogism

Traditional logic is mainly concerned with the four categorical forms

of universal (U) and particular (P) propositions which can be either
affirmative (A) or negative (N):

UA Every S is P UN No S is P

PA Some S is P PN Some S isn’t P .
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Here the subject, S, and the predicate, P , are supposed to be concepts

such as ‘man’, ‘wise’, ‘animal’, etc.3 Medieval logicians introduced the
vowels a, e, i, and o to abbreviate these forms as:

UA S a P UN S e P

PA S i P PN S o P .4

In terms of first order logic, these formulas are nowadays interpreted as:

UA ∀x(Sx ⊃ Px) UN ∀x(Sx ⊃ ¬Px)
PA ∃x(Sx ∧ Px) PN ∃x(Sx ∧ ¬Px).

There are mainly three groups of so-called «simple» laws. The theory
of opposition states that the UA and the PA are contradictory to each
other, just as are the UN and the PA:

Opp 1 ¬(S a P ) ↔ (S o P )
Opp 2 ¬(S e P ) ↔ (S i P ).

The theory of subalternation states that an (affirmative or negative)
universal proposition entails its particular counterpart:

Sub 1∗ S a P → S i P

Sub 2∗ S e P → S o P .5

The theory of conversion states that the UN and the PA may be con-
verted «simpliciter», while the UA may only be converted «per acci-
dens»6:

Conv 1 S e P → P e S

Conv 2 S i P → P i S

Conv 3∗ S a P → P i S.7

3 In addition to general terms, sometimes also singular terms such as ‘Aristotle’
are taken into account.

4 In [2, pp. 244 f], the invention of the so-called mnemonic syllogistic is attributed
to Petrus Hispanus.

5 The ‘∗’ behind the «name» of the formula is meant to indicate that the principle
is not (entirely) valid.

6 The PN, in contrast, does not allow any conversion at all.
7 Principle Conv 3 is redundant since it follows from Sub 1 and Conv 2; similarly,

Conv 1 together with Sub 2 entails that the UN may also be converted «accidentally»:
S e P → P o S. Furthermore, Conv 1 might be strengthened into a biconditional:
S e P ↔ P e S; and from this one easily derives ¬(S e P ) ↔ ¬(P e S), i.e. in view of
Sub 2: S i P ↔ P i S. Hence also Conv 2 may be strengthened into a biconditional.
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While the laws of opposition and «simple» conversion are easily verified
by the contemporary interpretation of the categorical forms, the princi-
ples of subalternation (and of «accidental» conversion) remain somewhat
problematic since, e.g., the inference from ∀x(Sx ⊃ Px) to ∃x(Sx ∧ Px)
only holds when the subject is not «empty», i.e. when there exists at
least one x such that Sx.

Medieval logicians explicitly acknowledged the use of negative terms.
Let C be any concept occupying the subject or predicate position of a
categorical form. Then its negation Not-C shall be symbolized by means
of the operator ‘∼’ as ‘∼C’. In analogy to the principle for propositional

negation, (¬¬α ↔ α), the negation operator ∼ satisfies the law of double
negation

Neg 1 ∼∼C = C.

The laws of obversion allow to reduce the negative propositions SeP and
S o P to corresponding affirmative propositions with negated predicates:

Obv 1 S e P ↔ S a ∼P

Obv 2 S o P ↔ S i ∼P .8

Furthermore, in analogy to the principle of propositional contraposition,
(α → β) ↔ (¬β → ¬α), in the realm of term logic the following law of
«conversion by contraposition» is taken to hold:

Contra S a P ↔ ∼P a ∼S.

The syllogistic «moods» are inferences leading from two premises P1,
P2 to a conclusion Q. The subject, S, and the predicate, P , of the
conclusion are called the minor and the major term, respectively, and
each of the premises contains a third, or middle, term M , which will be
related to S and to P . The most famous moods of the so-called First
figure are:

Barbara M a P, S a M ⇒ S a P 9

Celarent M e P, S a M ⇒ S e P

Darii M a P, S i M ⇒ S i P

Ferio M e P, S i M ⇒ S o P .

8 Similarly, all affirmative propositions might be transformed into negative propo-
sitions by means of the laws (S a P ↔ S e ∼P ) and (S i P ↔ S o ∼P ).

9 We use the arrow ‘⇒’ instead of ‘→’ to formalize logical inferences.
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Within the theory of the syllogism, propositional inferences and trans-
formations are usually carried out only implicitly. In particular, the
inference of so-called «regress»:

Regr If P1, P2 ⇒ Q, then P1, ¬Q ⇒ ¬P2

is often tacitly presupposed for deriving the moods of the Second and the
Third from those of the First Figure.10 The soundness of Regr follows
from the definition of a valid inference which says that {P1, . . . , Pn} ⇒ Q

is logically valid if and only if it can’t be the case that all premises Pi are
true and yet the conclusion Q be false. In the special case with only one

premise, schema Regr reduces to what later came to be called modus

tollens:

Toll If P ⇒ Q and if ¬Q, then ¬P .

3. Leibniz’s Algebra of Concepts

As has been shown at some length in [7] and [8], the basic system of
Leibniz’s logic of concepts uses the following primitive elements:

(a) A (possibly infinite) number of concept letters, A, B, C, . . .
(b) The relation of conceptual containment, ‘A contains B’, formally

A e B.
(c) The operation of conceptual conjunction joining two concepts A and

B into ‘A and B’, or formally AB.
(d) The operator of conceptual negation which, for any concept A, yields

the concept ‘Not-A’, formally ∼A.

Two further operators may be defined as follows:

(e) Conceptual identity as mutual conceptual containment: A = B =df

A e B ∧ B e A

(f) Possibility (or self-consistency) of a concept A as obtaining whenever
A does not contain a contradictory conjunction like B ∼ B:
P(A) =df ¬(A e B ∼ B).11

The algebra of concepts may be axiomatized, e.g., by means of the fol-

10 A comprehensive derivation was given by Leibniz in “De formis syllogismorum
mathematice definiendis” [cf. 3, pp. 410–416].

11 A referee of this paper raised doubts whether the definiens ¬A e B ∼ B (with
‘B’ as a free, unbound variable) would be formally adequate. He suggested to use
instead the explicitly quantified variant “for all B: not: A est B ∼ B”. As a matter of
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lowing principles put forward by Leibniz in [8]:

Cont 1 A e A

Cont 2 A e B ∧ B e C → A e C

Conj 1 A e BC ↔ A e B ∧ A e C

Neg 1 ∼∼A = A

Neg 2 A e B ↔ ∼B e ∼A

Neg 3 A e B ↔ ¬P(A ∼ B).12

All these laws are validated by the following (extensional) semantics
which accords with Leibniz’s own intuitions:

Definition 1. An extensional interpretation of L1 is a triple 〈U, Ext,

Val〉 such that

1. U (the universe of discourse) is a non-empty set (intuitively to be
regarded as the set of all possible individuals);

2. Ext is a function which assigns to each concept letter A a subset of U

(to be regarded as the extension of concept A) such that
2.1. Ext(∼A) = Ext(A)
2.2. Ext(AB) = Ext(A) ∩ Ext(B)

3. Val is a valuation function which assigns to each proposition α a
truth-value ‘t’ or ‘f’ such that
3.1. Val(A e B) = t if and only if Ext(A) ⊆ Ext(B)
3.2. Val(P(A)) = t if and only if Ext(A) 6= ∅.

Condition (3.1) is the formal counterpart of the principle of the reci-

procity of extension and intension which Leibniz put forward, e.g., in [6]:

The common manner of statement concerns individuals, whereas Aris-
totle’s refers rather to ideas or universals. For when I say Every man is

an animal I mean that all the men are included among all the animals;

fact, Leibniz himself expressed this condition alternatively by means of an «indefinite
concept» Y as ¬(A e Y ∼ Y ). Cf. [4, p. 749, fn. 8]: “A non-A contradictorium est.
Possibile est quod non continet contradictorium seu A non-A. Possibile est quod
non est: Y non-Y .” However, both conditions are provably equivalent, and one may
further simplify the definition of P(A) by requiring that A doesn’t contain its own
negation: ¬(A e ∼A).

12 Cf. the following §§ of [4]: “B is B” (§37); “[. . . ] if A is B and B is C, A will be
C” (§19); “That A contains B and A contains C is the same as that A contains BC”
(§35); “Not-not-A = A” (§96); “In general, A is B is the same as Not-B is Not-A”
(§77); “A Not-B is not a thing is equivalent to the universal affirmative, Every A is
B” (§169).
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but at the same time I mean that the idea of animal is included in the
idea of man. ‘Animal’ comprises more individuals than ‘man’ does, but
‘man’ comprises more ideas or more attributes: one has more instances,
the other more degrees of reality; one has the greater extension, the
other the greater intension. [cf. 6, Book IV, ch. XVII, §8; p. 469]

If ‘Int(A)’ and ‘Ext(A)’ abbreviate the «intension» and the extension of
concept A, respectively, then the law of reciprocity can be formalized as
follows:

Reci 1 Int(A) ⊆ Int(B) ↔ Ext(A) ⊇ Ext(B).

From this it immediately follows that two concepts have the same «in-
tension» if and only if they have the same extension:

Reci 2 Int(A) = Int(B) ↔ Ext(A) = Ext(B).13

This somewhat surprising result might seem to unveil an inadequacy
of Leibniz’s logic. However, «intensionality» in the sense of traditional
logic must not be mixed up with intensionality in the modern sense.
Furthermore, in Leibniz’s view, the extension of concept A is not just
the set of actually existing individuals, but rather the set of all possible

individuals that fall under concept A. This observation helps to justify
also condition (3.2) according to which the proposition ‘A is possible’ is
evaluated as true if and only if A’s extension is not empty. Clearly, if A

13 A referee of a previous version of this paper was puzzled by the use of the set-

theoretical operator ‘⊆’ for formalizing the law of reciprocity. “What properly means
that Int(A) set-theoretically includes Int(B)? How can this be possible?” Well, the
answer is: If one follows the traditional approach as described, e.g., in the “Logic of
Port Royal”, then the intension (or «comprehension») of a concept A is the set of all
«attributes» which are contained in A [cf. 1, p. 59]. Thus Int(A) ⊇ Int(B) iff for every
attribute C: If C ∈ Int(B), then C ∈ Int(A), i.e. whenever B contains C (in the sense
of B e C), then A also contains C.

Moreover, the referee thought that the law of reciprocity doesn’t cope with neg-
ative terms and/or negative propositions. He pointed out that, e.g., ‘No man is a
dog’ is true, according to the extensional point of view, iff the sets Ext(Man) and
Ext(Dog) are totally disjoint. And then he wondered: “But what is the reciprocal of
this from the intensional point of view? The concept of man and that of dog have a
lot of properties in common.” As a matter of fact, both concepts contain, e.g., the
attribute ‘living being’, so that Int(Man) ∩ Int(Dog) 6= ∅. But this fact poses no
problem for the law of reciprocity. ‘No man is a dog’ can be paraphrased as ‘Every
man is a not-dog’; hence Ext(Man) ⊆ Ext(Not-Dog); therefore, according to Reci 1,
Int(Man) ⊇ Int(Not-Dog), i.e. every C ∈ Int(Not-Dog) must also be an element of
Int(Man). This means: whenever (Not-Dog) e C, then (Man) e C. But this holds
simply because (Man) e (Not-Dog)!
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is possible, then there must exist at least one possible individual x that
falls under that concept!

Let us now consider some laws of the algebra L1 which are of par-
ticular relevance for the issue of connexive logic. In several drafts of his
Calculus, Leibniz put forward two laws of consistency stating (i) that a
concept A will never contain its own negation, and (ii) that if A contains
B, A will not also contain ∼B:

Neg 4∗ ¬(A e ∼A)
Neg 5∗ A e B → ¬(A e ∼B).14

Neg 4∗ was formulated in §43 of [4] as follows: “It is false that B

contains Not-B, or B does not contain Not-B”. In the subsequent §44,
Leibniz added the variant “that it is false that Not-B contains B”, and
yet another § later he derived the corollary “It is false that B and Not-B
coincide”, i.e.

Neg 6 ¬(A = ∼A).

Now while Neg 6 actually is a (semantically valid) theorem of L1 , prin-
ciples Neg 4∗ and Neg 5∗ are not entirely valid but have to be restricted

to self-consistent concepts:

Neg 4 P(A) → ¬(A e ∼A)
Neg 5 P(A) → (A e B → ¬(A e ∼B).

Leibniz himself tried to prove Neg 4∗ by starting from axiom Cont 1,
A eA, and inferring that therefore ¬(A e ∼A) because otherwise A would
contain both A and ∼A, i.e. a contradiction:

B contains B (by 37); therefore it does not contain Not-B, otherwise
it would be impossible (by 32).

While § 37 mentioned in this proof contains just another version of the
law of reflexivity of ‘e’, § 32 says that a conjunction like A (and) Not-A
is always impossible15:

Neg 7 ¬P(A ∼ A).

Hence the «laws» Neg 4∗ and Neg 5∗, which at first sight appeared to
be generally valid, in fact only hold if concept A is self-consistent!

This result sheds some interesting light on the long-standing contro-
versy about subalternation! As was mentioned in section 2, traditional

15 Cf. [4, §32]: “B Not-B is impossible, or if B Not-B = C, C will be impossible”.
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logic always considered it as evident that a universal proposition entails
its particular counterpart:

Sub 1∗ A a B → A i B

Sub 2∗ A e B → A o B.

As a matter of fact, one may even give a syllogistic «proof » of these
laws, but this «proof» relies on the following two «identities»:

Id 1 A a A

Id 2∗ A i A.16

Now while Id 1 indeed is an identity which in terms of 1st order logic
amounts to ∀x(Ax ⊃ Ax), Id 2∗ amounts to condition ∃x(Ax ∧ Ax)
which fails to be true in the case where the extension of A is «empty»!
Since, in Leibniz’s logic, the categorical forms can be represented by the
following formulas:

UA A e B UN A e ∼B

PA ¬(A e ∼B) PN ¬(A e B),

the former principle of consistency, Neg 5∗, represents a formalized ver-
sion of principle Sub 1∗! So in the same way as Neg 4∗ and Neg 5∗

must be restricted to Neg 4 and Neg 5, respectively, so also the laws of
subalternation and the second «identity» have to be restricted to self-
consistent concepts:

Sub 1 If P(A), then (A a B → A i B)
Sub 2 If P(A), then (A e B → A o B)
Id 2 If P(A), then A i A.

Just remember that in view of the extensional semantics developed
above, concept A is self-consistent if and only if A has a non-empty
extension (within the domain of all possible individuals, U)!

4. Leibniz’s (modal) propositional logic PL1

Leibniz discovered a simple, ingenious method to transform the algebra
of concepts, L1 , into an algebra of propositions, PL1 . Already in [5]

16 Leibniz put forward these proofs, e.g., in “De formis syllogismorum mathemat-
ice definiendis”; [cf. 3, p. 412]: “Omne A est B. Quoddam A est A. Ergo Quoddam

A est B, quod est argumentum in Darii.”
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(written between 1683 and 1685), he pointed out to the parallel between
the containment relation among concepts and the implication relation
among propositions. Just as the categorical proposition ‘A is B’ is true,
“when the predicate [A] is contained in the subject” B, so a conditional

proposition ‘If A is B, then C is D’ is true, “when the consequent is
contained in the antecedent” [cf. 5, p. 551]. In later works Leibniz com-
pressed this idea into formulations such as “a proposition is true whose
predicate is contained in the subject or more generally whose conse-
quent is contained in the antecedent” [cf. 3, p. 401]. The most detailed
explanation of this idea was given in §§ 75 and 189 of [4]:

If, as I hope, I can conceive all propositions as terms, and hypotheti-
cals as categoricals and if I can treat all propositions universally, this
promises a wonderful ease in my symbolism and analysis of concepts,
and will be a discovery of the greatest importance. [. . . ] Our principles,
therefore, will be these [. . . ] whatever is said of a term which contains
a term can also be said of a proposition from which another proposition
follows.

To conceive all propositions in analogy to concepts means in particu-
lar that the conditional ‘If α then β’ will be logically treated like the
containment relation between concepts, ‘A contains B’. Furthermore, as
Leibniz explained elsewhere, negations and conjunctions of propositions

are to be conceived just as negations and conjunctions of concepts. Thus
one obtains the following mapping of the formulas of L1 into formulas
of PL1 :

A e B α → β

A = B α ↔ β
∼A ¬α

AB α ∧ β

P(A) ♦α.

As Leibniz himself noticed, the fundamental law Neg 3, A e B ↔
¬P(A∼B), not only holds for the containment-relation between concepts
but also for the entailment relation between propositions:

‘A contains B’ is a true proposition if ‘A Not-B’ entails a contradiction.
This applies both to categorical and to hypothetical propositions.

[cf. 3, p. 407]
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Hence, as a propositional analogue of Neg 3, one obtains formula (α →
β) ↔ ¬♦(α ∧ ¬β) which unmistakably shows that Leibniz’s conditional
operator is not a material but rather a strict implication.17

5. The philosophical foundations of connexive logic

As counterparts of the laws of consistency Neg 4 and Neg 5, Leibniz’s
propositional logic PL1 contains the following theorems which are just
restrictions of the principles Arist and Boeth to self-consistent propo-
sitions:

Leib 1 If ♦α, then ¬(α → ¬α)
Leib 2 If ♦α, then ((α → β) → ¬(α → ¬β)).

It is important to note that the validity of Leib 1, 2 is not a peculiar
feature of Leibniz’s logic only. These principles rather are theorems of
any «normal» modal logic which has ‘♦’ as a possibility-operator, ‘→’
as a relation of strict implication, and in which the counterpart of Neg
7, i.e. ¬♦(α ∧ ¬α), is provable.18

If a «hardcore» defender of connexivism insists that absolutely no

proposition ever entails its own implication, this thesis therefore becomes
equivalent to the claim that (even) if α is self-contradictory, α will not
entail its own negation:

Conn 1 ¬♦α ⊃ ¬(α → ¬α).

As a corollary of Conn 1 the self-contradictory proposition (α ∧ ¬α)
doesn’t entail its own tautological negation:

Conn 2 ¬((α ∧ ¬α) → ¬(α ∧ ¬α)).

Of course, from a merely formal point of view, it may be worth while
investigating the syntactical, proof-theoretical and semantic features of
non-classical logics satisfying Conn 1, 2. But the following straightfor-
ward refutation makes clear that «hardcore connexivism» is incompatible
with some very elementary principles of classical logic, to wit:

17 A closer investigation of calculus PL1 may be found in [7].
18 A referee of this paper pointed out that Leib 2 is not a theorem of modal

system K (which lacks the «truth-axiom» �α → α). Maybe this is correct, but in
systems at least as strong as T both «Leibnitian» principles become provable.
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Conj 1 α ∧ β → α

Conj 2 α ∧ β → β

Contra If (α → β), then (¬β → ¬α)
Trans If (α → β) and (β → γ), then (α → γ).

Proof. (i) α ∧ ¬α → α (Conj 1)
(ii) α ∧ ¬α → ¬α (Conj 2)
(iii) If (α ∧ ¬α → α), then (¬α → ¬(α ∧ α))

(Contra)
(iv) ¬α → ¬(α ∧ α) ((i), (iii), Trans)
(v) α ∧ ¬α → ¬(α ∧ α) ((ii), (iv), Trans)

As Christopher Martin kindly informed me, a variant of this refutation
of Conn 2 had already been put forward by the 12th century logician
Alberic of Paris against “Abelard’s second thesis”:

Abel 2 ¬(α → ¬α).19

Taken for granted that (necessarily) “if something is a human, then it is
an animal”, Alberic showed that the (impossible) assumption “Socrates
is human and Socrates is not an animal” entails its own negation. Ac-
cording to Martin’s reconstruction [see 9, pp. 191–192],

Alberic argued by simplification that
(1) If Socrates is human and Socrates is not an animal, then Socrates

is not an animal, and by contraposition that
(2) if Socrates is not an animal, then Socrates is not human. But by

simplification and contraposition, it follows that
(3) if Socrates is not human, then it is not the case that Socrates is

human and Socrates is not an animal and so by transitivity that
(4) if Socrates is human and Socrates is not an animal, then it is not

the case that Socrates is human and Socrates is not an animal.

Martin further reports that according to a contemporary source “this
argument was too much for [the old man] Abelard [so] that he simply
accepted the conclusion”. But Martin thinks it possible that Abelard
might have found a way out of the problem by modifying the “principle
of simplification”, i.e. basically our conjunction principles Conj 1, 2. In
the Introductiones Montanae minores (written by a follower of Alberic)
a possible argument against Conj 2 had been formulated as follows:

They said that ‘if Socrates is human and Socrates is not an animal,
then Socrates is not an animal’ does not hold because a negation is not
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so powerful (vehemens) when joined with an affirmation as it is when
it is alone, and something follows from a negation alone which does not
follow from it when it is conjoined with an affirmation.

[9, pp. 198–199, Note 76]

This argument represents a typical example of what one nowadays calls
a sophistic solution of a problem. It is a possible, or at least possibly

possible way out, which, however appears to have been invented entirely
ad hoc and which is otherwise totally implausible and substantially un-
founded.20

There is a simple lesson which contemporary logicians can learn from
Leibniz’s laws of consistency: The basic idea of connexive implication is

absolutely fine:

(1) No «normal», i.e. no self-consistent proposition implies its own negation.
(2) No «normal» proposition implies each of two contradictory propositions.
(3) No «normal» proposition implies every proposition.

Just one exception: «Abnormal», self-contradictory propositions like (α∧
¬α) necessarily do entail their own negation!
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