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MEREOLOGY AND INFINITY

Abstract. This paper deals with the treatment of infinity and finiteness
in mereology. After an overview of some first-order mereological theories,
finiteness axioms are introduced along with a mereological definition of “x is
finite” in terms of which the axioms themselves are derivable in each of those
theories. The finiteness axioms also provide the background for definitions
of “(mereological theory) T makes an assumption of infinity”. In addition,
extensions of mereological theories by the axioms are investigated for their
own sake. In the final part, a definition of “x is finite” stated in a second-
order language is also presented, followed by some concluding remarks on
the motivation for the study of the (first-order) extensions of mereological
theories dealt with in the paper.
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1. Introduction

This paper is concerned with the mereological treatment of infinity and
finiteness. In [Niebergall, 2014] [see also Niebergall, 2011a, 2009a], I of-
fered a general account of the interplay between axioms of finiteness, def-
initions of finiteness and infinity, and assumptions of infinity. There, the
approach was primarily motivated by and applied to set theories as back-
ground theories. Here, mereological theories are the main topic of inquiry.

A set-theoretical framework is nonetheless the natural starting point
for the study of infinity and finiteness. For the phrases “x is finite”
and “x is infinite”, if they are introduced explicitly at all, are usually
defined in set-theoretic terms. Put more precisely: let L[∈] be the first-
order language with the 2-place predicate “∈” as its sole non-logical sign,
“x ∈ y” being read “x is an element of y”; then there is a formula α (in
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the free variable “x”) from L[∈] such that α is a definiens of “x is finite”
(or, alternatively, of “x is infinite”).

Of course, various such definitions have been formulated. To mention
just one example, consider:

x is finite :←→ ∃yu(y ∈ ω ∧ u is a bijective function from x to y)1,

x is infinite :←→ ¬ x is finite.

Equivalences such as these are widely employed and accepted as set-
theoretic explications of “x is finite” and “x is infinite”.2 To put it
differently, it may also be said that it is accepted that, e.g., “x is infi-
nite” expresses that x is infinite. In [Niebergall, 2011a, 2014], different
kinds of potential reasons for this acceptance are discussed and various
explications for “α expresses that x is infinite” are presented. According
to the position developed in these papers, in order for a set-theoretic
formula α to express that x is infinite, relative to a set theory T , T must
prove certain sentences (in which α occurs); sentences which have to be
faithful to our linguistic intuitions when α(x) is read “x is infinite”.

As a matter of fact, it seems to be easier to find and accept such
test-sentences when they are formulated with an α(x) that is supposed
to express “x is finite”. Certain candidates for them have been suggested
quite early [see e.g. Fraenkel, 1927] and have been rediscovered several
times, hereby witnessing a remarkable stability of intuitions. These sen-
tences may ultimately be regarded as axioms of finiteness which are
formulated in L[∈,F ], i.e., L[∈] extended by the 1-place predicate “F”
(where “Fx” is supposed to be read “x is finite”). Among them are:

F∅,
∀x F({x}),
∀xy(Fx ∧ Fy → F(x ∪ y)),

plus an induction schema, i.e., the set of all formulas:

ψ(∅)∧ ∀x ψ({x})∧ ∀xy (ψ(x)∧ ψ(y)→ ψ(x∪ y))→ ∀x(Fx→ ψ(x))

for any ψ from L[∈,F ].

1 “x ∈ ω” may be defined in different ways. “∀z(∅ ∈ z ∧ ∀y(y ∈ z → y ∪ {y} ∈
z) → x ∈ z)” is a common definiens, but there are also others; see [Parsons, 1987]
and the appendix of [Niebergall, 2014].

2 See, for example, [Levy, 1958; Schmidt, 1966; Klaua, 1973] for further defini-
tions.
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It can be shown that when “Fx” is replaced by “x is finite” (as
defined above) in these axioms, and that when ψ is taken from L[∈], the
resulting L[∈]-sentences are in fact provable in set theories such as ZF,
i.e., Zermelo-Fraenkel set theory [see e.g. Takeuti, 1982]. In [Niebergall,
2011a, 2014], it is precisely this type of provability which is used as the
criterion of adequacy for whether a set-theoretic formula α(x) expresses
that x is finite (relative to a set theory T ). In the present paper, this
approach is applied to mereological theories. That is, I take it that
for a mereological treatment of infinity and finiteness, plausible axioms
of finiteness  which are stated in L[◦,F ]  and a formula α in L[◦],
the language of mereological theories, have to be found such that these
axioms become provable in mereological theories (when extended by the
definition “Fx :←→ α(x)”).3

This programme has already been initiated in [Niebergall, 2009a,
2011a, 2014]. In particular, axioms of finiteness and a suitable definiens

for “x is finite” stated in mereological terms can be found in those papers.
The present study is an elaboration (containing, e.g., proofs missing in
the earlier texts) and continuation of this work. After an overview of
mereological theories in Section 2, axioms of finiteness relative to mere-
ological theories are put forward in Section 3. Section 4 then contains a
mereological definiens for “x is finite” which turns these axioms, when it
replaces “Fx” in them, into sentences which are derivable in all mereolog-
ical theories. These axioms also provide the background for definitions
of “(mereological theory) T makes an assumption of infinity”, which are
discussed in Section 5. In addition, extensions of mereological theories
by these axioms are investigated for their own sake in Section 6. These
are first-order theories. The definition of “x is finite” stated in a second-
order language is presented in Section 7. I close with thoughts on the
motivation for the study of the (first-order) extensions of mereological
theories dealt with in the present paper.

2. Mereological theories

2.1. Basic definitions and axioms

The theories providing the basis for axioms of finiteness studied in the
present paper are formulated in the first-order language L[◦], whose vo-

3 See especially sections 2 and 3 for the unexplained terminology used in this
statement.
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cabulary consists of the 2-place predicate “◦” and the identity sign “=”.
L[◦] is supplied with classical first-order logic.

L[◦] is the language of the theories called “mereological theories” in
this paper. But not every theory in L[◦] should be regarded as a mere-
ological theory. For a theory in L[◦] to be called “mereological”, its
theorems have to be correct under a specific reading of “◦”: namely
under the reading of “x ◦ y” as “x overlaps y”. Which sentences of L[◦]
are correct, given that reading, is not settled. I assume that the following
ones are correct:

O ∀xy(x ◦ y ←→ ∃z(z ⊑ x ∧ z ⊑ y)),
SUM ∀xy∃z∀u(u ◦ z ←→ u ◦ x ∨ u ◦ y),
NEG ∀x(¬∀v v ◦ x→ ∃y∀v(v ⊑ y ←→ ¬v ◦ x)).

The 2-place predicate “⊑”, which is read “part of”, is defined as follows:

x ⊑ y :←→ ∀z(z ◦ x→ z ◦ y).

Moreover, in all the theories taken into account in this paper certain
principles for identity should be provable. Thus, I assume as axioms the

principle of substitutivity4 and

ANT ∀xy (x ⊑ y ∧ y ⊑ x→ x = y).

I call the above set of sentences “Ax(CI)” and the theory axiomatized
by them “CI”.5

Often, instances of the so-called fusion schema FUS are also included
in mereological theories. By employing the common procedure of iden-
tifying a schema with the set of “its instances”, FUS can be precisely
determined as follows. Let ψ be a formula in L[◦]; then:

FUSψ: (the universal closure of) ∃xψ → ∃z∀y(z ◦y ↔ ∃x(x◦y∧ψ)),

FUS := {FUSψ | ψ is a L1[◦]-formula}.

A particular instance of FUS, called “FUSAt”, will play an exposed
role for this investigation. It is obtained by choosing “At(x)” (“x is
an atom”)  which is defined by “∀y(y ⊑ x → x ⊑ y)”  for ψ(x) in
FUS; i.e.:

FUSAt: ∃xAt(x)→ ∃z∀y(z ◦ y ←→ ∃x(x ◦ y ∧At(x))).

4 If L[◦] is extended, the principle of substitutivity is supposed to hold also for
the formulas of this extended language.

5 A theory T in language L is a set of L-formulas such that all L-formulas derivable
from T are already elements of T .
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CI + {FUSAt}
6 will be the core of all theories in L[◦] dealt with in this

paper. Accordingly, I define:

T is a mereological theory :⇐⇒ CI + {FUSAt} ⊆ T .7

The set of mereological theories can be structured by distinguishing
these theories with respect to what they prove about atoms. In partic-
ular, we can express that the part-relation is atomistic or, alternatively,
atomless:

AT ∀x∃y(y ⊑ x ∧At(y)),
AF ∀x∃y(y ⊑ x ∧ x 6⊑ y).

With these, the induced theories are8:

ACI := CI + {AT},
FCI := CI + {AF},
MCI := CI + {¬AT,¬AF},
ACIn+1 := ACI + {∃=n+1At} (for n ∈ N),
ACIω := ACI + {∃≥n+1At | n ∈ N},
MCIn+1 := MCI + {∃=n+1At} (for n ∈ N),
MCIω := MCI + {∃≥n+1At | n ∈ N}.

Moreover, arbitrary instances of FUS may be added to each of these sets
as axioms.

2.2. Mereological theorems

For several of the results mentioned later which concern the combina-
tion of both mereology and finiteness, theorems of a purely mereological
character are useful. Those theorems for which I could not find proofs
in the published literature are brought together here.

Lemma 2.1. CI ⊢ ∀xy(x ◦ y → ∃z∀u(u ⊑ z ←→ u ⊑ x ∧ u ⊑ y)).

6 In general, if Σ and Σ′ are sets of formulas from a first-order language L, I use
“Σ +Σ′” for “{ψ | ψ is a formula of L ∧Σ ∪Σ′ ⊢ ψ}”.

7 More on the motivation of this stipulation can be found in [Niebergall, 2011b].
Let me point out that other philosophers may understand this predicate in a differ-
ent way and may also be interested in a wider class of theories when dealing with
mereological theories.

8 Here I employ two abbreviations:
∃≥n+1At :←→ ∃x1...xn+1(At(x1)∧ ...∧At(xn+1)∧ x1 6= x2 ∧ ... x1 6= xn+1 ∧ ...∧

xn 6= xn+1),
∃=n+1At :←→ ∃≥n+1At ∧ ¬∃≥n+2At.
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The object z whose existence is guaranteed by this lemma (given x

and y) is sometimes called “the product of x and y”; I often write “x⊓y”
for it. Similarly, I often write “x⊔y” for the object z, the so called “sum
of x and y”, whose existence is guaranteed by SUM (given x and y), and
“−x” for the object y whose existence is guaranteed by NEG (given x).9

Lemma 2.2. (i) CI ⊢ ∀xx′y(y ⊑ x ⊔ x′ → y ⊑ x ∨ y ◦ x′) and
CI ⊢ ∀xx′y(y ⊑ x ⊔ x′ → y ◦ x ∨ y ⊑ x′).

(ii) CI ⊢ ∀xx′y(y ⊑ x ⊔ x′ → y ⊑ x ∨ y ⊑ x′ ∨ (y ◦ x ∧ y ◦ x′)).
(iii) CI ⊢ ∀xyz(z ◦ x ∧ z ◦ y ∧ z ⊑ x ⊔ y → z ⊑ (z ⊓ x) ⊔ (z ⊓ y)).
(iv) CI ⊢ ∀xyz(z ⊑ x ⊔ y → z ⊑ x ∨ z ⊑ y ∨ z = (z ⊓ x) ⊔ (z ⊓ y)).

Proof. (i) We have:

CI ⊢ y ⊑ x ⊔ x′ ∧ ¬y ◦ x ∧ z ◦ y → ∃u(u ⊑ z ∧ u ⊑ y) ∧ ¬y ◦ x

→ ∃u(u ◦ y ∧ ¬u ◦ x ∧ u ⊑ z),

whence:

CI ⊢ y⊑x⊔x′∧¬y◦x ∧ z◦y → ∃u(u◦y ∧ ¬u◦x ∧ y⊑x⊔x′ ∧ u⊑z)

→ ∃u(u ◦ x′ ∧ u ⊑ z)

→ z ◦ x′ .

In sum, CI ⊢ y ⊑ x ⊔ x′ ∧ ¬y ◦ x → y ⊑ x′, i.e., CI ⊢ y ⊑ x ⊔ x′ →
y ◦ x ∨ y ⊑ x′.

Similarly, CI ⊢ y ⊑ x ⊔ x′ → y ◦ x′ ∨ y ⊑ x.
(ii) By conjoining the claims from (i).
(iii) First, by SUM in the second, O in the third and Lemma 2.1 in

the fourth step:

CI ⊢ z ◦ x ∧ z ◦ y ∧ z ⊑ x ⊔ y ∧ ¬(z ⊑ (z ⊓ x) ⊔ (z ⊓ y))→

z ◦ x ∧ z ◦ y ∧ ∃w(w ◦ z ∧ ¬w ◦ ((z ⊓ x) ⊔ (z ⊓ y)))

→ ∃w(w ◦ z ∧ z ◦ x ∧ z ◦ y ∧ ¬w ◦ (z ⊓ x) ∧ ¬w ◦ (z ⊓ y))

→∃w(w◦z∧z◦x∧z◦y∧¬∃v(v⊑w∧v⊑z⊓x)∧¬∃v(v⊑w∧v⊑z⊓y))

→∃w(w◦z∧∀v(v⊑w∧v⊑z→¬v⊑x)∧∀v(v⊑w∧v⊑z→¬v⊑y)) .

Second, by (i) in the first step:

CI ⊢ u ⊑ w ∧ u ⊑ z ∧ z ⊑ x ⊔ y ∧ ∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑ x) ∧

∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑ y)

9 Without simplifications such as these, the (official) notation quickly becomes
too cumbersome.
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→ (u ⊑ x ∨ u ◦ y) ∧ ¬u ⊑ x ∧ ∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑ y)

→ u ◦ y ∧ ∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑ y) ,

whence:

CI ⊢ u ⊑ w ∧ u ⊑ z ∧ z ⊑ x ⊔ y ∧ ∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑ x) ∧

∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑ y)

→ ∃a(a = u ⊓ y ∧ a ⊑ w ∧ a ⊑ z ∧ a ⊑ y) ∧

→ ∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑ y))

→ ∃a(a = u ⊓ y ∧ a ⊑ y ∧ ¬a ⊑ y)→⊥ ,

and therefore CI ⊢ z ⊑ x ⊔ y ∧ ∃w(w ◦ z ∧ ∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑
x) ∧ ∀v(v ⊑ w ∧ v ⊑ z → ¬v ⊑ y)) →⊥. Together with the first part,
this implies CI ⊢ z ◦ x ∧ z ◦ y ∧ z ⊑ x ⊔ y ∧ ¬(z ⊑ (z ⊓ x) ⊔ (z ⊓ y))→⊥,
which yields the claim.

(iv) By (iii), CI ⊢ z ◦ x∧ z ◦ y ∧ z ⊑ x⊔ y → z = (z ⊓ x)⊔ (z ⊓ y). In
conjunction with (ii), this implies the claim.

Lemma 2.3. ACIn ⊢ ∃x1...xn(At(x1)∧· · ·∧At(xn)∧∀y(y ⊑ x1⊔· · ·⊔xn)).

2.3. The main metatheorems

Let me assemble the metatheorems concerning mereological theories
which are relevant for the present study [cf. Niebergall, 2009a, 2011b].

Theorem 2.1. (i) FUS ⊆ ACI, FUS ⊆ FCI, FUS ⊆ MCI + {FUSAt}.
(ii) If for each n ∈ N, ACIn+1 ⊢ ψ, then ACI ⊢ ψ. If for each n ∈ N,

MCIn+1 ⊢ ψ, then MCI + {FUSAt} ⊢ ψ.
(iii) The maximal consistent mereological theories are exactly ACIn+1

and MCIn+1, for n ∈ N, FCI, ACIω, and MCIω + {FUSAt}. These
theories are decidable.

3. Mereological axioms of finiteness

3.1. Axioms of finiteness relative to mereological theories

L[◦] is now extended by the 1-place predicate “F” to the first-order
language L[◦,F ]. Again, “Fx” is read “x is finite”.

Sentences from L[◦,F ] which, given this reading of F , are plausible
axioms of finiteness, are easily forthcoming:
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(AxI 1) ∀x(At(x)→ Fx),
(AxI 2) ∀xy(Fx ∧ Fy → F(x ⊔ y)),10

(AxI 3) ∀xy(Fx ∧ y ⊑ x→ Fy),
(AxI 4) ∀xy(Fx ∧At(y)→ F(x ⊔ y)).

As mereological principles of finiteness, these sentences should be as
evident as the ones from the introduction were as set theoretic princi-
ples of finiteness. Moreover, they can also be easily obtained from the
latter by the procedure of replacing “⊆” (from L[∈]) by its mereolog-
ical counterpart, “⊑”. In this way, set-theoretic singletons are turned
into mereological atoms and set-theoretic unions are transformed into
mereological sums. The empty set gets, of course, lost.

What is not claimed is that this list is exhaustive. In particular,
principles of induction are missing. But even without them, some useful
theorems can be proven.

By induction on n we obtain:

Lemma 3.1. In CI + {(AxI1), (AxI2)} it is provable

(i) ∀xy(Fx ∧At(y)→ F(x ⊔ y)),
(ii) ∀x1...xn(At(x1) ∧ · · · ∧At(xn)→ F(x1 ⊔ · · · ⊔ xn)).

Lemma 3.2. For any n ∈ N, ACIn+1+{(AxI1), (AxI2), (AxI3)} ⊢ ∀x Fx.

Proof. By Lemma 2.3, for each n ≥ 1, ACIn ⊢ ∃x1...xn(At(x1) ∧ · · · ∧
At(xn) ∧ ∀y(y ⊑ x1 ⊔ · · · ⊔ xn)).

By Lemma 3.1(ii), it follows that ACIn + {(AxI1), (AxI2)} ⊢ ∃x1...

xn(F(x1 ⊔ · · · ⊔ xn)∧ ∀y(y ⊑ x1 ⊔ · · · ⊔ xn)), which implies with (AxI 3)
that ACIn + {(AxI1), (AxI2), (AxI3)} ⊢ ∀y Fy.

I propose two axiom systems built upon the above list. In both cases,
a suitable minimality condition  captured by an induction schema  is
added to axioms from that list; that is, a schema whose premisses just
have the logical forms of the axioms.

Ax-a(FinI): (AxI 1), (AxI 2), and (IndI-a), that is,

(IndI-a) {(IndI − a)ψ | ψ is a formula from L[◦,F ]},

where (IndI-a)ψ ≡ AxFinI -a[ψ]→ ∀x(Fx→ ψ(x))

and for α in L[◦,F ]

AxFinI -a[α] ≡ ∀x(At(x)→ α(x)) ∧ ∀xy(α(x) ∧ α(y)→ α(x ⊔ y)).

10 That is, in primitive notation, ∀xy(Fx∧Fy → ∃z(∀u(u◦z ↔ u◦x∨u◦y)∧Fz)).
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Ax-b(FinI): (AxI 1), (AxI 2), (AxI 3), and (IndI-b), that is,

(IndI-b) {(IndI − b)ψ | ψ is a formula from L[◦,F ]},

where (IndI-b)ψ ≡ AxFinI -b[ψ]→ ∀x(Fx→ ψ(x))

and for α in L[◦,F ]

AxFinI -b[α] ≡ ∀x(At(x)→ α(x)) ∧ ∀xy(α(x)∧ α(y)→ α(x ⊔ y))∧
∀xy(α(x) ∧ y ⊑ x→ α(y)).

In the next subsection, the equivalence of these two axiom systems is
established (relative to CI).

3.2. Comparison of the axiom systems

Lemma 3.3. CI + Ax-b(FinI) ⊢ Ax-a(FinI).

Proof. What has to be shown is, for each formula ψ from L[◦,F ]:

CI + Ax-b(FinI) ⊢ (IndI-a)ψ.

For every x, let φ(x) be the following formula: ∀y(y ⊑ x→ ψ(y)).

Claim. CI ⊢ AxFinI -a[ψ]→ AxFinI -b[ϕ].

Proof. The claim is established by showing that (i) CI ⊢ AxFinI -a[ψ]→
∀x(At(x)→ ϕ(x)), (ii) CI ⊢ AxFinI -a[ψ]→ ∀xy(ϕ(x)∧ϕ(y)→ ϕ(x⊔y)),
(iii) CI ⊢ AxFinI -a[ψ]→ ∀xy(ϕ(x) ∧ y ⊑ x→ ϕ(y)).

Ad (i):

CI ⊢ AxFinI -a[ψ] ∧At(x) ∧ y ⊑ x→ At(y)

→ ψ(y) ,

that is:

CI ⊢ AxFinI -a[ψ] ∧At(x)→ ∀y(y ⊑ x→ ψ(y))→ ϕ(x) .

Ad (ii): By the definition of ϕ, (∗) CI ⊢ ϕ(x) ∧ ϕ(y) ∧ z ⊑ x→ ψ(z)
and CI ⊢ ϕ(x) ∧ ϕ(y) ∧ z ⊑ y → ψ(z).

By the same kind of reasoning:

CI ⊢ ϕ(x)∧ϕ(y)∧ z = (z⊓x)⊔(z⊓y)→ϕ(x)∧ϕ(y)∧z⊓x⊑x∧z⊓y⊑y

→ ψ(z ⊓ x) ∧ ψ(z ⊓ y) ,

whence:

(∗∗) CI ⊢ AxFinI -a[ψ] ∧ ϕ(x) ∧ ϕ(y) ∧ z = (z ⊓ x) ⊔ (z ⊓ y)→

AxFinI -a[ψ] ∧ ψ(z ⊓ x) ∧ ψ(z ⊓ y) ∧ z = (z ⊓ x) ⊔ (z ⊓ y)

→ ψ(z) .
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Now (∗) and (∗∗) together with Lemma 2.2(iv) yield CI ⊢AxFinI -a[ψ]∧
ϕ(x) ∧ ϕ(y) ∧ z ⊑ x ⊔ y → ψ(z), that is, the desired:

CI ⊢ AxFinI -a[ψ] ∧ ϕ(x) ∧ ϕ(y)→ ∀z(z ⊑ x ⊔ y → ψ(z))

→ ϕ(x ⊔ y) .

Ad (iii): CI ⊢ AxFinI -a[ψ]∧ϕ(x)∧ y ⊑ x∧ z ⊑ y → ϕ(x)∧ z ⊑ x→
ψ(z), whence CI ⊢ AxFinI-a[ψ] ∧ ϕ(x) ∧ y ⊑ x→ ∀z(z ⊑ y → ψ(z))→
ϕ(y).

Thus the claim is established. And since it implies:

CI + Ax-b(FinI) ⊢ AxFinI-a[ψ]→ ∀x(Fx→ ϕ(x)),

we finally obtain:

CI+Ax-b(FinI) ⊢ AxFinI -a[ψ]→ ∀x(Fx→ ∀y(y ⊑ x→ ψ(y)))

→ ∀x(Fx→ ψ(x)) .

Lemma 3.4. CI + Ax-a(FinI) ⊢ Ax-b(FinI).

Proof. What has to be shown is: (i) CI + Ax-a(FinI) ⊢ (AxI 3), and
(ii) CI + Ax-a(FinI) ⊢ (IndI-b).

For every x, let ψ(x) be the following formula: ∀y(y ⊑ x → Fy).
Then the proof of (i) is almost the same as for Lemma 3.3. The proof
of (ii) is trivial, since each premiss of an (IndI-b)ψ is a strengthening of
the corresponding premiss of (IndI-a)ψ.

Theorem 3.1. Relative to CI, Ax-a(FinI), and Ax-b(FinI) are equiva-
lent.

In the light of the above considerations, it is obvious that from the
theories formulated in L[◦,F ], those are of special interest which contain
both a part which is a mereological theory and a part which consists
of axioms of finiteness. In what follows, I will use “T ∗” for that theory
in L[◦,F ] which results from a mereological theory T by the addition
of Ax-a(FinI) (that is, of Ax-b(FinI)). Thus, Lemma 3.2 implies that
ACI∗

n+1 ⊢ ∀xFx. The following lemma is a complementary result.

Lemma 3.5. FCI∗ ⊢ ∀x ¬Fx.

Proof. Set ψ(x) ≡ x 6= x. Then with (IndI-a), (i) FCI∗ ⊢ AxFinI -a[ψ]
→ ∀x(Fx→ ψ(x)). But also (ii) FCI ⊢ ∀x(At(x)→ ψ(x)) ∧ ∀xy(ψ(x)∧
ψ(y)→ ψ(x ⊔ y)). (i)+(ii) imply the claim.
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4. Definitions of “is finite” relative to mereological theories

4.1. A possible definition

(AxI 1) to (AxI 4) are of a special form: they are like clauses in a positive
inductive definition. From set theory, it is known how to transform an
inductive definition into a real definition, an explicit one. Applying this
procedure here leads to:

IFin(x) :←→ ∀y(ICl(y)→ x ∈ y),

with:

ICl(y) :←→ ∀z(At(z)→ z ∈ y) ∧ ∀zz′(z ∈ y ∧ z′ ∈ y → z ⊔ z′ ∈ y).

Of course, we do not have the set-theoretic “∈” at our disposal now.
Moreover, the result that Q (Robinson Arithmetic; see [Tarski et al.,
1953] cannot be relatively interpreted11 in a consistent mereological the-
ory [see Niebergall, 2011b] suggests that elementhood cannot be mim-
icked mereologically.

Although it is a crude manoeuvre, let me nonetheless simply replace
“∈” by “⊑” in the definiens just suggested and thereby put forward as
a mereologically stated definition of “x is finite”:

Definition 4.1.

ICl(y) :←→ ∀z(At(z)→ z ⊑ y) ∧ ∀zz′(z ⊑ y ∧ z′ ⊑ y → z ⊔ z′ ⊑ y),
IFin(x) :←→ ∀y(ICl(y)→ x ⊑ y).

Fortunately, this mereological definiens of “x is finite” works as it should.

4.2. Consequences of the definition

As has been pointed out in the introduction, there is a test to find out
if Definition 4.1 is adequate as an explication of “x is finite”: show
that Ax-a(FinI) (or Ax-b(FinI)) belongs to CI + {FUSAt} extended by
“∀x(Fx↔ IF in(x))”. This is done in this subsection (see Theorem 4.1
and Corollary 4.1). Let me first establish some preparatory lemmas,
which are also useful later on.

Lemma 4.1. (i) CI ⊢ ∀y(ICl(y)→ ∀z(At(z)→ z ⊑ y)).
(ii) CI ⊢ ∀x(At(x)→ IFin(x)).

11 For relative interpretations, see [Tarski et al., 1953; Feferman, 1960].
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(iii) CI ⊢ ∀xx′(IFin(x) ∧ IFin(x′)→ IFin(x ⊔ x′)).
(iv) CI ⊢ ∀xy(IFin(x) ∧ y ⊑ x→ IFin(y)).

Proof. (i) Since “∀zz′(z ⊑ y ∧ z′ ⊑ y → z ⊔ z′ ⊑ y)” is derivable in
CI, it may be omitted from the definiens. (ii) follows from (i). (iii) CI ⊢
IFin(x) ∧ IFin(x′) ∧ ICl(y)→ x ⊑ y ∧ x′ ⊑ y → x ⊔ x′ ⊑ y.

Lemma 4.2. (i) ACI ⊢ ∀y(ICl(y)↔ ∀z z ⊑ y).
(ii) ACI ⊢ ∀x IFin(x).

(iii) FCI ⊢ ∀y ICl(y).
(iv) FCI ⊢ ∀x ¬IFin(x).
(v) CI + {∀x IFin(x)} ⊢ ∃xAt(x).

Proof. (i) By Lemma 4.1(i) and the fact that ACI ⊢ ∀z(At(z) → z ⊑
y)→ ∀z z ⊑ y. (ii) From (i). (iii) By Lemma 4.1(i).

(iv) By (iii), FCI ⊢ IFin(x)→ ∀y x ⊑ y; hence FCI ⊢ ¬IFin(x).
(v) Since FCI ⊆ CI + {∀x IFin(x),¬∃xAt(x)}, it follows from (iv)

that CI + {∀x IFin(x),¬∃xAt(x)} is inconsistent.

The following lemma is the main step on the way to Corollary 4.1:

Lemma 4.3. Let ψ be an arbitrary formula from L[◦], n > 0. Then:

CI + {∃nAt} ⊢ AxFinI -b[ψ]→ ∀x(IF in(x)→ ψ(x)).

Proof. By definition of AxFinI-b[ψ]:

CI⊢At(x1)∧...∧At(xn)∧AxFinI -b[ψ]→ψ(x1)∧...∧ψ(xn)∧AxFinI -b[ψ]

→ ψ(x1 ⊔ · · · ⊔ xn) ,

whence CI ⊢ At(x1) ∧ · · · ∧ At(xn) ∧ ∀z(At(z) → z = x1 ∨ · · · ∨ z =
xn) ∧AxFinI -b[ψ]→ ψ(x1 ⊔ · · · ⊔ xn) ∧ ∀z(At(z)→ z ⊑ x1 ⊔ · · · ⊔ xn).
Therefore:

CI ⊢ At(x1) ∧ · · · ∧At(xn) ∧ ∀z(At(z)→ z = x1 ∨ · · · ∨ z = xn) ∧

AxFinI -b[ψ] ∧ IF in(x)

→∀y(∀z(At(z)→z⊑y)→x⊑y)∧∀z(At(z)→z⊑x1⊔· · ·⊔xn)∧

ψ(x1⊔· · ·⊔xn)∧AxFinI -b[ψ]

→ x ⊑ x1 ⊔ · · · ⊔ xn ∧ ψ(x1 ⊔ · · · ⊔ xn) ∧AxFinI -b[ψ]

→ ψ(x) .

This yields CI ⊢ At(x1) ∧ · · · ∧ At(xn) ∧ ∀z(At(z) → z = x1 ∨ · · · ∨ z =
xn)∧AxFinI -b[ψ]→ ∀x(IF in(x)→ ψ(x)), which implies CI+{∃nAt} ⊢
AxFinI -b[ψ]→ ∀x(IFin(x)→ ψ(x)).
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Theorem 4.1. Let ψ be an arbitrary formula from L[◦]. Then:

CI + {FUSAt} ⊢ AxFinI -b[ψ]→ ∀x(IFin(x)→ ψ(x)).

Proof. Let ψ be an arbitrary formula from L[◦]. It suffices to establish:

Claim.

(a) ACI ⊢ (IndI-b)ψ,
(b) MCI + {FUSAt} ⊢ (IndI-b)ψ,
(c) FCI ⊢ (IndI-b)ψ.

Ad (a): By Lemma 4.3, since each ACIn+1 is an extension of CI +
{∃n+1xAt(x)}, (IndI-b)ψ is provable in each ACIn+1. (a) follows from
Theorem 2.1(ii).

Ad (b): By Lemma 4.3, since each MCIn+1 is an extension of CI +
{∃n+1xAt(x)}, (IndI-b)ψ is provable in each MCIn+1. (b) follows from
Theorem 2.1(ii).

Ad (c): This follows from Lemma 4.2(iv).

Let us now define: Fx :←→ IF in(x). Then, by Lemma 4.1 and
Theorem 4.1, we obtain:

Corollary 4.1. (i) Ax-b(FinI) belongs to CI + {FUSAt} extended
by this definition.

(ii) Ax-a(FinI) belongs to CI + {FUSAt} extended by this definition.

Let me close this section by pointing out two equivalence results for
“∀xIFin(x)”, which, though not necessary for the proof of Corollary 4.1,
seem to be illuminating and are also useful for later results.

Lemma 4.4. CI ⊢ AT↔ ∀x IFin(x).

Proof. “→” is Lemma 4.2(ii). “←” By Lemma 4.2(v), we have:

CI ⊢ ∀x IFin(x)→ ∀y(∀x x ⊑ y → ∃z(At(z) ∧ z ⊑ y)).

So it suffices to show:

CI ⊢ ∀x IFin(x)→ ∀y(¬∀x x ⊑ y → ∃z(At(z) ∧ z ⊑ y)).

First, by definition of “IFin(x)”, CI ⊢ ∀x IFin(x) → ∀yx(∀z(At(z) →
z ⊑ y)→ x ⊑ y)→ ∀y(∀z(At(z)→ z ⊑ y)→ ∀x x ⊑ y), whence

(∗) CI ⊢ ∀x IFin(x)→ ∀y(¬∀x x ⊑ y → ∃z(At(z) ∧ ¬z ⊑ y)).

Second, because of NEG:

(**) CI ⊢ ∀x IFin(x)∧¬∀xx ⊑ y → ∃u[¬∀xx ⊑ u∧∀v(¬v ⊑ u↔ v ◦y)].
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By “specializing” the universally quantified variable “y” in (∗) to “u”
from (∗∗), we obtain:

CI ⊢ ∀x IFin(x)∧¬∀x x⊑y→∃u[∃z(At(z)∧¬z⊑u)∧∀v(¬v⊑u↔v◦y)]

→ ∃u[∃z(At(z) ∧ ¬z ⊑ u ∧ (¬z ⊑ u↔ z ◦ y))]

→ ∃z(At(z) ∧ z ◦ y)

→ ∃z(At(z) ∧ z ⊑ y) ,

which is the desired result.

Lemma 4.5. CI + {FUSAt, ∃xAt(x)} ⊢ IFin(x) ↔ x ⊑
∨

At, where
“z =

∨
At” is an abbreviation of “∀y(z ◦ y ↔ ∃x(x ◦ y ∧At(x)))”.

Proof. By Lemma 4.1(i),
CI + {FUSAt, ∃xAt(x)} ⊢ ICl(y)↔

∨
At ⊑ y.

This implies:

CI + {FUSAt, ∃xAt(x)} ⊢ IF in(x)↔ ∀y(ICl(y)→ x ⊑ y)

↔ ∀y(
∨

At ⊑ y → x ⊑ y)

↔ x ⊑
∨

At .

4.3. Alternatives

“∀y(ICl(y) → x ⊑ y)” is not particularly plausible as a mereological
explicans of “x is finite”. In addition, its adoption has consequences
which seem to be unwelcome. In particular, by Lemma 4.2(ii), ACIω ⊢
∀x IFin(x). Thus, in each model M of ACIω, its maximal element
1M satisfies “IFin(x)”; yet 1M has infinitely many partsM [see also
Niebergall, 2014].12

Should it not be possible to find formulas α(x) in L[◦] which express
more adequately than “IFin(x)” that x is finite? I will argue that the
answer is “no”.

To start with, let me first deal with the case where the axiomatization
of finiteness, i.e. Ax-a(FinI), is retained unchanged. Here, any attempt
to find a formula α(x) in L[◦] (for which these axioms are provable) which
is superior to “IFin(x)” is futile. For it turns out that such an α(x) is
provably equivalent to “IFin(x)” (in each mereological theory T ). This
is a consequence of a general lemma, a characterization lemma, which
immediately follows from Theorem 4.1:

12 In general, I use “PM” for the interpretation of the predicate “P” in M.
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Lemma 4.6. Let T be a mereological theory and let α(x) be a formula
from L[◦] such that:

T ⊢ AxFinI -a[α],
T ⊢ AxFinI -a[ψ]→ ∀x(α(x)→ ψ(x)),

for each formula ψ from L[◦]. Then T ⊢ ∀x(α(x)↔ IFin(x)).13

Now let us consider the case of a changed axiomatization of finite-
ness (in L[∈,F ]). For example, one could envisage “∃x¬Fx” as being
a further axiom of finiteness. Surely, because of Lemma 3.2, this sentence
cannot be consistently added to each consistent mereological theory. But
in light of the problem mentioned at the beginning of this subsection, it
should be true in models of ACIω. Thus, let’s deal only with the theory
ACI∗

ω + {∃x ¬Fx}.
Assume then that there exists a formula α(x) in L[◦] such that, when

“Fx” is replaced by α(x), the theorems of ACI∗
ω + {∃x ¬Fx} are turned

into L[◦]-sentences which are derivable in ACIω. That is:

(i) ACIω ⊢ AxFinI -a[α],
(ii) ACIω ⊢ AxFinI -a[ψ]→ ∀x(α(x)→ ψ(x)),

for each formula ψ from L[◦]), and
(iii) ACIω ⊢ ∃x ¬α(x).

(i) and (ii) and Lemma 4.6 yield ACIω ⊢ ∀x(α(x)↔ IFin(x)). Together
with Lemma 4.2(ii), it follows that ACIω ⊢ ∀x α(x). Yet this together
with (iii) implies that ACIω is inconsistent (which is not the case). In
sum, there is no formula α as the one which was assumed to exist.

The question whether there may exist better axiomatizations FIN
of finiteness (in L[∈,F ]), then Ax-a(FinI) is certainly not uninteresting
(though I doubt that the example just dealt with is one14). It should be
kept in mind, however, that our task is not to find such an axiomatiza-
tion, but to figure out whether there exists a formula α(x) in L[◦] which

13 A variant of Lemma 4.6 (which is not used in this paper), which is a charac-
terization lemma for the extended language, can also be shown: Lemma. Let T be a

mereological theory and α(x) be a formula from L[∈,F ] such that T ∗ ⊢ AxFinI -a[α]
and T ∗ ⊢ AxFinI -a[ψ] → ∀x(α(x) → ψ(x)), for each formula ψ from L[∈,F ]. Then

T ⊢ ∀x(α(x)↔ Fx).
14 For example, since we have “∃x¬Fx” as a new axiom of finiteness, it seems to

be more natural to adopt an induction schema which is different from (IndI-a); i.e.,
{(IndI-)ψ | ψ is a formula from L[◦,F ]}, where (IndI-)ψ ≡ AxFinI -[ψ]→ ∀x(Fx→
ψ(x)) and (for α in L[◦,F ]) AxFinI -[α] ≡ ∀x(At(x) → α(x)) ∧ ∀xy(α(x) ∧ α(y) →
α(x ⊔ y)) ∧ ∃x ¬α(x).
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more adequately expresses that x is finite than “IFin(x)”. For this, the
axiom system just dealt with is simply of no help.

Coming back to the general case, let T be a consistent mereological
theory and let FIN be some set of axioms of finiteness in L[◦,F ]. For
FIN I will only assume  and this I take to be evident  that T + FIN
must have (AxI 1) and (AxI 2) as theorems. In addition, let α(x) be
a formula in L[◦] which is taken into account as an explicans of “x is
finite”  but which now corresponds to FIN. Then it will still be the
case that T ⊢ AxFinI -a[α]. Whence, by Corollary 4.1, it follows that:

T ⊢ ∀x(IFin(x)→ α(x)).

Yet this means in particular that in each model M of ACIω, 1M also
satisfies α(x). Thus, even with a changed axiomatization of finiteness, we
could not free ourselves from the problem which was used as a motivation
for this very change.

In sum, then, whether the axiomatization of finiteness is changed or
not, a formula α(x) in L[◦] which more adequately expresses that x is
finite than “IFin(x)” is hardly forthcoming.

5. Assumptions of infinity

5.1. “T makes an assumption of infinity”: the framework

In [Niebergall, 2011a, 2014], I considered several possible explications
of “T makes an assumption of infinity”. Most of them were rejected as
inadequate. What had remained in these papers is:15

(DIi) T makes an assumption of infinity :⇐⇒
∀M(M |= T =⇒M is infinite).

(DIiii) T makes an assumption of infinity :⇐⇒ T |= ∃x x is infinite.

In the definiens of (DIiii), the sentence “∃x x is infinite” has to belong
to L[T ]. Yet, L[T ] need not contain the predicate “is infinite”; in fact,
it most probably fails to do so. Thus, as it stands, (DIiii) is rather
questionable. It may be defended by pointing out that “x is infinite”
functions as some kind of placeholder in it: for a given theory T , it
should be replaced by a specific formula α(x) (with sole free variable x)
from L[T ]; by a formula α(x), that is, which expresses that x is infinite.

15 The numbering follows that of [Niebergall, 2014].
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Thus, a more complete rendering of (DIiii) is rather an equivalence
like this one:

(DIiii+) T makes an assumption of infinity :⇐⇒ ∃α(α(x) expresses that
x is infinite and T |= ∃x α(x)).

The conjunct “α(x) expresses that x is infinite” in the definiens of
(DIiii+) seems to be indispensable. For if it were not included and
if, for example, α(x) expressed that x is a planet, a theory T proving
“∃x α(x)” would assume planets rather than the infinite.

Whether (DIiii+) is reasonable can, of course, eventually only be
decided if an explication can be provided for “α(x) expresses that x is
infinite”. Moreover, I think that a further modification of this phrase,
i.e., its relativization to a theory T (in which α(x) may express that x
is finite) is advisable.

Thus,following the procedure elaborated in more detail in[Niebergall,
2011a, 2014], I will first present explicantia of

“α(x) expresses that x is finite relative to T”

(where T has to be a theory and α(x) has to be a formula (with x as
its sole free variable) in L[T ]). These, in turn, are then employed to
formulate explicantia of “T makes an assumption of infinity” in the style
envisaged in (DIiii+).

5.2. “α(x) expresses that x is finite” and “T makes
an assumption of infinity”: definitions

In this subsection, I recall the precise renderings of (DIiii+) presented in
[Niebergall, 2014] which have not shown to be inadequate in this paper.

Let α be a formula from L[◦] and T be a mereological theory. As
already hinted at in the introduction, the explicantia for “T makes an
assumption of infinity” put forward in this section rest on axioms of
finiteness. Ax-a(FinI), in particular, leads to these definitions:

α(x) strongly expresses that x is finite relative to T :⇐⇒

T ⊢ AxFinI -a[α] and for each formula ψ in L[◦],

T ⊢ AxFinI -a[ψ]→ ∀x(α(x)→ ψ(x));

α(x) very strongly expresses that x is finite relative to T :⇐⇒

α(x) strongly expresses that x is finite relative to T and T 0 ∀xα(x).
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For a different type of definitions, a further axiom system of finiteness is
used:

(AxFinI−) {p∀x(¬Fx→ ∃ny y ⊑ x)q | n ∈ N}.16

(AxFinI−) is an obvious necessary, but hardly a sufficient choice for a set
of axioms of finiteness: on its own, it seems to be too weak. All the same,
it can be usefully employed in explicantia of “T makes an assumption of
infinity”. Thus, let’s define:

α(x) very weakly expresses that x is finite relative to T :⇐⇒
∀n(n ∈ N =⇒ T ⊢ ∀x(¬α(x)→ ∃ny y ⊑ x));

α(x) weakly expresses that x is finite relative to T :⇐⇒
α(x) very weakly expresses that x is finite relative to T and
T 0 ∀xα(x).17

In these definitions, we have free variables for theories; that is, we have a
dependency on theories. In order to obtain explicantia for “α expresses
that x is finite”, it is a natural step to bind these variables. However, it
turns out that existential quantifiers are not suitable for this task (see
Footnote 18).

α(x) universally very strongly expresses that x is finite :⇐⇒ ∀T (T is
a mereological theory =⇒ α(x) very strongly expresses that x is finite
relative to T );

α(x) universally strongly expresses that x is finite :⇐⇒ ∀T (T is a mere-
ological theory =⇒ α(x) strongly expresses that x is finite relative to T );

α(x) universally weakly expresses that x is finite :⇐⇒ ∀T (T is a mere-
ological theory =⇒ α(x) weakly expresses that x is finite relative to T );

α(x) universally very weakly expresses that x is finite :⇐⇒ ∀T (T is
a mereological theory=⇒ α(x) very weakly expresses that x is finite
relative to T ).

Finally, these predicates are used in the following definientia of possible
explications of “T makes an assumption of infinity” (with T in L[◦]):

T makes a universal very strong assumption of infinity :⇐⇒ ∃α(α ∈ L[◦]
∧T ⊢ ∃x¬α(x)∧α(x) universally very strongly expresses that x is finite);

16 ∃ny y ⊑ x :←→ ∃y1...yn(
n∧

i=1

yi ⊑ x ∧
n∧

i,j=1

i<j

yi 6= yj)).

17 Note that “x = x” very weakly expresses that x is finite relative to each
mereological theory T . To circumvent this trivialization, “T 0 ∀x α(x)” is added.
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T makes a universal strong assumption of infinity :⇐⇒ ∃α(α ∈ L[◦]∧T ⊢
∃x¬α(x) ∧ α(x) universally strongly expresses that x is finite);

T makes a universal weak assumption of infinity :⇐⇒ ∃α(α ∈ L[◦]∧T ⊢
∃x¬α(x) ∧ α(x) universally weakly expresses that x is finite);

T makes a universal very weak assumption of infinity :⇐⇒ ∃α(α ∈ L[◦]∧
T ⊢ ∃x¬α(x) ∧ α(x) universally very weakly expresses that x is finite);

T makes a strong assumption of infinity :⇐⇒ ∃α(α ∈ L[◦]∧T ⊢ ∃x¬α(x)
∧ α(x) strongly expresses that x is finite relative to T );

T makes a weak assumption of infinity :⇐⇒ ∃α(α ∈ L[◦]∧T ⊢ ∃x¬α(x)∧
α(x) weakly expresses that x is finite relative to T ).18

5.3. Evaluating the definitions

In [Niebergall, 2011a, 2014], I compared the merits of definientia such as
the above as explicantia of “T makes an assumption of infinity” mainly
for set theories. Mereological theories were also considered, and it seemed
that the picture for them was somewhat simpler than that for set the-
ories. I can now show that it is much simpler: due to Corollary 5.2 in
particular (the main new result of this part), only two options remain
for the mereological setting investigated here: “T makes an assumption
of infinity” can be explicated either via (DIi) or by “T makes a strong
assumption of infinity”.

18 The variants of these definitions with existential quantifiers in place of univer-
sal quantifiers are

T makes an existential very strong assumption of infinity :⇐⇒ ∃α(α ∈ L[◦] ∧ T ⊢
∃x ¬α(x) ∧ ∃S(S is a mereological theory ∧ α(x) very strongly expresses that x is
finite relative to S)).

T makes an existential strong assumption of infinity :⇐⇒ ∃α(α ∈ L[◦]∧T ⊢ ∃x¬α(x)
∧∃S(S is a mereological theory ∧ α(x) strongly expresses that x is finite relative to S)).

T makes an existential weak assumption of infinity :⇐⇒ ∃α(α ∈ L[◦]∧T ⊢ ∃x¬α(x)∧
∃S(S is a mereological theory ∧ α(x) weakly expresses that x is finite relative to S)).

T makes an existential very weak assumption of infinity :⇐⇒ ∃α(α ∈ L[◦] ∧ T ⊢
∃x¬α(x)∧∃S(S is a mereological theory ∧ α(x) very weakly expresses that x is finite
relative to S)).

Now in [Niebergall, 2014, lemmas 6 and 11] it has been shown that each mereological
theory makes an assumption of infinity in each of the four ways considered here. In
particular, if any of them were accepted as an explicans of “T makes an assumption
of infinity”, even a theory like ACI1, which only has models with one element, would
make an assumption of infinity.
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But let me first quote the relevant results from [Niebergall, 2014,
lemmas A to D].

Lemma A. Let T be a mereological theory. Then:

(i) If T makes a universal strong assumption of infinity, then T makes
a strong assumption of infinity and T makes a universal very weak
assumption of infinity.

(ii) If T makes a universal very weak assumption of infinity, then T

makes a weak assumption of infinity.

Lemma B. (i) “IFin(x)” universally strongly expresses that x is finite.
(ii) Equivalent are for mereological theories T : T ⊢ ∃x ¬IFin(x),

T makes a universal strong assumption of infinity, T makes a strong
assumption of infinity.

By Lemma 4.4 and Lemma B we obtain:

Corollary 5.1. Equivalent are for mereological theories T : T ⊢ ¬AT,
T ⊢ ∃x ¬IFin(x), T makes a universal strong assumption of infinity,
T makes a strong assumption of infinity.

Lemma C. (i) No mereological theory makes a universal very strong
assumption of infinity.

(ii) No mereological theory makes a universal weak assumption of in-
finity.

Lemma D. Let T be a mereological theory. Then: T makes a weak
assumption of infinity ⇐⇒ all models of T are infinite.

To move forward, examples are helpful:

Example ACIn. For each n  1, ACIn does not make a weak assumption
of infinity (by Lemma D).

Example FCI. FCI makes a strong assumption of infinity (by Corol-
lary 5.1).

Example MCIn. For each n  1, MCIn makes a strong assumption of
infinity (by Corollary 5.1).

Example MCIω+{FUSAt}. MCIω+{FUSAt} makes a strong assumption
of infinity (by Corollary 5.1).

All of this is as it should be. It is only ACIω which is out of line.

Example ACIω. (i) ACIω does not make a strong assumption of infin-
ity (by Corollary 5.1).
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(ii) ACIω makes a weak assumption of infinity (by Lemma D).
(iii) ACIω does not make a universal very weak assumption of infinity.

Indeed, assume that ACIω makes a universal very weak assumption
of infinity, i.e., for some α from L[◦], ACIω ⊢ ∃x ¬α(x) and ∀S(S is a
mereological theory =⇒ ∀n(n ∈ N → S ⊢ ∀x(¬α(x) → ∃ny y ⊑ x))).
Then for some k ∈ N:

(∗) ACIk ⊢ ∃x ¬α(x),

and, specializing S to ACIk, ∀n(n ∈ N =⇒ ACIk ⊢ ∀x(¬α(x) →
∃ny y ⊑ x)), whence:

(∗∗) ACIk ⊢ ∀x(¬α(x)→ ∃≥2k+1

y y ⊑ x).

(*) and (**) imply:

(∗∗∗) ACIk ⊢ ∃x∃2k+1

y y ⊑ x.

Now let M be a model for ACIk. Then |M | = 2k − 1. But by (∗∗∗),
|M |  2k+1. Contradiction.

Making a strong assumption of infinity and making a universal very
weak assumption of infinity seem to be conceptually quite distinct. The
fact that they are equivalent for maximal consistent mereological theories
may seem to be a special feature of the latter. It can, however, been
shown that this equivalence holds for all mereological theories.

Lemma 5.1. Let T be a mereological theory which makes a weak as-
sumption of infinity. Then: T does not make a strong assumption of
infinity ⇐⇒ T ⊆ ACIω.

Proof. “⇐” If T ⊆ ACIω and T makes a strong assumption of infinity,
then by Corollary 5.1, T ⊢ ¬AT; whence ACIω ⊢ ¬AT. But since ACIω
is consistent, this cannot be the case.

“⇒” Assume that T makes a weak assumption of infinity but fails to
make a strong assumption of infinity. Then by Corollary 5.1, T 0 ¬AT.
Let’s consider the (therefore consistent) theory: T ′ := T + {AT}.

Claim. ACIω ⊆ T ′.

Proof. Since T is a mereological theory, ACI ⊆ T ′. Moreover:

(∗) ∀M(M |= T ′ =⇒M is infinite).

This is the case because, by assumption, T makes a weak assumption
of infinity and has therefore only infinite models (by Lemma D). By (∗)
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and since ACI ⊆ T ′, each model of T ′ contains infinitely many atomsM ,
and the claim follows.

Now ACIω is maximal consistent in L[◦]. Therefore, ACIω = T ′,
whence T ⊆ ACIω.

Corollary 5.2. Let T be a mereological theory. Then: T makes a
strong assumption of infinity ⇐⇒ T makes a universal very weak as-
sumption of infinity.

Proof. “⇒” It follows from Lemma A and Lemma B(ii). “⇐” Assume
that T makes a universal very weak assumption of infinity but fails to
make a strong assumption of infinity. Then by Lemma A(ii), T makes a
weak assumption of infinity. So, by Lemma 5.1, T ⊆ ACIω. But then,
by the assumption that T makes a universal very weak assumption of
infinity, ACIω has to make a universal very weak assumption of infinity,
too. This, however, contradicts (iii) from Example ACIω.

Let me sum up. When for mereological theories T , “T makes an as-
sumption of infinity” is explained by (DIiii+), the potentially acceptable
definientia are “T makes a universal strong assumption of infinity”, “T
makes a strong assumption of infinity”, “T makes a universal very weak
assumption of infinity” and “T makes a weak assumption of infinity”.
Now, it turned out that “T makes a universal strong assumption of infin-
ity”, “T makes a strong assumption of infinity” and “T makes a universal
very weak assumption of infinity” are equivalent with each other, each
of them being stronger than “T makes a weak assumption of infinity”.
Moreover, “T makes a weak assumption of infinity” is equivalent to the
definiens of (DIi). Thus, the above mentioned options eventually lead
to only two possible explicantia of “T makes an assumption of infinity”:

(DIi) T makes an assumption of infinity :⇐⇒
∀M(M |= T =⇒M is infinite).

(DIiii) T makes an assumption of infinity :⇐⇒ T |= ¬AT.

Under (DIi), ACIω makes an assumption of infinity; yet under (DIiii),
ACIω fails to make an assumption of infinity. In [Niebergall, 2014],
I have opted for the first alternative: ACIω makes an assumption of
infinity. The findings of the present paper simplify the picture up to the
point that only these two explicantia have to be taken into account; but
I do not think that they provide any reasons against the assessment in
[Niebergall, 2014].



Mereology and infinity 331

6. Theories of finiteness extending mereological theories

Let C be the class of theories in L[◦,F ] which extend a theory of the type
T ∗, T being a mereological theory. In this (and also in the following)
section, theories in C are studied for their own sake. Of course, the T ∗’s
deserve to be investigated closer, and they belong to C. There are, how-
ever, certain further theories over and above the theories T ∗ which are
both helpful for the understanding of the T ∗’s and play a distinguished
role on their own. These are the T+’s, where:

T+ := the deductive closure (in L[◦,F ]) of T ∪ {∀x(Fx↔ IFin(x))}

(if T is a mereological theory).
In what follows, for the theories in C, metatheoretical topics such

as maximal consistency, proof theoretic strength and their relation to
mereological theories are addressed. For the rest of Section 6, let T be
a consistent mereological theory.

6.1. More on T ∗ and T +

Lemma 6.1. (i) For each formula ψ from L[◦,F ] there is a formula
ψ−F from L[◦] such that T+ ⊢ ψ ↔ ψ−F . If ψ is a sentence, then
ψ−F is a sentence.

(ii) Let T be maximal consistent in L[◦]. Then T+ is maximal consis-
tent in L[◦,F ] and decidable.

(iii) T ∗ ⊆ T+.

Proof. (i) If ψ is a formula from L[◦,F ], let ψ−F result from ψ by
replacing each occurrence of “Fx” in ψ by “IFin(x)” (for each vari-
able x). Then ψ−F is a formula from L[◦], ψ and ψ−F have the same
free variables, and it can be shown by induction on the complexity of ψ
that T+ ⊢ ψ ↔ ψ−F .

(ii) As to the maximal consistency, let ϕ be a sentence from L[◦,F ],
and assume T+ 0 ϕ. Then by (i), T+ 0 ϕ−F , whence (∗) T 0 ϕ−F .

Note that by (i), ϕ−F is a sentence from L[◦]. And since T is assumed
to be maximal consistent (for L[◦]), we obtain from (*), T ⊢ ¬ϕ−F .
Therefore, T+ ⊢ ¬ϕ−F , and finally by (i) again, T+ ⊢ ¬ϕ.

Moreover, since each maximal consistent mereological theory is de-
cidable (by Theorem 2.1(iii)), each T+, resulting from T through the
addition of one axiom, is recursively enumerable. Thus, by its maximal
consistency, it is decidable.
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(iii) By Lemma 4.1, T+ ⊢ (AxI 1), (AxI 2). In order to show (IndI-a),
let ψ be a formula from L[◦,F ]. Then by (i), ψ−F is from L[◦]. Now
because of Corollary 4.1, T ⊢ AxFinI -a[ψ−F ]→ ∀x(IFin(x)→ ψ−F(x)).
But then by (i), T+ ⊢ AxFinI -a[ψ]→ ∀x(IFin(x)→ ψ(x)).

6.2. Models for L[◦, F ]

Models for L[◦,F ] are of the form 〈M, ◦M ,FM〉, with FM ⊆ M . Two
special choices of FM deserve attention (for models 〈M, ◦M〉 of CI):

EM := {a | a ∈M ∧ a is a finite sumM of atomsM},
AM := {a | a ∈M ∧ 〈M, ◦M〉, β(x : a) |= IFin(x)}.

Lemma 6.2. (i) If 〈M, ◦M〉 |= T , then 〈M, ◦M ,AM〉 |= T+.
(ii) T+ is a conservative extension of T .

Proof. (i) Follows immediately from the definition of AM .
(ii) As usual, from (i).

Lemma 6.3. (i) If 〈M, ◦M〉 |= T , then 〈M, ◦M , EM〉 |= T ∗.
(ii) T ∗ is a conservative extension of T .

Proof. (i) Each atomM is a finite sumM of atomsM ; and binary sumsM

of finite sumsM of atomsM are finite sumsM of atomsM . Moreover,
assume the hypotheses of (IndI-a) for ψ and let a satisfy “Fx” in 〈M, ◦M ,
EM〉. Then each atomM satisfies ψ and, therefore, each finite sumM of
atomsM satisfies ψ. But a, being an element of EM , is such a finite
sumM .

(ii) As usual, from (i).

Lemma 6.4. If 〈M, ◦M〉 |= CI + {FUSAt, ∃x At(x)}, then:

(i) AM = {a | a ∈M ∧ a is a partM of the sumM of all atomsM},
(ii) EM ⊆ AM .

Proof. (i) follows from Lemma 4.5.

Lemma 6.5. If 〈M, ◦M ,FM〉 |= T ∗, then: (i) EM ⊆ FM ; (ii) FM ⊆ AM .

Proof. (i) By Lemma 3.1(ii).
(ii) By Lemma 4.1(ii) and (iii), T ∗ ⊢ ∀x(Fx→ IFin(x)).

Lemma 6.6. Assume ∀M∀ ◦M (〈M, ◦M〉 |= T =⇒ EM = AM ). Then:

(i) T+ ⊆ T ∗,
(ii) T+ = T ∗.
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Proof. (i) Let B |= T ∗, with B = 〈B, ◦B,FB〉. Then 〈B, ◦B〉 |= T , and
by assumption we have EB = AB. But then, by Lemma 6.5, FB = AB.

Therefore B = 〈B, ◦B ,AB〉. Moreover, since 〈B, ◦B,AB〉 |= T+, by
Lemma 6.2(i), it follows that B |= T+.

(ii) By (i) and Lemma 6.1(iii).

6.3. Extensions of maximal consistent mereological theories: examples

Examples, step 1. (ACIn+1) If 〈M, ◦M〉 |= ACIn+1, then EM = AM = M

(for each n ∈ N).
(FCI) If 〈M, ◦M〉 |= FCI, then EM = AM = ∅.
(MCIn+1) If 〈M, ◦M〉 |= MCIn+1, then EM = AM = {a | a ∈ M ∧

a is a partM of the sumM of all atomsM} ⊂M (for each n ∈ N).
The maximal element of M is not an element of EM .
(ACIω) If 〈M, ◦M〉 |= ACIω, then EM ⊂ AM = M .
The maximal element of M is not an element of EM .
(MCIω + {FUSAt}) If 〈M, ◦M〉 |= MCIω + {FUSAt}, then EM ⊂

AM = {a | a ∈M ∧ a is a partM of the sumM of all atomsM} ⊂M .
The sumM of all atomsM is an element of AM , but not of EM . The

maximal element of M is not an element of AM .

Examples, step 2. By Lemma 6.6 and the examples, step 1, we obtain:

(ACIn+1) ACI+
n+1 = ACI∗

n+1 (for each n ∈ N).
(FCI) FCI+ = FCI∗.
(MCIn+1) MCI+

n+1 = MCI∗
n+1 (for each n ∈ N).

Therefore, by Lemma 6.1, each of theories ACI∗
n+1, FCI∗, and MCI∗

n+1

is maximal consistent (in L[◦,F ]), finitely axiomatizable and decidable.

Examples, step 3. (ACIn+1) ACI+
n+1 = ACIn+1 + {∀x Fx} (for each

n ∈ N).

Proof. Choose a model 〈M, ◦M〉 of ACIn+1. Then, by Theorem 2.1(iii)
and Lemmas 6.1(ii) and 6.2(i), plus Examples, step 1:

ACI+
n+1 = Th(〈M, ◦M ,AM〉) = Th(〈M, ◦M ,M〉).19

Since 〈M, ◦M ,M〉 |= ∀x Fx, it follows that ACI+
n+1 ⊢ ∀x Fx.

Moreover, ACI+{∀xFx} ⊢ ∀xFx, and ACI+{∀xFx} ⊢ ∀xIFin(x),
by Lemma 4.2(ii). Taken together:

19 If B is a structure for language L, Th(B) := {ψ | ψ is a sentence from L ∧
B |= ψ}.
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ACIn+1 + {∀x Fx} ⊢ ∀x(Fx↔ IFin(x)).

By the same kind of reasoning, it can be shown that:

(FCI) FCI+ = FCI + {∀x ¬Fx},
(ACIω) ACI+

ω = ACIω + {∀x Fx}.

6.4. Extensions of ACI∗

ω

The results of the previous subsections imply for each consistent mereo-
logical theory T : if U is a maximal consistent extension of T ∗ (in L[◦,F ]),
then U = FCI∗, or U = ACI∗

n, or U = MCI∗
n (for some n  1); or U is a

maximal consistent extension of ACI∗
ω or MCI∗

ω + {FUSAt}. But which
theories are the maximal consistent extensions (in L[◦,F ]) of these two?
ACI+

ω and MCI+
ω + {FUSAt} must be among them; but it turns out that

there are more.
Let me say a few words about the maximal consistent extensions of

ACI∗
ω.
First, as has just been pointed out, ACI∗

ω + {∀x Fx} is a maximal
consistent extension of ACI∗

ω (in L[◦,F ]).
Second, ACI∗

ω + {¬∀x Fx} is consistent, and therefore a proper con-
sistent extension of ACI∗

ω. For consider 〈℘(N) \ {∅}, ◦℘(N)\{∅}〉, with:

A ◦℘(N)\{∅} B :⇐⇒ A ∩B 6= ∅ (for A,B ⊆ N, A,B 6= ∅).

This is a model of ACIω, whence P := 〈℘(N)\{∅}, ◦℘(N)\{∅}, E℘(N)\{∅}〉 |=
ACI∗

ω (by Lemma 6.3(i)). But also P |= ¬∀xFx (see Examples, step 1).
Third: ACI∗

ω + {¬∀x Fx} is not maximal consistent (in L[◦,F ]).
For ACI∗

ω + {¬∀x Fx} does not decide the sentence:

(DIS) ∀x(¬∀y y ⊑ x→ Fx ∨ F(−x)).

On the one side, (DIS) is false in P (specialize “x” to the set of even num-
bers). On the other side, it holds in this structure: FC := 〈FC, ◦FC, EFC〉,
with FC := {A ⊆ N | A is finite ∨ N \ A is finite} \ {∅} and A ◦FC B

:⇐⇒ A ∩B 6= ∅ (for A,B ∈ FC).
〈FC, ◦FC〉 is induced by a Boolean algebra, is atomistic and has in-

finitely many atoms (i.e., the singletons {k}, with k ∈ N). Therefore,
it is a model of ACIω, and FC |= ACI∗

ω. Moreover, if A ∈ FC satisfies
“¬∀y y ⊑ x” (in FC), it is either finite, or it has a finite complement
N \A, which is also an element of FC. Now, X (∈ FC) is finite iff X is
a finite union of singletons of natural numbers, which means that X is a
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finite sumFC of atomsFC , i.e., that X is an element of EFC. Therefore,
A ∈ EFC or N \A ∈ EFC; which shows that (DIS) holds in FC.

In sum, ACI∗
ω is a proper subtheory of ACI+

ω ; and there are at least
three maximal consistent extensions of ACI∗

ω (in L[◦,F ]): ACI+
ω , Th(P)

and Th(FC).

6.5. Relative interpretability

When a language L is extended to a language L+ by adding new vo-
cabulary, this is often done with the aim of enriching the expressional
resources of L: in L+, it should be possible to express more, to make finer
distinctions. Yet, what is a language? Let’s deal with L[◦] and its exten-
sion L[◦,F ]. If L[◦] and L[◦,F ] are individuated by their vocabularies
(which has been taken for granted in the present paper), it should be
plausible that the second language is richer (at least not poorer) than the
first one. But now consider two theories: ZF◦, which results from ZF by
replacing “∈” by “◦” and is therefore formulated in L[◦]; and the set PL1

of first-order logical truths stated in L[◦,F ]. Certainly, ZF◦ is stronger
than PL1 (in whatever way “stronger” may be reasonably understood
here). And, using ZF◦, it should be possible to express more than by
employing merely logical truths. So what happened to the supposed gain
in expressional richness when moving from L[◦] to L[◦,F ]?

Inspired by this, admittedly sketchily presented, line of thought let
me not deal with L[◦] and L[◦,F ], but rather with the framework which is
given by both L[◦] and the mereological theories T , and in addition with
the framework supplied by L[◦,F ] together with the extensions of mere-
ological theories formulated therein. I suggest to formulate the claim
that the second framework constitutes an enrichment of the expressional
resources of the first one as follows:

Among the consistent extensions of mereological theories in
L[◦,F ], there is at least one T such that for all consistent mere-
ological theories S, T is not reducible to S.

If this cannot be attained, everything that can be done in such an
extension of a mereological theory can be simulated in a mereological
theory itself. The extension to the new framework which rests on L[◦,F ]
becomes superfluous.

In my opinion, the best precise explicans for “(a theory) S is reducible
to (a theory) T” is “S is relatively interpretable to T” (or something close
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to it; reasons are given Bonevac [1982] and Niebergall [2000]). In what
follows, let me therefore investigate this:

Conjecture. Among the consistent extensions of mereological the-
ories in L[◦,F ], there is at least one T such that for all consistent
mereological theories S, T is not relatively interpretable in S.

Given what has been shown in the present paper, it is clear that for
each consistent mereological theory T , T+ is a subtheory of a definitional
extension of T (employing the definition “Fx :←→ IFin(x)”). Thus, by
Lemma 6.1(iii) and well known results on relative interpretability, T ,
T ∗ and T+ are relatively interpretable in each other. Here, we find no
enrichment or strengthening of the original framework; the theories T ∗

and T+ deliver no witnesses for the conjecture.

The conjecture is nonetheless true. An example is provided by
ACI∗

ω + {¬∀x Fx}.
First, by [Niebergall, 2009a, Theorem 5], ACIω � ACIk, ACIω �

MCIk (for k  1), ACIω � FCI; whence by what has just been remarked
ACI∗

ω + {¬∀x Fx} � ACIk, ACI∗
ω + {¬∀x Fx} � MCIk (for k  1),

ACI∗
ω + {¬∀x Fx} � FCI.

Second, only the relation between ACI∗
ω + {¬∀x Fx} and ACIω or

MCIω + {FUSAt} needs to be discussed. Here, a lemma about ACIω +
{¬∀x Fx, (AxI 1), (AxI 2), (AxI 3)} is helpful.

Lemma 6.7. (i) For each n ∈ N,
ACI + {¬∀x Fx, (AxI 1), (AxI 2), (AxI 3)} ⊢ ∃>nAt.

(ii) ACIω + {¬∀x Fx, (AxI 1), (AxI 2), (AxI 3)} = ACI + {¬∀x Fx,
(AxI 1), (AxI 2), (AxI 3)}.

(iii) ACIω + {¬∀x Fx, (AxI 1), (AxI 2), (AxI 3)} is finitely axiomatiz-
able.20

Proof. (i) follows from Lemma 3.2. (ii) by (i). (iii) by (ii).

Corollary 6.1. (i) ACI∗
ω + {¬∀x Fx} � ACIω.

(ii) ACI∗
ω + {¬∀x Fx} � MCIω + FUSAt.

20 ACI∗
ω and ACI+

ω , and also MCI∗
ω +FUSAt and MCI+

ω +FUSAt , are not finitely
axiomatizable.

If, for example, ACI∗
ω or ACI+

ω were finitely axiomatizable, each of them would be
a subtheory of some ACI+

n+1. Since this theory is relatively interpretable in ACIn+1,

ACI∗
ω, and ACI+

ω would eventually be relatively interpretable in ACIn+1  which is
not the case.
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Proof. (ii)21 Assume ACI∗
ω+{¬∀xFx} � MCIω+FUSAt . Then ACIω+

{¬∀xFx, (AxI 1), (AxI 2), (AxI 3)} � MCIω+FUSAt, and there is a k ∈
N such that ACIω+{¬∀xFx} � MCIk+FUSAt, since by Lemma 6.7(iii),
ACIω + {¬∀x Fx, (AxI 1), (AxI 2), (AxI 3)} is finitely axiomatizable.

By Theorem 2.1(i), MCIk + FUSAt = MCIk, and therefore ACIω +
{¬∀x Fx} � MCIk.

Yet this contradicts first from above.

Corollary 6.2. There is no consistent mereological theory in which
ACI∗

ω + {¬∀x Fx} is relatively interpretable.

Proof. If T were a consistent mereological theory such that ACI∗
ω +

{¬∀xFx} � T , then ACI∗
ω +{¬∀xFx} would be relatively interpretable

in a maximal consistent extension of T (in L[◦]). Yet this is excluded by
first and second (i.e., Corollary 6.1) in conjunction with Theorem 2.1(iii).

7. A second-order treatment of “x is finite”

Since the set-theoretic definiens of “x is finite” mentioned in Section 4
uses only two levels of the von Neumann hierarchy, it should be possible
to formulate it in a second-order language. In this section, I will give
such a definition in L2[◦], the monadic second-order extension of L[◦],
and address some of its consequences.22

7.1. The definition of “x is finite” in L2[◦]

L2[◦] is the second-order language which results from L[◦] through the ad-
dition of one-place second-order variables (“X”, . . . ); in particular, L2[◦]
and L[◦] have the same vocabulary. In L2[◦], we have classical second-
order logic: roughly put, the axioms and rules known from common
axiomatizations of first-order logic (with modus ponens and generaliza-
tion as rules of inference) are transferred from first-order to second-order
variables. In particular, with these, “Σ ⊢2 ψ” is defined for formulas ψ
and sets of formulas Σ from L2[◦] along the common lines.23

21 The proof of (i) is similar to the proof of (ii), but easier.
22 At several places, this section builts on [Niebergall, 2008b].
23 For explicitnes, one may consider Shapiro [1991], for example.



338 Karl-Georg Niebergall

Sometimes, instances of the comprehension schema, that is, L2[◦]-
formulas of the form:

∃X∀z(Xz ←→ ψ(z))

(or their universal closures), where ψ is from L2[◦] and X does not occur
in ψ, are also regarded as logical truths of second-order logic. They will
be included in most of the theories (in L2[◦]) considered in this section.

Relative to extensions of CI,24 “x is finite” can now be defined as
follows in L2[◦]:

Definition 7.1. Fin2(x) :←→ ∀Y (∀z(At(z)→ Y z) ∧ ∀zz′(Y z ∧ Y z′ →
Y (z ⊔ z′))→ Y x).

7.2. Metatheorems and adequacy results

In my opinion, Definition 7.1 is from an intuitive perspective the natural
definition in L2[◦] of “x is finite”. The same can certainly not be claimed
for the definition that can be found in [Lewis, 1991], which amounts to:

FinL(x) :←→ ¬∃X(∃y Xy ∧ x =
∨
X ∧

∀y(Xy → ∃z(Xz ∧ y ⊑ z ∧ ¬z ⊑ y))) .25

In addition, Definition 7.1 has some salient consequences of a partly
formal nature, which also suggest its adequacy.

First, as was to be expected, it straightforwardly yields the axioms of
finiteness from Section 3. Actually, given Definition 7.1, they follow from
quite weak axioms stated in L2[◦]. More explicitly, let ψ be a formula in
L2[◦] which does not contain the variable X ; set:

Compψ := (the universal closure of) ∃X∀z(Xz ↔ ψ(z)),

Comp := {Compψ | ψ is an X-free L2[◦]-formula}.

Then we have:

Lemma 7.1. (i) CI ⊢2 ∀x(At(x)→ Fin2(x));
(ii) CI ⊢2 ∀xy(Fin2(x) ∧ Fin2(y)→ Fin2(x ⊔ y));

(iii) CI∪Comp ⊢2 ∀z(At(z)→ ψ(z))∧∀zz′(ψ(z)∧ψ(z′)→ ψ(z⊔z′))→
∀x(Fin2(x)→ ψ(x)) (for each formula ψ from L2[◦]).

Proof. (i) Purely logically, CI ⊢2 At(x)→ (∀z(At(z)→ Y z)∧∀zz′(Y z
∧ Y z′ → Y (z ⊔ z′))→ Y x).

24 The notation used in Definition 7.1 presupposes SUM.
25 With x =

∨
X :←→ ∀y(y ◦ x↔ ∃z(Xz ∧ y ◦ z).
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Universal generalization with respect to “Y ” and distribution yield
CI ⊢2 At(x)→ ∀Y (∀z(At(z)→ Y z)∧∀zz′(Y z∧Y z′ → Y (z⊔z′))→ Y x).

(ii) CI ⊢2 ∀Y (∀z(At(z) → Y z) ∧ ∀zz′(Y z ∧ Y z′ → Y (z ⊔ z′)) →
Y x) ∧ ∀Y (∀z(At(z) → Y z) ∧ ∀zz′(Y z ∧ Y z′ → Y (z ⊔ z′)) → Y y) ∧
∀z(At(z)→ Y z) ∧ ∀zz′(Y z ∧ Y z′ → Y (z ⊔ z′))→ Y x ∧ Y y ∧ ∀zz′(Y z ∧
Y z′ → Y (z ⊔ z′)) → Y (x ⊔ y). Whence CI ⊢2 Fin2(x) ∧ Fin2(y) →
(∀z(At(z)→ Y z) ∧ ∀zz′(Y z ∧ Y z′ → Y (z ⊔ z′))→ Y (x⊔ y)). Therefore
CI ⊢2 Fin2(x) ∧ Fin2(y)→ Fin2(x ⊔ y).

(iii) Let ψ(u) be a formula from L2[◦]. By comprehension with respect
to ψ we have: CI∪Comp ⊢2 Fin2(x)→ ∀Y (∀z(At(z)→ Y z)∧∀zz′(Y z∧
Y z′ → Y (z ⊔ z′))→ Y x) ∧ ∃Y ∀u(Y u↔ ψ(u))→ ∃Y [∀u(Y u↔ ψ(u)) ∧
(∀z(At(z) → Y z) ∧ ∀zz′(Y z ∧ Y z′ → Y (z ⊔ z′)) → Y x)]. Whence
CI ∪ Comp ⊢2 Fin2(x) → (∀z(At(z) → ψ(z)) ∧ ∀zz′(ψ(z) ∧ ψ(z′) →
ψ(z ⊔ z′)) → ψ(x)). Therefore CI ∪ Comp ⊢2 ∀z(At(z) → ψ(z)) ∧
∀zz′(ψ(z) ∧ ψ(z′)→ ψ(z ⊔ z′))→ ∀x(Fin2(x)→ ψ(x)).

Second, there is a model theoretic adequacy result for Definition 7.1.
Since it is dependent on the distinction between standard second-order
models and generalized second-order models, let me quickly recapitu-
late that distinction. Thus, let ψ be a formula from L2[◦]: and let’s
discuss how to define “variable assignment β satisfies ψ in structure
M”. Similarly to the first-order case, such a structure has to provide
domains of the variables of L2[◦] and an interpretation function I. More
explicitly, there has to be a nonempty set M for the first-order vari-
ables, a nonempty set Ω for the second-order variables, and we must
have I(◦) ⊆M2. In addition, since there are only monadic second-order
variables in L2[◦], Ω should be a subset of ℘(M).

Accordingly, one can define generalized second-order structures (in
short: g2-structures) as follows:

x is a g2-structure :⇐⇒
∃MΩI(x = 〈M,Ω, I〉 ∧ M 6= ∅ ∧ ∅ 6= Ω ⊆ ℘(M) ∧ I(◦) ⊆M2).

As regards variable assignments β, I assume that they have both first-
and second-order variables in their domains, mapping the second-order
variables to elements of Ω. Given that, satisfaction in a g2-structure is
defined as in the first-order case, with the following clauses added:

〈M,Ω, I〉, β |= Xy ⇐⇒ β(y) ∈ β(X) ,

〈M,Ω, I〉, β |= ∀Xψ ⇐⇒ ∀C(C ∈ Ω ⇒ 〈M,Ω, I〉, β(X : C) |= ψ) .
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A special case, which is sometimes regarded as particularly natural and
important, obtains when Ω = ℘(M). Here, we have the so-called “stan-
dard second-order structures” (in short: s2-structures):

x is a s2-structure :⇐⇒

∃MI(x = 〈M,℘(M), I〉 ∧ M 6= ∅ ∧ I(◦) ⊆M2) .

Since each s2-structure is a g2-structure, satisfaction in a s2-structure is
already defined. Let me merely reformulate the quantifier-case:

〈M,℘(M), I〉, β |= ∀Xψ ⇐⇒

∀C(C ⊆M =⇒ 〈M,℘(M), I〉, β(X : C) |= ψ) .

Consequence with respect to g2-structures and with respect to s2-
structures is then defined as follows (for L2[◦]-sentences ψ and sets Σ of
L2[◦]-sentences):

Σ |=g2 ψ :⇐⇒ ∀M(M is a g2-structure =⇒ (M |= Σ =⇒M |= ψ)) ,

Σ |=s2 ψ :⇐⇒ ∀M(M is a s2-structure =⇒ (M |= Σ =⇒M |= ψ)) .26

What can be shown now is that for each s2-structureM which is a model
of CI, a is in the extension of “Fin2” inM iff a has finitely many partsM .
That is

Lemma 7.2. Let M (= 〈M, Ω, ◦M〉) be a g2-structure for L2[◦] which
satisfies Ax(CI). Then (if β is an assignment over M):

β(x) is the sumM of finitely many atomsM =⇒ M, β |= Fin2(x).

Proof. By assumption, there are a1, . . . , ak ∈M such that:

(∗) a1, . . . , ak are atomsM ∧ β(x) =
∨M{a1, . . . , ak}.

Now let C ∈ Ω be arbitrary, and assume:

(∗∗) M, β(Y : C) |= ∀z(At(z)→ Y z),

(∗∗∗) M, β(Y : C) |= ∀zz′(Y z ∧ Y z′ → Y (z ⊔ z′)).

By (∗) and (∗∗): M, β(Y : C)(z1 : a1) |= Y z1, . . . , M, β(Y : C)(zk :
ak) |= Y zk. And these imply by repeated use of (∗∗∗): M, β(Y : C)(z1 :
a1) . . . (zk : ak) |= Y (z1 ⊔ ...⊔ zk). Whence

∨M{a1, . . . , ak} ∈ C and, by
(*), M, β(Y : C) |= Y x.

26 We have the completeness theorem: Σ ⊢2 ψ ⇐⇒ Σ |=g2 ψ.
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Lemma 7.3. Let M (= 〈M, ℘(M), ◦M〉) be a s2-structure for L2[◦]
which satisfies Ax(CI). Then (if β is an assignment over M):27

M, β |= Fin2(x) =⇒ β(x) is the sumM of finitely many atomsM .

Proof. If M, β |= Fin2(x), then ∀C(C ⊆ M =⇒ M, β(Y : C) |=
∀z(At(z)→ Y z) ∧ ∀zz′(Y z ∧ Y z′ → Y (z ⊔ z′))→ Y x).

Now specialize “C” to B:

B := {b ∈M | ∃a1...ak(a1, ..., ak are atomsM ∧ b =
∨M{a1, ..., ak})}.

Then we obtain (∗) M, β(Y : B) |= ∀z(At(z)→ Y z)∧ ∀zz′(Y z ∧ Y z′ →
Y (z ⊔ z′)) → Y x. Moreover, since obviously (∗∗) M, β(Y : B) |=
∀z(At(z) → Y z) and M, β(Y : B) |= ∀zz′(Y z ∧ Y z′ → Y (z ⊔ z′)),
it follows with (∗) and (∗∗) that M, β(Y : B) |= Y x. That is, β(x) is
the sumM of finitely many atomsM .

Corollary 7.1. (i) Let M (= 〈M, Ω, ◦M〉) be a g2-structure for
L2[◦] which satisfies Ax(CI), and let β be an assignment over M .
Then: {a ∈M | a ⊑M β(x)} is finite =⇒ M, β |= Fin2(x).

(ii) Let M (= 〈M, ℘(M), ◦M〉) be a s2-structure for L2[◦] which sat-
isfies Ax(CI), and let β be an assignment over M . Then: M, β |=
Fin2(x) =⇒ {a ∈M | a ⊑M β(x)} is finite.

Proof. It can be shown that: {a ∈M | a ⊑M β(x)} is finite iff β(x) is
the sumM of finitely many atomsM .

Let’s compare now Definition 7.1 with the one given in Lewis 1991
with respect to Lemmas 7.2 and 7.3, and Corollary 7.1.

First, analogues of these lemmas, can be shown for “FinL(x)” [see
Niebergall, 2008b, lemmas 23 and 24]. Yet, Lemma 24, in particular, is:
Let M (= 〈M, ℘(M), ◦M〉) be a s2-structure for L2[◦] which satisfies
Ax(ACI) and FUS-Ax, and let β be an assignment over M . Then:
M, β |= FinL(x) =⇒ {a ∈M | a ⊑M β(x)} is finite.

Thus, we have additional assumptions here when compared with
Lemma 7.3 or Corollary 7.1: there are “fewer” s2-structures in which
“FinL(x)” “expresses” finiteness.

Now, I see a decent chance to prove a version of Lemma 24 where
“Ax(ACI)” is replaced by “Ax(CI)”. But I have no idea how one could
get rid of the assumption that FUS-Ax has to hold inM.

27 In this case, we also have: M, β |= Fin2(x) =⇒ M, β |= ∃xAt(x).
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FUS-Ax is the second-order fusion axiom:

∀X(∃x Xx→ ∃z∀y(z ◦ y ↔ ∃x(x ◦ y ∧Xx))).

As a mereological principle, I take it to be as plausible as the first-order
schema FUS. Therefore, for s2-structures, “FinL(x)” may turn out to be
almost as good as “Fin2(x)”. But what is the relation between “FinL(x)”
and “Fin2(x)” in general, i.e., with respect to arbitrary g2-structures?

It is of importance here that an analogue of Lemma 7.1, with
“FinL(x)” replacing “Fin2(x)”, can be established:

Lemma 7.4. (i) ACI ∪ Comp ∪ {FUS-Ax} ⊢2 ∀x(At(x)→ FinL(x));
(ii) ACI∪Comp∪{FUS-Ax} ⊢2 ∀xy(FinL(x)∧FinL(y)→ FinL(x⊔y));

(iii) ACI∪Comp∪{FUS-Ax} ⊢2 ∀z(At(z)→ ψ(z))∧∀zz′(ψ(z)∧ψ(z′)→
ψ(z⊔ z′))→ ∀x(FinL(x)→ ψ(x)) (for each formula ψ from L2[◦]).

This lemma (which is stated here without proof) has been obtained
by Werner (unplublished). Let me remark that Werner’s proof is much
more complicated than the one for Lemma 7.1. Moreover, it is not easy
to see whether the use of FUS-Ax could be eliminated from it. In this
sense, Definition 7.1 is again superior to the definition from [Lewis, 1991],
at least from a practical point of view. Yet on a more abstract level, there
is not much to choose between Definition 7.1 for “x is finite” and the one
found by Lewis. For as a direct consequence of lemmas 7.1 and 7.4 (cf.
Lemma 4.6, the characterization lemma), one obtains

Corollary 7.2. ACI ∪ Comp ∪ {FUS-Ax} ⊢2 ∀x(FinL(x)↔ Fin2(x)).

7.3. Connection with extensions of ACI∗
ω

In this subsection, results about extensions of mereological theories in
L2[◦] are used as a means to shed some light on the maximal consistent
extensions of ACIω in L[◦,F ].

Given earlier remarks in this section, I take it that analogues of mere-
ological theories formulated in L2[◦] should contain mereological theories,
Comp and FUS-Ax. Moreover, they should be “closed”; that is, closed
under g2-consequence or closed under s2-consequence. Only s2-closure is
relevant for the present paper; it is defined as follows (ifΣ is a set of L2[◦]-
sentences; “Comp” need not be added, because Comp ⊆ Σs2 anyway):

Σs2 := {ψ | ψ is a sentence from L2[◦] ∧ Σ∪CI∪{FUS-Ax} |=s2 ψ}.

In addition, I assume that Definition 7.1 is in force.
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Thus, let us deal with supersets of ((ACIω)s2)D), where ((ACIω)s2)D)
being (ACIω)s2, extended by “∀x(Fx ↔ Fin2(x))”. By Lemma 7.1,
ACI∗

ω ⊆ ((ACIω)s2)D). But also, “¬∀x Fx” belongs to ((ACIω)s2)D).
From this point of view, ACI+

ω would be excluded as a natural maximal
consistent extension of ACI∗

ω. Given Section 6.4, let’s therefore deal only
with Th(P) and Th(FC).

I start with some general lemmas.

Lemma 7.5. Let M (= 〈M, ℘(M), ◦M〉) be a s2-structure for L2[◦]
which satisfies Ax(CI). Then:

(i) M, β(x : a) |= Fin2(x)⇐⇒ a ∈ EM .
(ii) 〈M,℘(M), ◦M, EM〉 |= ∀x(Fx↔ Fin2(x)).28

Proof. (i) By lemmas 7.2 and 7.3. (ii) For every a ∈M , by (i):

〈M,℘(M), ◦M , EM〉,β(x : a) |= Fx ⇐⇒ a ∈ EM

⇐⇒ 〈M,℘(M), ◦M〉, β(x : a) |= Fin2(x)

⇐⇒ 〈M,℘(M), ◦M , EM〉, β(x : a) |= Fin2(x).

If ψ is a formula from L[◦,F ], then let ψ−2F result from ψ by replac-
ing each occurrence of “Fx” in ψ by “Fin2(x)” (for each variable x).

Lemma 7.6. (i) ψ−2F is a formula from L2[◦]. If ψ is a sentence, then
ψ−2F is a sentence.

(ii) If ψ is a formula from L[◦,F ], 〈M,℘(M), ◦M , EM〉, β |= ψ ↔ ψ−2F .
(iii) If ψ is a sentence from L[◦,F ], then 〈M, ◦M , EM〉 |= ψ ⇐⇒

〈M,℘(M), ◦M〉 |= ψ−2F .

Proof. (ii) By Lemma 7.5(ii) and induction on the built-up of ψ.

(iii) By (i) and (ii).

Let Th2(〈M,Ω, ◦M〉) be the set of sentences from L2[◦] which hold
in 〈M,Ω, ◦M〉. Then we have as a consequence of Lemma 7.6(iii):

Corollary 7.3. Th2(〈℘(N) \ {∅}, ℘(℘(N) \ {∅}), ◦℘(N)\{∅}〉) extended
by the definition “Fx :←→ Fin2(x)” contains the same sentences from
L[◦,F ] as Th(P).

28 The semantical vocabulary introduced for L2[◦] is supposed to be explained
similarly for L2[◦,F ].
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Consider the L2[◦]-sentence:

(CountAt) ∀Xx(x =
∨
X ∧ ∀y(Xy → At(y)) ∧ ¬Fin2(x)→ large(x)),

with:

large(x) :←→ ∃X [∃y Xy ∧ ∀yz(Xy ∧Xz ∧ y ◦ z → y = z) ∧
∃y(y =

∨
X ∧ ∀z z ⊑ y) ∧

∀y(Xy→ ∃1z(At(z) ∧ z ⊑ y ∧ z ⊑ x) ∧ ∃¬2z(At(z) ∧ z ⊑ y))].

In [Niebergall, 2008b, Theorem 26] it is shown that:

Th2(〈℘(N) \ {∅}, ℘(℘(N) \ {∅}), ◦℘(N)\{∅}〉) = (ACIω ∪ {(CountAt)})s2.

With Corollary 7.3, this yields:

Corollary 7.4. (ACIω ∪ {(CountAt)})s2 extended by the definition
“Fx :←→ Fin2(x)” contains the same sentences from L[◦,F ] as Th(P).

Similarly, one can deal with FC instead of P and obtain from
Lemma 7.6(iii):

Corollary 7.5. Th2(〈FC, ℘(FC), ◦FC〉) extended by the definition
“Fx :←→ Fin2(x)” contains the same sentences from L[◦,F ] as Th(FC).

Yet, what could be the analogue of Corollary 7.4 in this case?
Th2(〈℘(N)\{∅}, ℘(℘(N)\{∅}), ◦℘(N)\{∅}〉) was presented there in a quasi-
axiomatic way as (ACIω ∪ {(CountAt)})s2. How could such a presenta-
tion for Th2(〈FC, ℘(FC), ◦FC〉) look like?  The answer is: there is no
such presentation (in L2[◦]).

Lemma 7.7. (i) 〈FC, ℘(FC), ◦FC〉 6|= FUS-Ax.
(ii) There is no set of sentences Σ in L2[◦] such that

Th2(〈FC, ℘(FC), ◦FC〉) = Σs2.

Proof. (i) If 〈FC, ℘(FC), ◦FC〉 |= FUS-Ax, it is a s2-structure which
satisfies ACI plus FUS-Ax. But then, by Lemma 16 in [Niebergall,
2008b], FC plus an additional object is the domain of a complete Boolean
algebra which is atomistic. In light of Lemma 21 in [Niebergall, 2008b],
there exists then a set A which must be infinite, since 〈FC, ℘(FC), ◦FC〉
|= ACIω  such that FC plus that additional object has the same car-
dinality as ℘(A). Therefore, FC itself must be uncountable; but is is
countable.
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(ii) Assume there is such a set of sentences Σ. Since Th2(〈FC,
℘(FC), ◦FC〉) holds in 〈FC, ℘(FC), ◦FC〉, each element of Σs2 must be
true in 〈FC, ℘(FC), ◦FC〉 as well. Yet, FUS-Ax is such an element. This
contradicts (i).

In sum, given the considerations of this subsection, it should be
Th(P) which is distinguished among the maximal consistent extensions
of ACI∗

ω known from Section 6.

8. Conclusion

The present paper dealt with mereological theories, as I have called them,
and with theories belonging to a class C of extensions of them (see Sec-
tion 6). Yet why, it may be asked, are these theories philosophically
interesting and worthy of study? I see three answers to this question:29

First, these theories are simply taken to be that: philosophically
interesting and worthy of study; no further reason is given (and need be
given).

Second, these theories are philosophically interesting and worthy of
study because they are nominalistic theories.30

Third, these theories are philosophically interesting and worthy of
study because they are non-mathematical theories which may be able to
replace mathematical theories as parts of empirical theories.

Those who prefer the first answer may appreciate the development
and study of extensions of mereological theories as a widening, refinement
and strengthening of the mereological paradigm. However, since I lean
towards the second and third answer, let me close this paper with some
comments on them.

The second answer presupposes that the elements of C deserve to
be regarded as nominalistic theories. Now, it has to be granted that
no accepted precise general explicans of “T is a nominalistic theory” is
available. This notwithstanding, theories are known to us which are
commonly accepted as nominalistic theories: among them are at least

29 In particular, I agree that mereological theories need not be interpreted nom-
inalistically and their study need not be motivated by nominalistic concerns.

30 As regards the advantages of a nominalistic position over a platonistic one,
I have no really new ingredients to add to what has been discussed by Goodman, Quine
and their critics and followers (see [Goodman and Quine, 1947; Goodman, 1951] and,
with an emphasis on nominalistic theories, [Niebergall, 2005]).
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some of the mereological theories, such as Goodman’s calulus of indi-

viduals [see Goodman, 1951], but also token concatention theories [see
Goodman and Quine, 1947; Niebergall, 2005]. In fact, the first ones are
the examples of nominalistic theories.

I follow those philosophers who take the nominalistic position to con-
sist in the avoidance of the assumption of abstract objects. Then, the
criterion for T being a nominalistic theory is roughly this: the preferred
reading of the vocabulary of L[T ] deals with concrete objects; and T

is true, given that reading. From this perspective, too, at least some
mereological theories, but also some theories in C, should be viewed as
nominalistic theories. This leads to the third answer, which, though
closely related to the second one, should be clearly distinguished from
it. I have mainly two reasons for this assessment.

The first one is simply that one may be a platonist and assume the
existence of abstract objects, and still agree that the empirical objects
known from our everyday experience are only concrete objects. Accord-
ingly, speaking about theories instead of ontology, even a platonist may
prefer empirical theories to be free from mathematics.

Actually, it seems that more than a few empirical theories  in partic-
ular physical theories  have, as they are commonly stated, what may be
called a “mathematical core”: if such a theory T is explicitly presented,
mathematical expressions, such as “+” or “∈”, belong to its vocabu-
lary; and T contains mathematical theories as subtheories. Admittedly,
a general distinction between mathematical and non-mathematical the-
ories is not that easy to state. Yet, for the discussion of this section, it
should suffice to assume (a) that the elements of C are non-mathematical
theories (which should be particularly plausible if they are regarded as
nominalistic theories)31 and (b) that theories such as PA and Q, ZF
and ZF minus the axiom of infinity and perhaps theories of real num-
bers (such as RCF, the theory of real closed fields [see Schwabhäuser,
1983]) plus, for example, second-order extensions of each of them, are
mathematical theories. De facto, mathematics permeates the empirical
sciences. But sets and numbers are foreign bodies when it comes to our
world of concrete objects. It therefore seems to be a natural reaction to
aim at the development and study of empirical theories which are free

31 Probably each nominalistic theory should be taken to be a non-mathematical
theory. A theory of properties, however, may be a non-mathematical theory which is
no nominalistic theory.
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from mathematical vocabulary and mathematical principles. One need
not be a nominalist to concede that much.

Let me come to the second reason for distinguishing answer two from
answer three. To start with, recall that a reductive programme has of-
ten been a component of the nominalistic programme. In particular,
the nominalist (when standing in a Quinean tradition) has to face the
challenge of construing mathematics nominalistically. In the approach
promoted here, with its emphasis on theories, this task is more precisely
rendered as that of reducing, say, ZF to a nominalistic theory. Now, it is
not at all clear that mathematical theories of the (excessive) strength of
ZF are actually used as mathematical cores of empirical theories. More-
over, it has been claimed repeatedly that even for physical theories, the-
ories which are of about the same strength as PA  for example, theories
which are conservative extensions of PA  suffice as their mathemati-
cal cores. Thus, it seems that the mathematical theories which should
be replaced by non-mathematical ones, as mentioned in answer three,
are allowed to be much weaker than those which have to be construed
nominalistically, as addressed in answer two.

Actually, I think that there is a further, in some sense more funda-
mental, difference between the programmes underlying the second and
the third answer: the replacement programme expressed in the third an-
swer need not be understood as implying a reductive programme. I agree
that when the mathematical core of an empirical theory T is replaced
by a non-mathematical theory, it is plausible to assume that the theory
T ′ resulting from T should be able to play the same role as T . But this
way of putting it is  deliberately  vague and open. In particular, it
does not follow from it that T has to be relatively interpretable in T ′, or
that the mathematical core of T has to be relatively interpretable in the
non-mathematical theory which replaces it. It could also mean that T
and T ′ have to be, for example, empirically equivalent with each other
(whatever that means exactly [cf. Quine, 1975].

In sum, it might be said that answers two and three are connected
with two different programmes: a reduction programme and a replace-
ment programme. Now, what are the prospects for a realization of these
two programmes? And, in particular, which roles may theories belonging
to C play for them?

Two results delimit the nominalistic reduction programme. First,
even the rather weak theory Q (not to mention ZF) is not relatively in-
terpretable in any consistent mereological theory [see Niebergall, 2011b].



348 Karl-Georg Niebergall

Second, token concatenation theories can be developed which are strong
enough to relatively interpret ZF [see Niebergall, 2005]; but the theories
of this type that are known to me seem to be rather unattractive when
compared to the mereological theories.

In this situation, it should be highly interesting for the nominal-
ist to develop and investigate further theories; theories, that is, which
are both rightfully regarded as nominalistic and are strong enough for
the realization of the nominalistic reduction programme with respect to
mathematical theories. Theories belonging to C may be welcome ex-
amples of such theories. But are they? I do not know; but I doubt
it. Ultimately, it may well be that the theories in C are no gain over
the mereological theories when it comes to the nominalistic reduction
programme for mathematical theories.

Again, for the replacement programme involved in the third answer,
it is certainly desirable to have more non-mathematical theories T at
one’s disposal than only the mereological theories. It should here by
much easier to find suitable examples. In particular, even if the theo-
ries in C should turn out to be worthless for the nominalistic reduction
programme, they may be examples of theories mentioned in the third
answer.

At this point, some philosophers may be impressed by indispensabil-
ity arguments and argue that, plausible as the aim of going along without
mathematics in empirical theories might be, it just cannot be realized.
As understood here, such arguments are supposed to establish the thesis
that the adoption of mathematical theories is indispensable for the scien-
tific enterprise.32 Let me simply answer that I am not aware of a cogent
argument for this thesis. As an example, consider a theory T of real
numbers or of, e.g., 4-tuples of real numbers as the mathematical core
of an empirical theory. RCF could be a formalized version of it. When
being a part of an empirical theory, T typically plays the role of a theory
of space-time: space-time points have been replaced or simulated by the
4-tuples of real numbers. Now withdraw this simulation, come back to

32 This is a weak version of an indispensabilty thesis. A stronger one would be

The adoption of mathematical theories and the assumption of mathematical
objects are indispensable for the scientific enterprise.

I think that this is the more common version. I deal with the weak version because
it has a greater chance of being true.
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space-time points we started with (being individuals of their own kind)
and replace RCF by a suitable axiomatic theory of geometry.33

This should be an example of the execution of the replacement pro-
gramme as addressed in the third answer. It is granted that the ax-
iomatic theories of geometry considered here are no elements of C. But
the move from mereological theories to C is only one example for the
extension of the mereological paradigm in the pure form, anyway.

Whether this replacement programme and also the nominalistic re-
duction programme are ultimately feasible can hardly be decided a priori

(e.g., with an indispensability argument). The answers depend on which
theories are conceived of as non-mathematical theories and as nominal-
istic theories; and in order to attain a reasonable assessment of this,
potential theories of these kinds have to be invented, developed and
investigated.
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