
Logic and Logical Philosophy
Volume 26 (2017), 3–18

DOI: 10.12775/LLP.2016.028

Greg Restall

FIRST DEGREE ENTAILMENT,

SYMMETRY AND PARADOX

Abstract. Here is a puzzle, which I learned from Terence Parsons in his
“True Contradictions” [8]. First Degree Entailment (fde) is a logic which
allows for truth value gaps as well as truth value gluts. If you are agnostic
between assigning paradoxical sentences gaps and gluts (and there seems to
be no very good reason to prefer gaps over gluts or gluts over gaps if you’re
happy with fde), then this looks no different, in effect, from assigning them
a gap value? After all, on both views you end up with a theory that doesn’t
commit you to the paradoxical sentence or its negation. How is the fde

theory any different from the theory with gaps alone?

In this paper, I will present a clear answer to this puzzle  an answer
that explains how being agnostic between gaps and gluts is a genuinely
different position than admitting gaps alone, by using the formal notion of
a bi-theory, and showing that while such positions might agree on what is
to be accepted, they differ on what is to be rejected.
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First Degree Entailment (fde) is a logic well suited to fixed point solu-
tions to the paradoxes. Perhaps it is too well suited, because it allows
paradoxical sentences to be evaluated in two distinct ways: Paradoxical
sentences can be assigned the value n (neither true nor false: {}) or b

(both true and false  or {0, 1}) equally well. Are two possible values
better than one? And more importantly, is agnosticism between which

value to assign a paradoxical sentence like the liar  a stance Terence Par-
sons calls “agnostaletheism”  any different from assigning it the truth
value n instead of b? After all, on either stance, neither the liar sentence
nor its negation are to be accepted. In this note, I explore the symmetry
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that is available in fde, and I show how agnostaletheism may be clearly
distinguished from the view according to which paradoxes are simply
neither true nor false.

1. First Degree Entailment and relational evaluations

First Degree Entailment (fde) is a simple and elegant logic, well suited
to many different applications. It can be defined and understood in a
number of different ways, but for our purposes it suits to introduce it as
the generalisation of classical two-valued logic according to which eval-
uations are no longer functions assigning each sentence of a language a
truth value from {0, 1}, but relations to those truth values. Relaxing the
constraint that evaluations be Boolean functions means that sentences
can be neither true nor false (the evaluation fails to relate the sentence to
either 0 or 1) or both true and false (the evaluation relates the sentence to
both truth values). This generalisation allows us to interpret the suite of
connectives and quantifiers of predicate logic in a straightforward man-
ner, generalising the traditional evaluation conditions due to Boole and
Tarski as follows.1

Given a non-empty domain D of objects, an fde-model for a language
consists of a multi-sorted relation ρ defined as follows: For each n-place
predicate F , ρF relates n-tuples of objects from D to the truth values
0, 1. For each constant c in the language, ρc selects a unique object from
D. An assignment α of values to the variables is a function from those
variables to the domain D. Given an assignment α and the interpretation
ρ we define the semantic value [[t]]ρ,α of a term t to be given by ρt if t

is a name and α(t) if t is a variable. Then, relative to each assignment
α we define the relation ρα which matches formulas in the language to
truth values as follows:

(Ft1 · · · tn)ραi iff 〈[[t1]]ρ,α, . . . , [[tn]]ρ,α〉ρF i

(A ∧ B)ρα1 iff Aρα1 and Bρα1

(A ∧ B)ρα0 iff Aρα0 or Bρα0

(A ∨ B)ρα1 iff Aρα1 or Bρα1

1 The idea of a relational evaluation goes back to work by J. Michael Dunn, in
the 1970s [4], and has been made use of in some influential papers by Nuel Belnap
[1, 2]. My presentation follow’s Graham Priest’s treatment in An Introduction to

Non-Classical Logics [9], since this is in wide use.
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(A ∨ B)ρα0 iff Aρα0 and Bρα0

¬Aρα1 iff Aρα0

¬Aρα0 iff Aρα1

(∀x)Aρα1 iff Aρα[x:=d]1 for every d in D

(∀x)Aρα0 iff Aρα[x:=d]0 for some d in D

(∃x)Aρα1 iff Aρα[x:=d]1 for some d in D

(∃x)Aρα0 iff Aρα[x:=d]0 for every d in D

The only deviation from classical first order predicate logic is that we
allow for truth value gaps (ρ may fail to relate a given formula to a
truth value) or gluts (ρ may relate a given formula to both truth values).
Indeed, the possibilities of gaps and of gluts are, in a sense, separable or
modular. It is quite straightforward to show that if a given interpretation
ρ is a partial function on the basic vocabulary of a language  if it never
over-assigns values to the extension of any predicate in that language 
then it remains so over every sentence in that language. Sentences can be
assigned gaps and not gluts. Similarly, if an interpretation is decisive over
the basic vocabulary of some language  it never under-assigns values to
the extensions of any predicate in that language  then it remains so
over every sentence of that language. These sentences can be assigned
gluts and not gaps. If an evaluation is sharp (if it allows for neither gaps
nor gluts in the interpretation of any predicate), then it remains so over
the whole language.

Relational evaluations are a very natural model for fde. They show
it to be an elementary generalisation of classical logic, allowing for gaps
between truth values and over-assignment of those values. The inter-
pretation of the connectives and the quantifiers remains as classical as
in two-valued logic, except for the generalisation to allow for gaps and
gluts between the two semantic values.

2. First Degree Entailment and four values

We can also see fde in another light, not as a logic allowing for gaps
and gluts between two truth values, but as a logic allowing for four

semantic values. For clarity, we will write these four values: t, b, n, and f .
We can translate between the two-valued and four-valued languages as
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follows. Given any relational valuation ρ we define a matching functional
valuation vρ like this:

vρ(A) = t iff Aρ1 but not Aρ0 vρ(A) = b iff Aρ1 and Aρ0

vρ(A) = f iff Aρ0 but not Aρ1 vρ(A) = n iff neither Aρ1 nor Aρ0

It follows then, that

Aρ1 iff vρ(A) = t or vρ(A) = b Aρ0 iff vρ(A) = f or vρ(A) = b

Relational evaluations that are partial functions can be understood as
functional evaluations taking semantic values from t, n, f  and the eval-
uation clauses in this case give us Kleene’s strong three valued logic, k3.
Evaluation relations that are decisive, allowing for no gaps, can be under-
stood as taking semantic values from t, b, f  and the evaluation clauses
in this case give us Priest’s logic of paradox lp. In what follows, I will
move between functional and relational vocabulary as seems appropriate.

3. First Degree Entailment and sequents

There are many different ways we can use fde evaluations to analyse
truth and consequence in the language of first order logic. One important
notion goes like this: An interpretation ρ is said to be a counterexample

to the sequent X�Y if and only if ρ relates each member of X to 1 while it
relates no member of Y to 1.2 In other words, an interpretation provides
a counterexample to a sequent if it shows some way that the sequent fails
to preserve truth. Given some set M of evaluations, a sequent is said to
be M-valid if it has no counterexamples in the set M. We reserve the
term ‘fde-valid’ for those sequents which have no counterexamples at all.
Similarly, a sequent is said to be k3-valid if it has no counterexamples
among partial function evaluations, and it sequent is said to be lp-valid
if it has no counterexamples among decisive valuations.

All this is very well known in the literature on non-classical log-
ics  see, for example Priest’s An Introduction to Non-Classical Logic [9,
Chapter 8] for more detail on the behaviour of these logical systems.

2 For this paper it suffices to take sequents to be pairs X � Y of sets of formulas.
We allow these sets to be infinite. I follow Humberstone [6] in using ‘�’ as a sequent
separator, as a sequent with a counterexample remains a sequent. I will reserve the
assertion sign ‘⊢’ for other uses.
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The fde-valid sequents include all of distributive lattice logic, with a de
Morgan negation. For example, sequents such as these

A ∨ (A ∧ B) � A A � A ∧ (A ∨ B)

A ∧ (B ∨ C) � (A ∧ B) ∨ C

¬(A ∧ B) � ¬A ∨ ¬B ¬(A ∨ B) � ¬A ∧ ¬B

¬A ∨ ¬B � ¬(A ∧ B) ¬A ∧ ¬B � ¬(A ∨ B)

A � ¬¬A ¬¬A � A

are fde valid. The next sequents are not valid in fde, but they are valid
in k3:

A, ¬A � A ∨ B, ¬A � B

In both cases, an fde interpretation which relates A to both 0 and 1
(but which fails to relate B to 1) serves as a counterexample. Similarly,
the following sequents are not valid in fde, but they are valid in lp:

� A, ¬A B � A ∧ B, ¬A

In both cases, an fde interpretation which relates A to neither 0 nor 1
(but which relates B to 1) serves as a counterexample.

4. First Degree Entailment, theories and bitheories

From sequents we move to theories. The usual definition has it that
a theory may be defined as a set of sentences closed under a logical
consequence relation. So, given some collection M of interpretations, T

is an M-theory if and only if whenever the sequent T � A (where A is a
single formula) is M-valid, then A is a member of T . M-theories contain
their own M-consequences. We can think of theories as representing
what is held to be true according to a certain stance  a consequences
of what is held true is also (implicitly) held true. Elsewhere [11, 13],
I have argued that in logics like fde we have good reason to consider
not only what is held true, but what is held untrue. Sequents give us a
straightforward vocabulary for describing this.

We may say that the disjoint pair 〈T, U〉 is an M-bitheory if and
only if whenever the sequent T � A, U (where A is a single formula) is
M-valid, then A is a member of T , and whenever T, A � U is M-valid,
then A is a member of U . Bitheories are balanced, in that 〈T, U〉 is a
pair, consisting of what is (according to that bitheory) held true (to be
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related to 1) on the one hand and what is held untrue (to be unrelated
to 1), on the other.

Suppose M′ ⊆ M is another set of interpretations. If we define TM′

to be the set of all sentences true (related to 1) in all M′-interpretations
and likewise UM′ to be the set of all sentences untrue (not related to
1) in those interpretations, then 〈TM′ , UM′〉 is clearly an M-bitheory.
Indeed, if M′ is a singleton set, consisting of one interpretation, then
the bitheory 〈TM′ , UM′〉 is a partition of the language, deciding every
formula to be either true or untrue. If the set M′ is larger, containing
interpretations which give a sentence A different truth verdicts, then the
corresponding bitheory will no longer be a partition. If one interpretation
judges A to be true, another judges it untrue, then A will neither feature
in the left set nor the right set.

5. First Degree Entailment and truth

The puzzle under consideration in this paper arises from the behaviour of
paradoxical sentences in fde. The finer details of the paradoxes are not
important to us, but regardless, we will consider a specific concrete case,
the paradoxes of truth. We will consider a transparent truth predicate,
so let us focus on first order languages in which we have a one-place pred-
icate T for truth. Since the truth predicate is a predicate, it will apply to
objects in the domain. To allow for fixed points (sentences which ascribe
truth or falsity to sentences in the language, including themselves) we
supply the language with quotation names for all sentences in that very
same language. So, for each sentence A we have a name pAq among
the singular terms of the language.3 Fixed point constructions for truth
in the manner of Kripke, Brady, Woodruff and Gilmore [3, 5, 7, 16] gen-
erate fde-interpretations for a language in which the sentence A and
the sentence TpAq are assigned the same semantic values. We will call
such interpretations fdeT interpretations. The construction method for
fdeT -interpretations assigns the extension of T in stages, keeping the
rest of the evaluation as given, including the denotation for constants.
The details of the proof are not important to us, but one essential idea is
useful: the notion of preservation between evaluations. For two evalua-
tions ρ and ρ′, we have ρ ⊑ ρ′ if and only if whenever ρ relates an atomic

3 This could be achieved by way of a Gödel numbering, where pAq is the numeral
of the Gödel number of the sentence A, but quotation need not use that device.
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formula to a given truth value 0 or 1, so does ρ′. It is a straightforward
induction on the complexity of formulas that this then extends to all
of the formulas in the language: for any formula A, if Aρ0 then Aρ′0
too, and if Aρ1 then Aρ′1 too. The evaluations ρ and ρ′ may still differ,
because ρ might leave a gap where ρ′ fills in a value, 0 or 1, or where ρ

assigned only one value, ρ′ might assign both.
The only requirement on quotation names for this fixed point con-

struction to succeed is that quotation names for different sentences are
different. This means that the construction will work whatever we take
the denotation of other constants to be. So, let’s consider a language
with a countable supply of constants λ, λ1, λ2, . . . whose denotation can
be freely set however we please.

So fdeT is the set of relational fde evaluations for this language
in which T is a fixed point  that is, for any sentence A, that sentence
receives the same evaluation as TpAq. fdeT can also be considered as
a theory (or bitheory), if we wish to consider what holds (and fails to
hold) in all such evaluations. We can do the same for k3T and lpT ,
when we restrict our attention to evaluations in which there are no truth
value gluts or gaps respectively. Kripke’s original construction shows us
how to make k3T evaluations, and the construction generalises to lpT

and fdeT straightforwardly.
Now, to consider the behaviour of the paradoxical sentences, let’s

fix the referent of the term λ to be the same as the referent of the
quotation name p¬Tλq, containing the term λ itself. It follows then that
Tλ has the same value as Tp¬Tλq (since λ and p¬Tλq have the same
referent), which has the same value as ¬Tλ (since truth is transparent).
In other words, λ denotes a liar sentence, which says of itself that it’s
not true. That is, the sentence ¬Tλ (and its mate, Tλ) must be assigned
the value b or n, since it is a fixed point for negation. The fixed point
construction allows us to generate interpretations for the truth predicate
in which sentences like ¬Tλ have the value n, and interpretations where
those sentences have the value b  in fact, one can make the fixed point
construction purely in k3 or in lp  and there are also mixed models in
which some paradoxical sentences have the value n and others the value b.

So, if we take fdeT to be an adequate logic of truth, then it seems
as if we should be agnostic about whether a liar sentence like ¬Tλ has
value n or b, unless we can find some consideration which breaks the tie
between them. This position was named “agnostaletheism”, by Terence
Parsons [8].
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Now perhaps there is a tie-breaking consideration between gaps and
gluts. If we were to be agnostic between assigning ¬Tλ the value b and
the value n, this looks a lot like assigning the value n and not b. After
all, according to both theories, we don’t assert Tλ and we don’t assert
its negation. This is the puzzling question: Is there an instability in
fdeT ? Does fdeT collapse into k3T ?

6. Symmetry in fde theories

The profound symmetry between gaps and gluts in first degree entail-
ment is manifest in the behaviour of the Routley star  a function on
evaluations  introduced by Richard and Valerie Routley in the 1970s
[14]. Given an evaluation ρ, we can define its dual evaluation ρ∗ as
follows  for each n-place predicate F :
• 〈d1, . . . , dn〉ρ∗

F 1 holds iff 〈d1, . . . , dn〉ρF 0 doesn’t hold.
• 〈d1, . . . , dn〉ρ∗

F 0 holds iff 〈d1, . . . , dn〉ρF 1 doesn’t hold.
In other words, an atomic formula is true according to ρ∗ if and only if to
ρ it is not false, and it is false according to ρ∗ if and only if to ρ it is not
true. This means that atomic formulas which are t by ρ’s lights are also t

by ρ∗’s, and similarly for f . But a formula that is n according to ρ is b to
ρ∗, and a formula that is b according to ρ is n to ρ∗. The dual evaluation
turns gaps into gluts, and gluts into gaps, for atomic formulas. This fact
generalises to all of the formulas in the language of fde.

Fact 1. For any formula A in the language of fde and for any relational

evaluation ρ,

• Aρ∗1 holds iff Aρ0 doesn’t hold.

• Aρ∗0 holds iff Aρ1 doesn’t hold.

This fact is established by a simple induction on the complexity of
the formula A. The crucial feature of the connectives that makes this
proof work is the balance between the positive and negative conditions
in an evaluation ρ. For example, with conjunction we have
• (A ∧ B)ρα1 iff Aρα1 and Bρα1.
• (A ∧ B)ρα0 iff Aρα0 or Bρα0.
So we can proceed as follows (assuming that the fact holds for the simpler
formulas A and B), (A∧B)ρ∗

α1 iff Aρ∗
α1 and Bρ∗

α1 iff Aρα0 doesn’t hold
and Bρα0 doesn’t hold, iff neither Aρα0 nor Bρα0 hold, iff A ∧ Bρα0
doesn’t hold. We have appealed to the parallel between these two clauses:
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• (A ∧ B)ρα1 holds iff Aρα1 and Bρα1 don’t hold.
• (A ∧ B)ρα0 doesn’t hold iff Aρα0 and Bρα0 don’t hold.

In the same way, for example, with the existential quantifier:

• (∃x)Aρα1 holds iff Aρα[x:=d]1 holds for some d in D,
• (∃x)Aρα0 doesn’t hold iff Aρα[x:=d]0 doesn’t hold for some d in D,

and the same form of argument applies. What holds for the existential
quantifier and conjunction holds for the other connectives and quantifier
of first degree entailment.

Excursus. This argument would fail if we had connectives or quantifiers
in our language whose truth and falsity conditions are less well matched.
For example, we could have a connective which is conjunctive with regard
to truth and disjunctive with regard to falsity:

• (A × B)ρα1 iff Aρα1 and Bρα1.
• (A × B)ρα0 iff Aρα0 and Bρα0.

Given a evaluation ρ which relates the atomic formulas p to 1 only and q

to 0 only, ρ∗ does the same. According to both ρ and ρ∗, p × q is related
to neither 1 nor 0, breaking the symmetry between gaps and gluts. ⋄

The Routley star sends relational evaluations to relational evalua-
tions. It does not send theories to theories. It is natural to define the
star of a set of sentences as follows: For any set S of formulas, A ∈ S∗ if
and only if ¬A 6∈ S. However, the dual T ∗ of a theory T is not always itself
a theory. Take, for example, the fde-theory (¬p ∨ ¬q)↓ consisting of all
fde-consequences of ¬p∨¬q (it is the theory consisting of every sentence
made true by every evaluation ρ where either pρ0 or qρ0). In particular,
we have ¬p ∨ ¬q ∈ (¬p ∨ ¬q)↓ but ¬p 6∈ (¬p ∨ ¬q)↓ and ¬q 6∈ (¬p ∨ ¬q)↓.
Now consider the dual set (¬p ∨ ¬q)↓∗. This is not a theory, because
p ∈ (¬p ∨ ¬q)↓∗ (since ¬p 6∈ (¬p∨¬q)↓)) and q ∈ (¬p ∨ ¬q)↓∗ (since ¬q 6∈
(¬p ∨ ¬q)↓)) but the conjunction is not in the set: p ∧ q 6∈ (¬p ∨ ¬q)↓∗

(since ¬p ∨ ¬q ∈ (¬p ∨ ¬q)↓) ensures that ¬(p ∧ q) ∈ (¬p ∨ ¬q)↓ too).

However, it is straightforward to show the following fact, relating the
Routley star and bi-theories.

Fact 2. For any M-bitheory 〈T, U〉, the pair 〈U∗, T ∗〉 is an M∗-bitheory,

where U∗ and T ∗ are the sets of sentences of the language not in U∗ and

T ∗ respectively, and where M∗ = {ρ∗ : ρ ∈ M}.

Here is why: The interpretation ρ is a counterexample to T � U has
a counterexample iff ρ∗ is a counterexample to ¬U � ¬T . It follows
that U∗

� A, T ∗ fails at ρ∗ iff ¬T ∗, ¬A � ¬U∗ fails at ρ, but that means
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T, ¬A � U fails at ρ∗. So, U∗
� A, T ∗ holds in M∗ iff T, ¬A � U holds in

M. So, since 〈T, U〉 is an M-bitheory, we have ¬A ∈ U , which means
A ∈ U∗ as desired. The case for U∗, A � T ∗ to A ∈ T ∗ is dual.

Armed with these facts concerning the Routley star, we can attend
to the behaviour of our theories (and bitheories) with gaps and gluts.

7. Two kinds of incompleteness

Theories in fde can be incomplete in two distinct ways. Consider the
fde-theory consisting of every sentence true in those evaluations which
relate p to 1 and relate q to neither 0 nor 1, and which relate r to either
1 or 0. This set of sentences contains p and it doesn’t contain ¬p. It
holds p to be true. However, it is incomplete concerning q and r  the
theory doesn’t contain q or ¬q, and it also doesn’t contain r or ¬r.
However, the theory has settled q to be neither true nor false. (In all of
the evaluations, q receives the value n.) On the other hand, the value of
r is unsettled. In some evaluations, r is true, in others it is false. In this
way, fde allows for two different kinds of incompleteness.

Now consider theories like k3T and fdeT . Recall, fdeT is given by
all fde evaluations for which TpAq and A receive the same value, and
k3T is given by all k3 valuations with the same property. If we focus
on the theories determined by each class of valuations, we see that a liar
sentence like Tλ is incomplete in both theories. In k3T , it is because in
any such valuation, Tλ receives the value n  it is never true. In fdeT

it is because in any such valuation, Tλ either receives the value n or the
value b. In some valuations it is true (those where it is b) and in others,
it fails to be true. Again, the theory is incomplete concerning Tλ.

Is there any way to distinguish these theories or distinguish this in-
completeness?

In one sense, the answer will be no. The following fact contains the
core of the reason:

Fact 3. For any k3 evaluation ρ, the theory determined by ρ and the

fde theory determined by the two evaluations ρ and ρ∗ are identical.

It is easy to see that ρ ⊑ ρ∗ in the case where ρ is a k3 evaluation.
It follows that the truths according to ρ are exactly the truths according
to both ρ and ρ∗.

This fact generalises. Consider an evaluation ρ, which may involve
both gaps and gluts. We can define the evaluation ρn, which assigns n
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to any atomic formula assigned either n or b by ρ, and which leaves t and
f fixed. It is straightforward to see that ρn ⊑ ρ. We can also define the
evaluation ρb, which assigns b to any atomic formula assigned either n or
b by ρ, and which leaves t and f fixed. In this case, we have ρ ⊑ ρb. So,
in general any fde evaluation ρ is sandwiched between a k3 evaluation
and an lp evaluation like so: ρn ⊑ ρ ⊑ ρb.

The generalisation of our previous fact can now be stated:

Fact 4. For any fde evaluation ρ, the k3 theory determined by ρn and

the fde theory determined by the two evaluations ρ and ρn are identical.

The proof is as before: Now ρn ⊑ ρ, so it follows that the truths
according to ρn are exactly the truths according to both ρn and ρ. Now,
the operation of sending all gaps and gluts either to gaps or to gluts does
not disturb the logic of truth.

Fact 5. If ρ is an fdeT evaluation, then so are ρn and ρb.

The only way that ρn could fail to be an an fdeT evaluation is if for
some formula A, the values in ρn of A and TpAq differ. But if values of
two formulas differ in ρn, they also differ in ρ. (The same holds for ρb,
too.)

Now we can state our general fact, concerning truth theories in fde

and k3. The basic idea is that the theories are identical, since theories
that take the paradoxical sentences to be n and those that are agnostic
between n and b take the same claims to be true. This is fair enough as
far as it goes, but stated in this bald way, it does not go very far at all.
The theories fdeT and k3T obviously have the same theorems  they
both have no theorems. The silent evaluation which sends absolutely
every every formula to n is a k3T (and hence, fdeT ) evaluation, and
this shows that both k3T and fdeT have no theorems at all. So, merely
showing that k3T and fdeT share theorems does not say very much at
all. We can do much better than this.

Suppose we have a set M of evaluations, such that whenever ρ ∈ M
we also have ρn ∈ M. Let Mn be the set of k3 evaluations in M  so
Mn is {ρn : ρ ∈ M}. We have the following result:

Fact 6. The theory TM of sentences true in all evaluations in M is

identical to the theory TMn , of sentences in all evaluations in Mn.
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Clearly TM ⊆ T n
M. To show the converse, suppose the formula A is

not in TM. So, it fails to be true on some evaluation ρ ∈ M. It also fails
in ρn, which is in Mn.

So, for example, if we have some k3 valuation ρ for a language with-
out the truth predicate, and we consider the set M of all fdeT evalua-
tions, extending ρ with a truth predicate. Here, grounded T -sentences
will receive values as determined by the underlying valuation ρ, while
other sentences will vary among all four values, t, f , n and b, constrained
only by the requirement that A and TpAq agree in value. The set Mn

is the subset of such evaluations in which the T -sentences receive the
values t, f or n, not b. Our fact tells us the theories of M and Mn

are indistinguishable. At the level of theories, we cannot distinguish
between paradoxical sentences determinately receiving a gap value, and
agnosticism between gaps and gluts.

Thankfully, we don’t need to remain at the level of theories. The sets
M and Mn determine the same set of theorems, but they determine
different sets of cotheorems. While they rule in the same sentences,
they rule out different sentences. The liar sentence ¬Tλ is true in some
valuations in M (those that assign it the value b) while it is true in no
valuations in Mn. In all valuations in Mn a liar sentence must receive
the value n, so it is true in no valuation at all. The untruths of M differ
from the untruths of Mn. So if we attend to bitheories, the symmetry
between gaps and gluts is completely restored. For our facts concerning
gaps, we have matching facts concerning gluts.

Fact 7. For any fde evaluation ρ, the lp cotheory determined by ρb

(the formulas Uρb untrue in ρb) and the fde cotheory determined by the

two evaluations ρ and ρb (the formulas U{ρ,ρb}) are identical.

Fact 8. If M is a set of valuations where for every ρ in M the valu-

ation ρb is also in M, then the cotheory UM of sentences untrue in all

evaluations in M is identical to the cotheory UMb , of sentences untrue

in all evaluations in Mb.

Symmetry is regained, and we can distinguish between agnostaleth-
ism concerning paradoxical sentences and those views which assign them
a gap, or assign them a glut. Glut views are distinguished from agnos-
taletheism as theories  they hold different sentences to be true, while
gap views are distinguished from agnostaletheism as cotheories  they
hold different sentences to be untrue.
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This is all well and good when it comes to formally distinguishing
these three views of paradoxical sentences. However, the puzzle wasn’t
just a puzzle about the formal development of these views. It is also a
puzzle concerning what it is to hold those views, and this issue remains,
even if we reject the model theory and the technical devices of theories,
cotheories and bitheories.

8. Assertion and denial in fde, k3 and lp

To answer the puzzle in those terms, we should say something about the
speech acts of assertion and denial, or the cognitive states of accepting
and rejecting. These are the practical analogues of the theoretical and
abstract notions of theory and cotheory. To connect talk of accepting
and rejecting (or assertion and denial) with logical notions, we need some
kind of bridge principle. A principle I have endorsed elsewhere [10,11,13]
goes like this:

Bridge principle 1. If the sequent X � Y is valid, then don’t accept
(or assert) every member of X and reject (or deny) every member of Y .

To constrain what you accept and reject in line with such a bridge
principle is to maintain a kind of coherence in your cognitive state. Since
A ∨ B � A, B is valid, you would not accept the disjunction A ∨ B and
reject both disjuncts A and B. If (as lp would have it) �C ∨¬C is valid,
you would not reject that instance of the law of the excluded middle. If
(as k3 would have it) D ∧ ¬D � is valid, you would not accept that
contradiction.

With this bridge principle at hand, we can distinguish the agnos-
taletheist (who uses a range of fdeT valuations to define validity), the
k3-theorist (who restricts her attention to k3T valuations) and the lp-
theorist (who restricts his attention to lpT valuations). The k3 theorist
will not accept any contradiction. Contradictions are never true in any
evaluation of theirs. The lp theorist will never reject any excluded mid-
dle. Excluded middle disjunctions are never untrue in their evaluations.
The fde theorist, on the other hand, can reject excluded middles and ac-
cept contradictions. That concerns validity and the first bridge principle,
which amounts to a kind of coherence (or consistency) principle.

To accept a contingent theory, or better, the bitheory 〈T, U〉 is to
constrain your acceptings and rejectings further.
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Bridge principle 2. To accept a bitheory 〈T, U〉 is to accept each
member of T and to reject each member of U .

This constraint is compatible with the first bridge principle if the
pair 〈T, U〉 is indeed a bitheory. In that case, the sequent T � U is not
valid (if it were, then each formula A would be in T , since T � A, U is
valid, and in U , since T, A � U is valid, but that is impossible, since T

and U are, by definition, disjoint), so there is no issue with accepting all
of T and rejecting all of U .

If we consider our three different views of the truth predicate (1)
fdeT allowing both gaps and gluts, (2) k3T allowing only gaps, and
(3) lpT allowing only gluts as determining bitheories, we can see the
difference in our acceptings and rejectings if we adopt bridge principle

2 for each bitheory in turn. If we accept k3T , we reject all contradictions,
even those involving the liar sentence Tλ ∧ ¬Tλ. If we accept lpT , we
accept all excluded middles, including the excluded middle involving the
liar: Tλ∨¬Tλ. But the agnostalethic position, accepting fdeT , commits
us to neither: we are free to accept the contradiction Tλ ∧ ¬Tλ or to
reject the disjunction Tλ ∨ ¬Tλ.

So, an agnostaletheist and a gap theorist indeed agree on what to
accept, but they disagree on what is to be rejected. In a similar way,
an agnostaletheist and an glut theorist agree on what to reject, but they
disagree on what to accept. Keeping the symmetry between accepting
and rejecting in view, we have parity between gaps and gluts, and the
agnostalethic position can be distinguished from its two neighbours.4
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4 Thanks to an anonymous referee for helpful comments and suggestions. One
suggestion worth further exploration is other examples of the kind of duality between
k3 and lp explored here. A clear case is the duality between intuitionistic logic and
dual-intuitionistic logic [12, 15]. Intuitionistic logic and classical logic share counter-
theorems but differ in theorems. Classical logic and dual-intuitionistic logic share
theorems but differ in counter-theorems. It would be instructive to further explore this
relationship as a part of a general theory of dualities between consequence relations.
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