Logic and Logical Philosophy
Volume 27 (2018), 53-66
DOI: 10.12775/LLP.2017.001

Yaroslav Petrukhin

NATURAL DEDUCTION FOR FOUR-VALUED
BOTH REGULAR AND MONOTONIC LOGICS

Abstract. The development of recursion theory motivated Kleene to cre-
ate regular three-valued logics. Taking his inspiration from the computer
science, Fitting later continued to investigate regular three-valued logics
and defined them as monotonic ones. Afterwards, Komendantskaya proved
that there are four regular three-valued logics and in the three-valued case
the set of regular logics coincides with the set of monotonic logics. Next,
Tomova showed that in the four-valued case regularity and monotonicity
do not coincide. She counted that there are 6400 four-valued regular logics,
but only six of them are monotonic. The purpose of this paper is to cre-
ate natural deduction systems for them. We also describe some functional
properties of these logics.

Keywords: natural deduction; four-valued logic; regular logic; monotonic
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1. Introduction

1.1. Preliminaries

All logics described in this paper are built in a propositional language £
which we define in Backus—Naur form as follows:

A=p|-A|ANA| AV A

Let Prop and Form abbreviate, respectively, the set of all proposi-
tional variables and the set of all formulae of £. Let V3 and Vj be,
respectively, the set {1,u,0} of truth values “true”, “undefined”, and
“false” and the set {1,b,n,0} of truth values “true”, “both true and
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false”, “neither true no false”, and “false”. In all ¢t-valued (¢ € {3,4})
logics described in this paper, a valuation is a function v from Prop to
V;. Moreover, let us denote a truth-table f for a connective ¢ by f..

1.2. Three-valued both regular and monotonic logics

Let us call reqular logics those systems in which all connectives are reg-
ular in the sense specified below. The investigation of them began in
Kleene’s paper [15] where two regular logics were introduced: Kleene’s
strong logic K3 and Kleene’s weak logic K¥. In [14] Kleene defines reg-
ularity and clarifies the motivation behind it as follows:

We conclude that, in order for the propositional connectives to be par-
tial recursive operations (or at least to produce partial recursive pred-
icates when applied to partial recursive predicates), we must choose
tables for them which are reqular, in the following sense: A given col-
umn (row) contains 1 in the u row (column), only if the column (row)
consists entirely of 1’s; and likewise for 0. (14, p. 334]

In K3 a valuation v on Prop is extended to a valuation on Form
according to the following truth tables:

f- fAll uw O fvl1l w 0
110 1 1 uw O 1 (1 1 1
u | u u |u u 0 u |1 u u
0] 1 00 0 O 0|1 w O

In K3, an entailment relation is defined via the sole designated value 1.
However, Asenjo [1] studied K3 with two designated values (1 and u) as
a logic of antinomies. This logic is well-known as LP (Logic of Paradox)
due to Priest’s [23, 21, 22] continuation of Asenjo’s research. Note that
K3 (1938) is a fragment of Lukasiewicz’s logic ¥i3 (1920) [18]. Natural de-
duction systems for K3 and LP, respectively, are presented in [22, 24, 17].

In KY negation is the same as for Ks; conjunction and disjunction,
as was shown in Finn’s paper [8], are expressed via K3’s connectives by
equations (1) and (2) (see p. 55), respectively. Notice that Ky (1938) is a
fragment of Bochvar’s logic B (1938) introduced in [4] independently of
[15]. Natural deduction systems for KY both with one and two designated
values are presented in [19].

The next stage in the exploration of regular three-valued logics is
Fitting’s paper [10] where the intermediate logic K3” (Lisp) was discov-
ered. In K37 negation is the same as for K3; conjunction and disjunction,
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as was shown in Komendantskaya’s paper [16], are expressed via Kj’s
connectives by equations (3) and (4) (see p. 55), respectively. Moreover,
Komendantskaya [16] described the logic K5~ (TwinLisp) which is the
dual of K3”. In K5, negation is the same as for Ks; conjunction and
disjunction, as was shown in [16], are defined via Kj’s connectives by
equations (5) and (6), respectively. Natural deduction systems for K3”
and K§~ both with one and two designated values are presented in [19].

Note also that Kj’s conjunction and disjunction, as was shown in
[16], are expressed both via K37’s and K ’s connectives (see equations
(7)-(10) on p. 55).

Let A and V be Kg3’s conjunction and disjunction, respectively; let
N and U be K¥’s conjunction and disjunction, respectively; let A~ and
V™ be K3’s conjunction and disjunction, respectively; let A< and vV
be K35 ’s conjunction and disjunction, respectively. Then the following
equations hold [8, 16]:

ANB = (AANB)V(AA-A)V (BA-B) (1)
AUB = (AVB)A(AV-A)A(BV-B) (2)
ANTB = (mAVB)ANA (3)
AvV7?B = (mAAB)VA (4)
ANTB = (AV-B)AB (5)
AvVTB = (AAN-B)VB (6)
ANB = (AN B)V7(BATA) (7)
AUB = (AV7?B)A7(BV™T A) (8)
ANB = (AN B)VT (BAT A) (9)
AUB = (AVT B)AT (BVT A) (10)

Monotonic logics are those whose propositional connectives are mono-
tonic functions; a function F' is monotonic, if F(x1,...,2,) < F(y1,...,
yk), for all truth values x1, ..., ., y1, ..., yr such that z1 < yq, ...,
xr < yg. In [9, 10], the set {1,u,0} is ordered as follows: u < 1, u <0,
1 and 0 are incomparable. Using this order, Fitting [10] defined regular
logics as monotonic ones. Moreover, as shown in [16], the set of all regu-
lar three-valued logics coincides with the set of all normal three-valued!
monotonic logics.

! A many-valued logic is called normal, if its connectives are classical on {1,0}.



56

YAROSLAV PETRUKHIN

1.3. Regularity and monotonicity in the four-valued case

In [25] Tomova defined regularity for the four-valued case as follows:

A given column (row) contains 1 in the b or n row (column), only if the
(25, p. 226]

column (row) consists entirely of 1’s; and likewise for 0.

Moreover, Tomova [25] counted that there are 6400 four-valued reg-
ular disjunctions (conjunctions are defined in a standard way: A A B =
Furthermore, there are 28 Ks-type four-valued disjunc-
tions, 219 K3’-type four-valued disjunctions, 2'® K§ -type four-valued
disjunctions, and 2'° K¥-type four-valued disjunctions.

In [25], the set {1,b,n,0} is ordered as follows: n <0 <b,n <1<b,
1 and 0 are incomparable. As follows from [25], this order produces 81
monotonic logics; however, only 6 of them are regular. Let us introduce

~(=AV —B)).

these logics:

e K for the matrix ({1,b,n,0}, f~, fr, fv, {1,b}) where

f- A1l b n O fvl1l b n O
1 0 111 b n O 111 1 1 1
b b b |b b b b b b b b b
n| n n|ln n n n nln n n n
0 1 010 0O 0 O 01 & n O

e K for the matrix ({1,b,n,0}, f-, fa, fv, {1, b}) where f- is the same

as for K;7 and

Al b n O fv|l1l b n 0
111 b n O 111 b n 1
b b b n O b |1 b n b
n|ln b n 0 n|l b n n
010 b n O 01 b n O

e KY for the matrix ({1,b,n,0}, f~, fa, fv,{1,b}) where f is the same

as for K;7 and

Al b n O fvl1l b n O
111 b n O 111 & n 1
b |b b b b b |b b b b
n|ln n n n nln n n n
010 b n O 01 & n 0
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e K} for the matrix ({1,b,n,0}, f-, fa, fv,{1,b}) where f- is the same
as for K;7 and

a1l b n 0 fvl1l b n 0
111 b n O 111 b n 1
b |b b b b b |b b b b
n|ln b n n n|ln b n n
010 b n O 01 b n O

o K}  for the matrix ({1,b,n,0}, f-, fa, fv,{1,0}) where f- is the
same as for K;7 and

Al b o n O 11l b n O
1 1 b n O 1 1 b n 1
b |b b n b b |b b n b
n|ln b n n n|ln b n n
010 b n O 01 b n O

e K} for the matrix ({1,b,n,0}, f-, fa, fv,{1,b}) where f is the same
as for K;” and

Al b n O 11l b n O
111 b n O 111 b n 1
b b b n b b b b n b
n|ln n n o n n|ln n n n
010 b n O 0|1 & mn O

1.4. Functional properties of these four-valued logics

We will present here some functional properties of these four-valued log-
ics which were not mentioned in [25].

First of all, let us introduce Belnap-Dunn’s logic FDE [2, 3, 7] for
the matrix ({1,b,n,0}, f-, fa, fv, {1,b})® where f- is the same as for
K, and

2 As mentioned in [9, 10, 11], FDE is a four-valued generalization of K3, i.e., with
respect to the sets {1,n,0} and {1,b,0} FDE is K3 and LP, respectively. A natural
deduction system for FDE may be found in [22].

3 Note that Belnap [2, 3] defined an entailment relation in FDE via <. However,

Font [12] proved that it is equivalently defined via the set {1, b} of designated values.
Later Zaitsev and Shramko [26] independently obtained the same result.
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a1 b n O vl b n 0
1 1 b n O 1 (1 1 1 1
b b b 0 O b |1 b 1 b
n|ln 0 n O n |1l 1 n n
0]0 O 0 O 01 b n O

If in equations (1) and (2) we replace Kj’s connectives by FDE’s
connectives, we obtain KJ}’s connectives. If in equations (3) and (4) we
replace Kj3’s connectives by FDE’s connectives, we obtain K;7’s connec-
tives. If in equations (5) and (6) we replace Kj3’s connectives by FDE’s
connectives, we obtain Kj ’s connectives. Surprisingly, if in equations
(7)—(10) we replace K37’s and K3 ’s connectives by K;”’s and Kj ’s con-
nectives, respectively, we do not obtain KY’s connectives. We will obtain
connectives of the logic Ki* for the matrix ({1,b,n,0}, f-, fa, fv,{1,0})
where f-, is the same as for K;” and

Al b n O fl1l b n 0
1 1 b n 0 1 1 b n 1
b b b 1 b b b b 0 b
n|ln 1 n n n|ln 0 n n
010 b n O 0 1 b n O

Although Kj” is not regular, we will consider it on equal terms with
both regular and monotonic four-valued logics, since Kj’’s connectives
are naturally obtained from K3”’s and K3 ’s ones.

DerINITION 1.1. Let L € {Ky , K{ KY K}, K3 K Ky T C
Form, and A € Form. Then I' =1, A iff for each valuation v, if v(G) €
{1,b}, for any G € T, then v(A) € {1, b}.

2. Natural deduction systems

We will use the following rules of inference:

P S
——A A
(\/11) A (\/12) B (\/13) _|A B
AV B AV B AV B
(VL) 4 B (VIs) A -4 (VIe) B B (VIy) A B
AV B AV B AV B AV B
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A A B -B A -A B
AND A W AAB
A -A -B A B -B A B -B
 AANB o) = "B  AANB

(/\11 ) (/\12)
(AIs)

(AE2)

-AV-B . -(A N B)
' Z(ANB) "M TAV-B

Moreover, we will use the following proof construction rules:

(=AI

[A] - [~A][B] [A][-B] [B]
AvB C C AvB C C

(VE1)
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ANB C C C

(/\EG)

where [)Zﬂ means that Z is derivable from the assumption X and this
assumption is discharged; and [XEY] means that Z is derivable from
either the assumption X or the assumption Y and either X or Y is
discharged.

It seems that these rules do not exactly meet the standard require-
ments with respect to natural deduction systems. However, this is a
consequence a consequence, on the one hand, of the semantic singularity
of the logics and, on the other, the method of axiomatization used.

A set of rules of a natural deduction system for Kj” is as follows:
(==D), (==E), (VL), (VIs), (VE1), (AL), (Alz), (AE1), (AEs), (=VI),
(_‘\/IZ)? (_'\/E2)’ (_'\/E5)’ (_'/\I)’ (_'/\E)'

A set of rules for Ki~ is as follows: (——I), (—=—E), (Vla), (Vl4),
(\/Ez), (/\Il), (/\13), (/\Eg)7 (/\]'__‘)4)7 (—|\/Il), (—|\/I3), (—|\/E3), (—|\/E4),
(—|/\I), (—|/\E).

A set of rules for KY is as follows: (—=I), (-=E), (VI3), (VL), (VI5),
(VE4), (Alh), (Al2), (Al7), (AE3), (AE4), (AEs5), (=VI1), (=VI2), (=VI5),
(~VE1), (~AD), (SAE).

A set of rules for K} is as follows: (=—1I), (==E), (VI3), (V14), (VI5),
(\/16), (\/EG), (/\Il), (/\Ig), (/\13), (/\Eg)7 (/\E4), (/\]'__‘)5)7 (—|\/Il), (—|\/12),
(_‘\/IB)? (_'\/El)’ (_'/\I)’ (_'/\E)'

A set of rules for K}, is as follows: (——1I), (-=E), (VIs), (V14), (VIs),
(VEs), (AL), (Als), (Als), (Als), (AE3), (AE4), (AEs), (=VL), (=VIs),
(=V1y), (=VE;), (0AL), (-AE).

A set of rules for KJ, is as follows: (——I), (—-—E), (VI3), (Vl4),
(VE3), (A1), (Als), (Alz), (AE3), (AE4), (AEs5), (=VI1), (=V14), (=VI5),
(~VE1), (~AD), (=AE).

A set of rules for Kj” is as follows: (——I), (——E), (VI3), (Vl4),
(\/17), (\/Eg), (/\Il), (/\Ig), (/\13), (/\EG), (—|\/Il), (—|\/Ig), (—|\/13), (—|\/E1),
(=AD), (0AE).

DEFINITION 2.1. I' Fx A iff there is a derivation in the natural de-
duction system for K3 of a formula A from a set of assumptions T,
i.e., there is a finite non-empty sequence of formulae with the following
conditions: (i) each formula is an assumption or follows from the previ-
ous formulae via K;"’s rule of inference and (ii) by applying (VE;) each
formula starting from the assumption A until a formula C, inclusively,
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as well as each formula starting either from the assumption —A until
a formula C, inclusively, or from the assumption B until a formula C,
inclusively, is discarded from the derivation.* Note that the notion of
a derivation in the natural deduction system for K;* of A from I' may
be defined in an alternative way as a finite tree labeled with formu-
lae such that conditions (i) and (ii) hold. The notion of I' -, A (for
L e {K{ KY K3, K3, K, Ki'}) is defined similarly.

Recall that the definition of I' = A (for L € {K;", K ,KY, K},
K} .. Kb, Ki'}) is given in Definition 1.1.
Now we are ready to formulate the main result of this paper:

THEOREM 2.1. Let L € {K K, KY, K}, K%, Kin, K{}. Then for
all ' C Form and A € Form:

Thp A iff T g A

3. Proof of Theorem 2.1

As an example, we will prove Theorem 2.1 for the logic K;”. For other
logics this theorem is proved similarly. So let us write I' = A for I" b¢ » A
and I' = A for I' Fg» A. The soundness proof is by a routine check.

PROPOSITION 3.1 (Soundness). For all I' C Form and A € Form:
if '~ A then T |= A.

For the completeness proof we use Henkin’s method and adopt the
notational conventions of [17, 24]. A set of formulae I' is a nontrivial
prime theory iff the following conditions are met:

(T'1) T # Form (non-triviality);

(I'2) T Aiff AeT (closure of F);

(I'3) if AV B € I then either A € I" or both —A € I"and B € T
(primeness).

For all ' € A and A € Form, e(A,I') is a canonic valuation iff the
following conditions are met:

4 This definition is an adaptation for our case of Copi, Cohen, and McMahon’s
one [6, p. 366].
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1 ifAel,-A¢T
b iff Ael',-Ael
n iffA¢T, -A¢T
0 iffA¢T, -Ael

e(A,T) =

LEMMA 3.1. For any nontrivial prime theory I' and for all A, B € Form:

(1) f-(e(A,T)) = e(=A,T);
(2) fv(e(A,F),e(B,F)) = G(A v B,F);
(3) fale(AT),e(B,T) =e(AAB,T).

PRrOOF. (1.1) Let e(A,T') =0. Then A ¢TI, ~A € I'. Suppose =—A4 € T".
By the rule (-—E), A € I'. Contradiction. Hence, == A ¢ I'. Therefore,
e(~A,I) =1= f-(0) = f-(e(A,T)).

(1.2) Let e(A,T') = b. Then A € I, mA € I'. By the rule (—-—I),
——A € I'. Therefore, e(—A,I") = b = f.(b) = f-(e(A,I')). The other
cases are proved similarly.

(2.1) Let e(A,T) =band ¢(B,I')=1. Then AT, ~A eI, BeT,
and =B ¢ I'. By therule (VI;), AVB € I'. By the rules (Al;) and (=VIy),
-(AV B) €T. Hence, e(AV B,T') =b= f,(b,1) = fy(e(A,T),e(B,T)).

(2.2) Let e(A, ") =n and e(B,I') = 1. Then A ¢TI, "A¢T', BeT,
and =B ¢ I". Suppose AV B € I'. Then, by (I'3), either A € T" or
both =A € I' and B € I". Contradiction. Hence, AV B ¢ I'. Suppose
—(AV B) € I'. By the rule (wVE3) =4 € I". Contradiction. Hence,
—(AVB) ¢T. Soe(AVB,T) =n= fy(n1) = fu(e(AT)eB,T)).
The other cases are proved similarly.

(3.1) Let e(A,T) =1 and e(B,I') =0. Then AT, -A ¢TI, B¢T,
and =B € T'. Suppose A A B € T'. By the rule (AE3), ~AV B € T.
By (I'3), either =A € I or both -—A € I" and B € I". Contradiction.
So ANB ¢ T'. By the rule (-—I), ==A € I'. Then by the rule (VvI3),
—AV =B e€T. By the rule (-AI), =(AA B) € I'. Hence, e(AAB,T') =
0= f\/(l,O) = fv(e(A,F),e(B,F)).

(3.2) Let e(A,T") =band ¢(B,I') =n. Then AT, -AcT, B¢T,
and =B ¢ I'. By the rule (Aly), AAB € I'. By the rules (VI;) and (-AI),
—(AAB)eTl. Hence, e(AANB,T') =b= fy(b,n) = fy(e(A,T),e(B,I)).
The other cases are proved similarly. O

By a structural induction on formulae, using Lemma 3.1 we obtain:



NATURAL DEDUCTION FOR FOUR-VALUED ... LOGICS 63

LEMMA 3.2. Let I" be any nontrivial prime theory and vr be an arbitrary
valuation such that vp(p) = e(p,I"), for any p € Prop. Then we have
vr(A) =e(A,T), for any A € Form.

LeEmMMA 3.3 (Lindenbaum). For all I' C Form, A € Form, if 't/ A then
there is I'" C Form such that (1) I' C ', (2) I'* ¥ A, and (3) I'* is a
nontrivial prime theory.

PRrROOF. Suppose I' ¥ A. Let By, Bs, ... be an enumeration of Form.
Let I'g, I'y, ... be a sequence of sets of formulae defined as follows:
T'o="T
1_“ . Fl U {Bi+1}, lf Fz U {Bi+1} V A;
BEE I, otherwise.

We take I'* = [J;2, I';. Then:

(1) Follows from the definition of T'*.
(2) By straightforward induction on i.
(3) We prove only the case (I'3) as it is the most complicated one.

(I'3) Suppose BVC € I'*, but B € I'* and either =B ¢ T or C ¢ I'*.
Since BVC € I'*, so I+ BV C (cf.(I'2)). Moreover, for some i, j, and k
we have: B = B;, =B = B;, and C = By,. Furthermore, I';_1U{B;} F A
and either T';_y U {B;} - A or I'y_; U{B,} F A. Since I';_y C I'*,
Iy CI'*and I'y—y €T, so " U{B;} - A and either " U{B;} F A
or ' U{By} - A. From the latter and the fact that I' = BV C, by the
rule (VE1), we obtain I'* = A. This contradicts (2). The statement (I'3)
is proved. [l

PROPOSITION 3.2 (Completeness). For all I' C Form and A € Form:
if ' = AthenT F A.

PRrROOF. Suppose I' ¥ A. Then, by Lemma 3.3, there is I'* C Form such
that (1) ' CT'*, (2) I'™* ¥ A, and (3) I'* is a nontrivial prime theory. By
Lemma 3.2, there is a valuation vp- such that: vp«(B) € {1,b}, for any
B eT, and vp-(A) ¢ {1,b}. Then I" = A. Soif I' ¥ A then I' = A. By
contraposition we obtain that if I' = A then I' - A. O

Theorem 2.1 immediately follows from propositions 3.1 and 3.2 for
the case of K;”. Recall that for other logics Theorem 2.1 is proved
similarly.
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4. Conclusion

In this paper, we have constructed natural deduction systems for regular
and monotonic four-valued logics that is a continuation of [17, 19, 22, 24|
where regular three-valued logics are formalized via natural deduction
systems.

The future work concerns, firstly, exploring the other possible gener-
alizations for the four-valued case of regular three-valued logics; secondly,
the development of proof-search algorithms in the spirit of [5] for the
calculi described in this paper; and thirdly, an investigation of the logics
studied here with other sets of designed values; for example, with the
sole designated value 1.°
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