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“THE WHOLE IS GREATER THAN THE PART.”
MEREOLOGY IN EUCLID’S ELEMENTS

Abstract. The present article provides a mereological analysis of Euclid’s
planar geometry as presented in the first two books of his Elements. As
a standard of comparison, a brief survey of the basic concepts of planar
geometry formulated in a set-theoretic framework is given in Section 2.
Section 3.2, then, develops the theories of incidence and order (of points
on a line) using a blend of mereology and convex geometry. Section 3.3
explains Euclid’s “megethology”, i.e., his theory of magnitudes. In Euclid’s
system of geometry, megethology takes over the role played by the theory
of congruence in modern accounts of geometry. Mereology and megethol-
ogy are connected by Euclid’s Axiom 5: “The whole is greater than the
part.” Section 4 compares Euclid’s theory of polygonal area, based on his
“Whole-Greater-Than-Part” principle, to the account provided by Hilbert
in his Grundlagen der Geometrie. An hypothesis is set forth why modern
treatments of geometry abandon Euclid’s Axiom 5. Finally, in Section 5, the
adequacy of atomistic mereology as a framework for a formal reconstruction
of Euclid’s system of geometry is discussed.

Keywords: atomistic mereology; convex geometry; Euclidean plane; poly-
gons; points; continuum; measure theory

1. Introduction

When Walter Prenowitz in 1961 presented his “contemporary approach
to classical geometry” [18], he introduced his monographic article by an
interesting thought experiment: What would Euclid, could he return to
earth (in 1961), say about the (then) present state of geometry after
having examined “the famous work of Hilbert on the foundations” [11]
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of this discipline. Prenowitz surmised that Euclid would not find mod-
ern geometry very different from his own and he concludes that Euclid
“would have more trouble with the German than with the geometry”;
[18, p. 1]. By this he suggests that the difference of the languages is
marginal whereas Euclid’s and Hilbert’s agreement on the method of
synthetic geometry is essential and sets their axiomatic systems apart
from that inspired by algebra which he presents in his little monograph.

What differences between Euclid and Hilbert are essential rather than
marginal is of course as delicate a question as that how the system of
geometry developed by the historical Euclid “really” looked like.1 In
the following I shall ignore all issues of textual criticism and shall con-
sider Euclid’s geometry as presented in his Elements  in Heath’ well-
known translation [8]  as a contemporary mathematical theory. Though
Prenowitz sees a basic difference “in spirit” between his own system
on the one hand, and Euclid’s and Hilbert’s on the other, there is one
trait which his system shares with Hilbert’s and which is missing from
Euclid’s. Both Hilbert and Prenowitz make implicit use of set theory.
Euclid, of course, does not employ the notion of a set. But already in
the very first sentence of the Elements he makes use of the notion of a
part: “A point is that which has no part”; [8, p. 153].2 The notion of
a part then re-occurs in Euclid’s list of axioms (his “common notions”);
the fifth axiom is “The whole is bigger than the part”; [8, p. 155].

When Prenowitz draws the distinction between his “algebra-inspired”
approach to geometry and Euclid’s and Hilbert’s axiomatic procedure,
he obviously does not recognize the use of mereological rather than set-
theoretic notions as essential. For him, this difference seems to be as
unimportant as that between Euclid’s ancient Greek and Hilbert’s Ger-
man. In contrast to this, I think that Euclid’s use of the mereological
notion of a part marks an important difference between his system of
geometry and that of Hilbert. In the following I shall provide a re-
construction of Euclid’s planar geometry within a system of atomistic
mereology. Whereas most mereological approaches to geometry eschew
points, Euclid, as his definition of a point shows, has no problem with
them. Thus an atomistic mereology seems to be a plausible foundational

1 For comparisons of Euclid’s and Hilbert’s works cf., e.g., Mueller [13, pp. 1–16]
and Hartshorne [7, chs. 1, 2, 5].

2 If no volume is indicated in a reference to Heath’ three-volume edition of the
Elements, the first volume is always meant.
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framework for his geometry. I shall return to this question in the final
section of the present article. First, however, I shall start in the following
section with a brief overview of Hilbert-type plane geometry in order to
provide a standard of comparison. Section 3 is concerned with the rela-
tionships of incidence and betweeness first (Section 3.2) and then with
Euclid’s theory of magnitudes which is the counterpart in his system to
the modern theory of congruence (Section 3.3). That section prepares a
comparison of Euclid’s treatment of polygonal area with that of Hilbert
in Section 4. The final section 5 takes up the question of the adequacy
of atomistic mereology for the sake of a reconstruction of Euclid’s geom-
etry and links up his conception of area to Caratheodory’s [4] account
to measure theory.

2. Line Plane and H-Plane

Since the modern theory of the plane is mainly due to three researchers
whose names start by the letter “H”  namely Hilbert, Hessenberg, and
Hjelmslev, it is called the “H-plane” by Diller and Hessenberg [10, p. 96].
We introduce the notion of an H-plane in two steps: first we define line
planes and then we add axioms for the relationship(s) of congruence.
Following Hartshorne [7, ch. 2], we use a set-theoretic framework though
the theory of the plane could also be developed within first-order logic;
cf. Tarski [23].

Definition 1. A line plane is a triple P = 〈P, L,B〉 where P is some set
whose members are called the points of P, L ⊆ P(L) is the set of lines

of P, and B ⊆ P × P × P is the betweenness-relation of P. We denote
points by lower case italics from the second half of the alphabet and lines
by such letters from its first half. P fulfills the following axioms.

I1 p 6= q → ∃1a. p, q ∈ a

I2 ∃p, q.[p 6= q ∧ p, q ∈ a]
I3 ∃p, q, r.[p 6= q ∧ p 6= r ∧ q 6= r ∧ ¬∃a.p, q, r ∈ a]

B1 〈p, q, r〉 ∈ B → p 6= q ∧ p 6= r ∧ q 6= r ∧ ∃a.p, q, r ∈ a

B2 p 6= q → ∃r.〈p, r, q〉 ∈ B

B3 〈p, q, r〉 ∈ B → 〈r, q, p〉 ∈ B ∧ 〈q, p, r〉 6∈ B

B4 ¬∃b.p, q, r ∈ b ∧ p, q, r 6∈ a ∧ ∃s ∈ a.〈p, s, q〉 ∈ B → ∃t ∈ a.[〈p, t, r〉 ∈
B ∨ 〈r, t, q〉 ∈ B] (Pasch-Axiom)3

3 Harsthorne [7, p. 74] adds that the line a cannot intersect both edges pr and
qr of the triangle △pqr. This, however, is derivable; cf. Hessenberg [10, p. 40].
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Requirements I1–I3 of Def. 1 correspond to the first three items in
Hilbert’s “Group I: Axioms of connection”; B1–B4 are counterparts of
the four axioms of his “Group II: Axioms of order”; cf. [11, ch. 1, §§ 3,4].
Structures very similar to those defined in Def. 1 are known as “line
spaces”; cf. van der Vel [24, p. 156]. The (according to clause 1 of Def. 1)
unique line determined by two points p and q will be denoted by “pq”.
The description of the congruence relation(s) in Def. 3 below makes use
of the notions of a line segment, a ray, an angle, and a triangle. We thus
have to define these concepts in advance.

Definitions 2. Let P = 〈P, L,B〉 be a line plane.

1. The line segment pq (p, q ∈ P, p 6= q) is the set {r ∈ P | 〈p, r, q〉 ∈
B ∨ r = p∨ r = q}. Seg(P) is the class of all line segments of P. We
use lower case bold face letters such as “s”, “t”, etc. as variables for
segments.

2. The ray −→pq (p, q ∈ P, p 6= q) is the set {r ∈ P | r ∈ pq ∨ q ∈ pr}.
We denote the class of all rays of P by “Ray(P)” and use lower case
Gothic letters (“r”, “s′′, . . . ) as variables for rays.

3. If p, q, r ∈ P are distinct and not collinear, then the angle ∠pqr is
the set −→qp ∪ −→qr. Ang(P) is the class of all angles of P. Small Greek
letters (“α”, “β”, . . . ) are used (though first in following sections)
for angles.

4. For distinct and non-collinear p, q, r ∈ P the triangle △pqr is the set
pq ∪ qr ∪ rp. The class of all triangles of P is denoted by “Tri(P)”.

5. On the basis of B4 of Def. 1 it can be proved that each line a ∈ L

dissects the points not lying on it  thus the set P \ a into two
disjoint subsets S1 and S2 such that two points p, q ∈ P \ a belong
to the same of these subsets (either both to S1 or both to S2) iff pq

does not intersect a. We call these two subsets the sides of a.

An H-plane is the extension of an underlying line plane by two rela-
tions: congruence of segments and congruence of angles. Using the rela-
tion of congruence between segments, we define circles in Def. 4 below.

Definition 3. An H-plane is a quintuple H = 〈P, L,B,∼=s,∼=a〉 where
the contraction P ′ = 〈P, L,B〉 of H is a line plane, ∼=s ⊆ Seg(P)×Seg(P),
and ∼=a ⊆ Ang(P)×Ang(P). Furthermore P fulfills the following axioms.

C1 Both ∼=s and ∼=a are equivalence relations.
C2 pq ∈ Seg(P) ∧ −→rs ∈ Ray(P) → ∃1t ∈ −→rs.pq ∼=s rt

C3 〈p, q, r〉, 〈s, t, v〉 ∈ B ∧ pq ∼=s st ∧ qr ∼=s tv → pr ∼= sv
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C4 Let ∠qpr ∈ Ang(P),
−→
st ∈ Ray(P), and S ⊆ P be a side of st; then

∃1r ∈ Ray(P).[r \ {s} ⊆ S ∧ ∠qpr ∼=a
−→
st ∪ r]

C5 △pqr,△stv ∈ Tri(P) ∧ pq ∼=s st ∧ pr ∼= sv ∧ ∠qpr ∼=a ∠tsv → qr ∼=s

tv ∧ ∠pqr ∼=a ∠stv ∧ ∠prq ∼=a ∠svt

Definition 4. Let H = 〈P, L,B,∼=s,∼=a〉 be an H-plane. A subset
Γ ⊆ P is a circle of H iff there is a p ∈ P and an s ∈ Seg(H) such
that Γ = {q ∈ H | pq ∼= s}. The point p is uniquely determined; it is the
center of the circle Γ . The segment s specifies the radius of the circle.
The circle with center p and radius s is denoted by “©ps”. Circ(H)
is the class of circles of H. Capital Greek letters (“Γ”, “∆”, . . . ) are
variables ranging over circles.

Following Schreiber [21, pp. 99, 105f] we finally define two subtypes
of H-planes.

Definition 5 (Euclidean and Platonic planes).

1. An H-plane H = 〈P, L,B,∼=s,∼=a〉 is an Euclidean plane iff it fulfills
the Playfair axiom: p 6∈ a → ∃1b.[p ∈ b ∧ a ∩ b = ∅].

2. An Euclidean plane is a Platonic one iff a line cutting through the
interior of a circle intersects the periphery exactly twice: ∃p, r.

[

Γ =
©p(pr) ∧ [p ∈ a ∨ ∃q.(q ∈ a ∧ 〈p, q, r〉 ∈ B)]

]

→ ∃2t.t ∈ a ∩ Γ .

3. Reconstructing Euclid’s System of Plane Geometry

3.1. Basics: Logic and Mereology

In order to make explicit the mereology underlying Euclid’s system of
geometry, we employ Hellman and Shapiro’s modification [9] of Tarski’s
[22] axiom system for extensional mereology. Hellman and Shapiro devi-
ate from Tarski by using second-order logic instead of the simple theory
of types. The first-order fragment of their second-order system is one-
sorted. Here we adopt a many-sorted system instead since it allows
for a more succinct representation of geometric facts. We retain the
conventions concerning the use of different sorts of variables which have
been introduced in the previous section and will extend them whenever
necessary. We do not require sorts to be entirely disjoint from each
other but allow for flexibility by admitting subsorts in the same way
as, for instance, Cohn [6]. We refrain from describing the systems of
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Figure 1. Euclid’s ontology of geometric objects. Terms in parentheses
do not occur in the Elements but are common in other ancient presen-

tations of geometry, cf. Heath [8, p. 160f].

sorts in all detail; but we assume that it accords to that fragment of
Euclid’s geometric ontology which is relevant for the first two books of
the Elements and which is in part displayed in Fig. 1.

Geometric objects (cf. the root of the tree in Fig. 1) are a subsort
of regions; and a region, in turn, is conceived here as a mereological
whole of points. We reserve the letters “x”, “y”, and “z” (if necessary
with subscripts) as variables for regions. The only undefined concept
of Hellman and Shapiro’s version of mereology is the binary part-of-
relation ⊑. Given that relation, points may be defined as ⊑-minima; cf.
Def. 6-1 below which echos Euclid’s Definition I.1 in the Elements. The
mereological axioms are formulated by means of the binary relation ◦ of
overlapping; cf. Def. 6-2.

Definitions 6 (Point and overlapping).

1. Pnt(x)
df

⇐⇒ ∀y.[y ⊑ x → y = x]

2. x ◦ y
df

⇐⇒ ∃z.[z ⊑ x ∧ z ⊑ y]
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Axioms 1 (Axioms of atomistic mereology).

1. ⊑ is a partial order.

2. ∀z.[z ◦ x → z ◦ y] → x ⊑ y

3. ∃x.P (x) → ∃x.∀y.[y ◦ x ↔ ∃z.[P (z) ∧ y ◦ z]]
4. ∃p.p ⊑ x

(Remember from the previous section that “p” ranges over points.)
Def. 7 introduces some mereological notions used in the following.

Definitions 7 (Mereological concepts).

1. x < y
df

⇐⇒ x ⊑ y ∧ x 6= y

2. x|y
df

⇐⇒ ¬x ◦ y

3. Σx.ϕ
df
= �y.∀z.[z ◦ y ↔ ∃x.[ϕ ∧ z ◦ x]]

4. x+ y
df
= Σz.[z = x ∨ z = y]

5. Πx.ϕ
df
= Σy.∀z.[ϕ(z) → y ⊑ z]

6. x · y
df
= Πz.[z = x ∨ z = y]

7. x− y
df
= Σz.[z ⊑ x ∧ z|y]

8. ⊤
df
= Σx.x = x

3.2. Incidence and Betweenness

Euclid’s First Postulate, cf. [8, pp. 154, 195f] requires that for each pair
of distinct points p and q there is a segment connecting the two. Suppose
there were another such segment; then the two segments connecting p

and q would enclose an area. This, however, is excluded by the (proba-
bly interpolated) Axiom I.9 of the Elements: “Two straight lines do not
enclose (or contain) a space”; [8, p. 232].4 We may thus assume that
there is a binary operation which assign to pairs of points the unique
segments joining these points. In the following, the value of this oper-
ation for the argument points p and q is denoted by “pq”; for p = q

we let pq = pp = p. Segments are not directed; hence we postulate that
the operation of joining points by segments is commutative; cf. Ax. 2-1.5

4 Heath [8, p. 232] considers this axiom redundant “since the fact which it states is
included in Postulate 1”. However, as it stands  and as Heath himself translates it 
the First Postulate only requires the existence of the line segment, not its uniqueness.
That the uniqueness of the segment is guaranteed by Postulate 9 has already been
observed by the Italian mathematician Saccheri; cf. [8, p. 198].

5 We do not explicitly postulate the idempotency of the joining operation since
this property will follow from Decomposability, i.e., Ax. 4, below.
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Euclid himself would probably have accepted the commutative law since
he does not mind to interchange the order of labels of points in his
denotations of segments; cf., for example, his proof of Proposition I.23
where he refers to the same segment by both “CD” and “DC”; cf. [8,
p. 295]. The part-of-relation takes over the role of the incidence relations;
thus pq comprises, in particular, its boundary points p and q as parts;
cf. Ax. 2-2. Ax. 2 says that the points under the operation of joining
make up (the mereological counterpart of) an interval space; cf. van der
Vel [24, pp. 71–90]. “Proper” segments containing more than one point
are defined in Def. 8. Lower case bold face letter exclusively range over
proper segments; a complex term pq, however, does not necessarily stand
for such a segment.

Axioms 2 (Interval space).

1. pq = qp

2. p, q ⊑ pq

Definition 8 ((Proper) segments).

Seg(x)
df

⇐⇒ ∃p, q.[p 6= q ∧ x = pq]

Segments and infinite straight lines (which we shall define in Def. 11-3
below) are both examples of the sort of indeterminate lines in the ontol-
ogy displayed in Fig. 1. They are indeterminate since they do not delimit
a figure as, for example, the periphery of a circle does. They both belong
to the sort of straight lines, too. But what exactly renders a segment pq
straight? Euclid tries to explain this in his Definition I.4: “A straight
line is a line which lies evenly with the points on itself”; [8, pp. 153,
165–169]. The proper interpretation of this explanation is an issue much
discussed among Euclid’s commentators. Instead of joining the debate,
we suggest below two principles spelling out what it means for a line to
be straight. The first principle states that segments sharing two points
cannot bend away from each other; hence their sum is straight, too.

Axioms 3 (Straightness).
∃p, q.[p 6= q ∧ p, q ⊑ r, s] → ∃t.t = r + s

This property has been called “straightness” in the literature on con-
vex geometry; cf. van de Vel [24, p. 143]. Since by Ax. 3 the sum segment
r +s extends both of its summands s and t, part of the content of Ax. 3
seems to be covered by Euclid’s Postulate I.2 according to which one
can “produce a finite straight line continuously in a straight line”; [8,
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pp. 154, 196–199]. This postulate is commonly interpreted as requiring
the possibility to extend a segment beyond its boundary points to an
infinite line; cf., e.g., [8, p. 196], [14, p. 329]. In the constellation con-
sidered in Ax. 3, however, we have only to do with “finite” entities. In
the non-trivial case where r 6= s and none of the segments is a part of
the other, their sum r + s extends both and is straight. The first fact
is plain mereology, the second is geometric in nature and seems to be
envisaged by Euclid’s Postulate I.2, too, something straight is extended
into something straight again.

The second principle contributing to the explanation of the term
“straight” ascribes to segments the property called “decomposability”;
cf. van de Vel [24, p. 193]: each point of a segment divides this segment
into two parts sharing only the dividing point as their common boundary.

Axiom 4 (Decomposability of segments).

r ⊑ pq → pq = pr + rq ∧ pr · rq = r

Ax. 4 excludes the occurrence of loops in segments. Suppose that there
were a single loop in pq starting from the point r and returning to it.
Then pq would comprise three parts pr, rq, and the loop at r. In that
case pr + rq 6= pq which contradicts Ax. 4. From Ax. 4 we have Th. 1
as immediate consequences.

Theorem 1 (Geometricity of straight interval spaces).

1. Idempotency: pp = p

2. Monotony: r ⊑ pq → pr ⊑ pq

3. Inversion: r, s ⊑ pq ∧ r ⊑ ps → s ⊑ rq

4. Convexity of segments: r, s ⊑ pq → rs ⊑ pq

An interval space possessing the first three properties mentioned in
Th. 1 (or rather their set-theoretic counterparts) is called “geometric”;
cf. van de Vel [24, p. 74]. A geometric object is “convex” iff all segments
joining points of that object are parts of it; cf. Def. 9, where also some
related notions are defined which will be used in the following. The
convex hull [x] of a geometric entity x is the smallest convex entity
containing x as a part. Triangles are the convex hulls of triples of non-
collinear points.

Definition 9 (Convexity and related notions).

1. Cvx(x)
df

⇐⇒ ∀p, q ⊑ x.pq ⊑ x
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2. [x]
df
= Πy.[Cvx(y) ∧ x ⊑ y]

3. [x1, x2, . . . , xm]
df
= [x1 + x2 + · · · + xm]

4. △pqr
df
= [p, q, r]

5. Tri(x)
df
= ∃p, q, r.[x = △pqr ∧ p 6= q ∧ p 6= r ∧ q 6= r ∧ ¬∃s.p, q, r ⊑ s]

It has often been pointed out that Euclid’s system of the Elements

lacks the concept of order (of points on a line) and, consequently, does not
comprise any principles for that important concept; cf., e.g., Hartshorne
[7, pp. 65, 73] or Neuenschwander [14, p. 326]. Of course, Euclid does
not deal explicitly with the order of the points of a segment. However,
any system of geometry starting with segments rather than “complete”
lines (and embracing the notion of incidence) comprises the notion of
betweenness: r lies between p and q iff r belongs to pq; cf. Def. 10. The
order axiom B3 of Def. 1 from sec. 2 above then has Th. 2 as its direct
mereological mirror image.

Definitions 10 (Betweenness).

1. Betw(p, q, r)
df

⇐⇒ q ⊑ pr

2. Betw+(p, q, r)
df

⇐⇒ p 6= q ∧ p 6= r ∧ p 6= r ∧ Betw(p, q, r)

Theorem 2 (The mereological counterpart of B3).
Betw+(p, q, r) → Betw+(r, q, p) ∧ ¬Betw+(q, p, r)

Proof. Assume Betw+(p, q, r), then p, q, and r are distinct from each
other and q ⊑ pr. By Ax. 2-1 it follows from this that Betw+(r, q, p).
Furthermore, pr = pq + qr and pq · qr = q by Ax. 4. But then p 6⊑ qr.
Hence ¬Betw+(q, p, r).

Euclid’s Proposition I.10 explains how “[t]o bisect a given finite
straight line”; [8, p. 267], i.e., how to find for a segment pq a point
r ⊑ pq such that pr and rq are of equal size. There are thus points in a
segment which differ from its boundaries. We postulate this by Ax. 5.

Axiom 5 (Denseness).
p 6= q → pq 6= p+ q

It is immediate then that two points are always separated by a third one
lying between them; cf. Th. 3. Th. 3 is the mereological version of B2
from Def. 1.

Theorem 3 (The mereological counterpart of B2).
p 6= q → ∃r.Betw+(p, r, q)
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All the axioms of Def. 1 different from B2 and B3 make use of the notion
of a straight line (rather than that of a straight line segment). Thus in
order to provide mereological mirror images of these principles, we have
first to define the notion of a line within our framework.

If one wants to stick to an Euclidean conceptual framework, this is
not as unproblematic as it may seem since Euclid quite generally eschews
“infinite” entities like straight lines; cf. Mueller [13, p. 56, Fn. 43]: “[. . . ]
Euclid uses ‘straight line’ to designate line segments of determinate and
known extent.”6 Actually, Postulate I.2 is among the three exceptions
to this listed by Mueller; and Neuenschwander [14, p. 329] notes that
Postulate I.2 is never directly cited in the first four books of the Ele-

ments. However, it is already used in the proof of Euclid’s Proposition
I.2. In that proof two segments pq and pr are extended to more compre-
hensive segments pu and pv such that, respectively, Betw+(p, q, u) and
Betw+(p, r, v)  in order to make sure that the thus prolonged segments
intersect with a circle with center p and a certain radius ps.7 Of course,
Euclid could ensure the existence of the desired points of intersection
by using complete lines. Assuming the standard interpretation of his
Axiom I.2, he would be entitled to do this since this axiom claims that a
segment can be infinitely extended to both sides supplementing it thus to
an infinite line. Since our definition of the notion of an angle in the next
section will make use of the notion of a ray, we shall admit extensions of
segments into lines and rays. This presupposes that there always exists
a point r outside a given segment pq which can be reached from pq by a
straight prolongation. The following Ax. 6 is thus our interpretation of
Euclid’s Postulate I.2.

Axiom 6 (Extendability).
∃r.Betw+(p, q, r)

Ax. 6 ensures that rays and lines prolonging segments are proper exten-
sions of them and contain them as their proper parts.

Definitions 11 (Ray and straight line).

1. −→pq
df
= pq + Σr.Betw+(p, q, r)

6 The same skeptic attitude towards “infinite” geometric objects can be found in
Pasch’ work [16].

7 Here and in the following I tacitly rename the points occurring in Euclid’s
constructions in order to make the labelling of points comply with the notational
conventions adopted in the present article.
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2. Ray(x)
df

⇐⇒ ∃pq.[p 6= q ∧ x = −→pq]

3. pq
df
= −→qp+ −→pq

4. Line(x)
df

⇐⇒ ∃pq.[p 6= q ∧ x = pq]

Given these definition, the following counterparts to Axs. I1, I2, and B1
are immediate.

Theorem 4 (Mereological counterparts of I1, I2, andB1).

1. p 6= q → ∃1a.p, q ⊑ a

2. ∃p, q.[p 6= q ∧ p, q ⊑ a]
3. Betw+(p, q, r) → p 6= q ∧ p 6= r ∧ q 6= r ∧ ∃a.p, q, r ⊑ a

Two axioms from Def. 1 are still lacking mereological counterparts:
I3 and the Pasch-axiom B4. As Mueller [13, p. 14f] explains, we should
not expect to find something resembling I3 in the Elements. For Euclid,
the geometric objects come into existence by construction. Hence an
absolute existence axiom like I3 does not make sense in the framework
of the Elements: “In the geometry of the Elements the existence of one
object is always inferred from the existence of another by means of a
construction”; [13, p. 15]. Given this attitude, Euclid probably would
have considered I3 too trivial to be worth stating. Given some planar
piece of the plane, one can always single out three non-collinear points
in it by marking them.8 We, however, have to be more explicit on this
and thus add the following axiom.

Axiom 7 (Existence of three non-collinear points).
∃p, q, r.[p 6= q ∧ p 6= r ∧ q 6= r ∧ ¬∃a.p, q, r ⊑ a]

What remains then is the Pasch-axiom B4 of Def. 1. As formulated by
B4, the axiom fails in 3-space; hence one of its tasks in Def. 1 is to fix the
dimension of the geometrical structure defined to 2. This presupposed,
it describes certain constellations in the plane. As regards dimension,
Euclid explains in the definitions of the first book of the Elements that
lines have length but no breadth (Definition I.2) and that surfaces have
length and breadth only (Definition I.5); cf. [8, p. 153]. In Book XI, it is
added that solids have depth in addition to length and breadth. These
sparse remarks are hardly sufficient for the development of a theory of

8 Euclid’s Greek term for “point” is shmeØon meaning (besides ‘point’) also ‘sign’,
and ‘mark’ (and still other things).
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dimension which would allow us to formulate a condition which excludes
all three-dimensional entities and thus renders the universe ⊤ a plane.
Within a mereological framework, however, a rather natural condition
for achieving this is the requirement that lines dissect ⊤ into two disjoint
parts; cf. Def. 2-5. This is an analogue to Th. 5 below. Furthermore, it
is known that, given the incidence axioms I1 and I2 of Def. 3, Th. 5 is
equivalent to the axiom of Pasch; cf. [10, p. 41].

Axiom 8 (Bipartitions of the plane by its lines). For each line a there

are regions x and y such that:

1. x|y;

2. x+ y = ⊤ − a;

3. ∀p, q 6⊑ a.[pq|a ↔ p, q ⊑ x ∨ p, q ⊑ y]

Theorem 5 (Equivalence relation induced by a line).

1. For each line a and pair of regions x and y as described in Ax. 8:
∀p, q 6⊑ a.[pq ◦ a ↔ [p ⊑ x ∧ q ⊑ y] ∨ [p ⊑ y ∧ q ⊑ x]].

2. The relation ∼a defined by p ∼a q
df

⇐⇒ pq|a is an equivalence

relation on the class of points external to a.

3. The two regions x and y belonging to the line a according to Ax. 8
are the mereological sums of the equivalence classes modulo ∼a and

hence uniquely determined by a.

Proof. 1. According to Def. 7-2 pq ◦ a iff ¬ pq|a. By Ax. 8-3 this is the
case iff both p 6⊑ x ∨ q 6⊑ x and p 6⊑ y ∨ q 6⊑ y. Combinatorially, this
leaves four possibilities: (a) p 6⊑ x ∧ p 6⊑ y, or (b) p 6⊑ x ∧ q 6⊑ y, or (c)
q 6⊑ x∧p 6⊑ y, or, finally, (d) q 6⊑ x∧q 6⊑ y. But (a) and (d) are excluded
by Ax. 8-2. By the same axiom and by Ax. 8-1, the disjunction of (b)
and (c) is paramount to [p ⊑ y ∧ q ⊑ x] ∨ [q ⊑ y ∧ p ⊑ x].

2. The reflexivity and symmetry of the relation of belonging to the
same side is obvious. Assume that p ∼a q and q ∼a r. By Ax. 8-3 we
have p, q ⊑ x∨ p, q ⊑ y and q, r ⊑ x∨ q, r ⊑ y where x and y are regions
as described in Ax. 8. Assume for the case p, q ⊑ x that we had q, r 6⊑ x

(the case of p, q ⊑ y is analogous). Then q, r ⊑ y. Thus both q ⊑ x and
q ⊑ y which contradicts Ax. 8-1.

3. We have to show that the class of punctual parts of x and the class
of punctual parts of y are the only equivalence classes of ∼a. We first
show that they are in fact equivalence classes. Let p, q ⊑ x or p, q ⊑ y

where again x and y are as described in Ax. 8. In both cases we have
p ∼a q from Ax. 8-3. Let now, conversely, p ∼a q and assume p ⊑ x.
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(The case for p ⊑ y is analogous.) Then, according to Ax. 8-3 q is part
of the same of the two regions x and y as p. But since p as a part of
x cannot by Ax. 8-1 belong to y, both are parts of x. Since, according
to Ax. 8-2, x and y contain all points external to a, there cannot be
equivalence classes of ∼a other than the two classes of points of these
regions.

Definition 12. We call the two regions which are the sums of the two
equivalence classes of the relation ∼a determined by the line a the sides

of a. If, furthermore, p 6⊑ a, then (a; p) is that side of a to which p

belongs as a part.

The mereological counterpart of the Pasch-Principle follows now readily
from Th. 5.

Theorem 6 (The Pasch-principle).

Tri(△pqr) ∧ a ◦ pq ∧ p, q, r 6⊑ a → a ◦ pr ∨ a ◦ qr

Proof. Since a ◦ pq, the points p and q are according to Th. 5-1 on
different sides of the line a, i.e., p 6∼a q. Hence by Th. 5-3 r must be
either of the same side as p or as q (but cannot be both).

In the following section, we shall have to consider angles. Angles may
be defined as the intersections of two halfplanes  i.e., sides of lines 
bounded by two rays. The mereological sum of these rays is an example
of a composite (
únjeto
) line; cf. Fig. 1.

Definitions 13 (Angles and their components). 9

1. ∠pqr
df
= −→qp+ −→qr + (qp; r) · (qr; p)

2. Angle(x)
df

⇐⇒ ∃p, q, r.[Tri(△pqr) ∧ x = ∠pqr]
3. We call the point q of an angle ∠pqr the vertex of the angle, the rays

−→qp and −→qr its legs and the region ∠
ipqr

df
= (qp; r) · (qr; p) its interior.

We note the following theorem about angles. It is known as the
“crossbar theorem” and can be proven by means theorems 5 and 6; cf.
Hartshorne [7, p. 77f].

Theorem 7 (The crossbar theorem (cf. Fig. 2-(a))).
s ⊑ ∠

ipqr → pr ◦ −→qs

9 Euclid excludes straight angles; cf. his Definition I.8, [8, p. 154]  as Hilbert
does, too; cf. [11, p. 13].
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Figure 2. The crossbar theorem and parts of an angle

The following theorem which will be used in the next section is proved
with the help of the crossbar theorem.

Theorem 8 (Proper parts of an angle (cf. Fig. 2-(b))).
s ⊑ ∠

ipqr → ∠pqs < ∠pqr

Proof. Let s ⊑ ∠
ipqr and t ⊑ ∠pqs. We show that t ⊑ ∠pqr, too.

This is trivial for the case that t is a point of the common leg −→qp of
the two angles. Furthermore, each point on the leg −→qs (other than the
common vertex q of both angles) is part of both (qp; r) and of (qr; p);
hence −→qs− q ⊑ ∠

ipqr. So the assertion remains to be shown for the case
that t ⊑ ∠

ipqs, i.e., under the assumption that t ⊑ (qp; s) · (qs; p) (∗).
Since s and r are on the same side of qp (namely the r-side), it follows
from t ⊑ (qp; s) that t ⊑ (qp; r) (a). The only thing which remains to
be shown is thus t ⊑ (qr; p) (b). Suppose therefore that t 6⊑ (qr; p) (cf.
point t1 in Fig. 2-(b)); then pt ◦ qr according to Th. 5-1. Let r1 be the
point of intersection. Then ∠pqr = ∠pqr1 (since r1 lies on the leg −→qr
of ∠pqr). So s is in the interior of ∠pqr1 and −→qs ◦ pr1 according to the
Crossbar Theorem (Th. 7). Hence qs◦pr1 and, furthermore, qs◦pt since
pt is the elongation of pr1 by r1t. Thus t 6⊑ (qr; p) implies that p and t

belong to different sides of the line qs in contradiction to our assumption
(∗). Since, furthermore, the points on the leg −→pr are external to ∠pqs,
the latter angle is a proper part of ∠pqr.

3.3. Euclid’s Theory of Magnitudes

In the previous section, it has been shown how Euclid’s treatment of line
segments can be systematized within a mereological framework in such a
way that the resulting system matches the modern exposition provided
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by Def. 1. Mereology was, however, merely used for modeling geometric
objects as collections of points. In effect, talk about sets of points merely
has been replaced by talk about collective wholes of points. When we
now turn to that part of Euclid’s systems that corresponds to the modern
theory of congruence, we shall meet a more essential use of mereology.
In the first book of the Elements Euclid proves three propositions which
are commonly interpreted as dealing with the relation of congruence:
propositions I.4, I.8, and I.26. His proofs rely on a set of principles
which Euclid distinguishes as “Common Notions” (koinài ênnoiai) from
his Postulates (aÊt mata). Here we follow Euclid’s antique commentator
Proclus, and call them “axioms”. The list given below states them in
Heath’s [8, p. 155] translation.

1. Things which are equal to the same thing are also equal to one an-

other.

2. If equals are added to equals, the wholes are equal.

3. If equals are subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

In the three “congruence theorems” I.4, I.8, and I.26, Euclid states
conditions under which certain geometric entities (lines, angles, and tri-
angle) are “equal”. The Greek adjective which he uses is Òso
. Since the
same word is used by him in the principles listed above, it is suggestive
to interpret these principles as his congruence axioms. I shall, however,
not follow this interpretation. Euclid’s axioms deal with four relation-
ships: equality (1–4), coincidence (4), the greater-than relation and the
part-of relationship (5). Entities which are related by the last two rela-
tionships are called “magnitudes” (gr. singular megèjo
) by Euclid. In
Definition V.1 he explains: “A magnitude is part of a magnitude, the
less of the greater, when it measures the greater”; cf. [8, II, pp. 113,
115].10 Examples of magnitudes occurring in the first two books of the

10 According to Heath [8, p. 115] the sense of the word part in this definition
differs “from the more general sense in which it is used in the Common Notion (5)
which says ‘the whole is greater than the part’ ”. He refers to Aristotle’s Metaphysics
(1023 b 12, [1, II, p. 1616] where he detects a similar distinction. Aristotle explains
that the concept of a “measuring” part to which Heath alludes is a subconcept of the
general notion according to which a part is “that into which a quantity can be in any
way divided”. Thus, if one wants to follow Heath, one could call that which above has
been labelled “magnitudes” “magnitudes in a general sense”.
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Elements, are segments, angles, and polygons.11 A denotation for the
relation of congruence occurs only in Book 6 in which Euclid develops
his theory of (geometric) similarity. In the proof of Proposition VI.28, it
is said of two parallelograms that they are “equal and similar” (gr. Òson�ra kaÈ ímoion): they are equal in both size and shape; cf. [8, II, p. 261]
The technical term equal and similar is then introduced for the special
case of solids in Definition XI.9; cf. [8, II, pp. 261, 267f].

Using Euclid’s Greek denotation (megèjo
) for a magnitude as a ba-
sis, one could call the theory of magnitude “megethology”  as one uses
“mereology”, derived from the Greek word mèro
 for “part”  as a name
for the theory of the part-of-relationship.12 As is evident from Euclid’s
Axiom I.5, his megethology is an extension of mereology. Given the
“part-less-than-whole” principle expressed by this axiom, there is an ob-
vious method for checking whether two (planar) magnitudes are equal
in size or not: one has to “place” a “true copy” of one of them upon the
other and has just to check whether the coverage is total or only partial.
Euclid’s Axiom I.4 asserts just the legitimacy of this “method of super-
position”. Nevertheless, its status as a proof procedure has been debated
and many commentators detect a reluctance in Euclid’s work to apply it;
cf. Heath’ comments on Proposition I.4 in [8, p. 249f] and Neuenschwan-
der’s [14, p. 361] discussion of this issue. Mueller [13, p. 23], on the other
hand, concludes his discussion of that method by the résumé that “there
is very little evidence that Euclid found such movements problematic”.
It is well known that superposition can be described in as precise and
exact a manner as one could wish by employing the concept of a function
which preserves the relationship of order (of points on a line) and those
of equality in size of segments and angles; cf., for instance, Hartshorne [7,
pp. 148–155]. The gain in deductive economy, however, in the framework

11 As Mueller [13, p. 121] states, “there has been some disagreement among
scholars concerning the exact nature of magnitudes”. According to him, magnitudes
are (or, at least, “involve”) “abstractions from geometric objects” rather than such
objects themselves. However, Euclid actually calls segments, angles, and triangles
equal to, or greater, or lesser than other items of the same kind. But since equality (in
size) is an equivalence relation (and the greater-than-relation is invariant with respect
to it), one may concede to Mueller that Euclid uses the objects as representatives of
the equivalence classes to which they belong.

12 The German word “Megethologie” has been used as a name for mathematics
by the philosopher Franz Brentano. Lewis [12] calls so the extension of mereology by
Boolos’ plural quantification and defends the thesis that “mathematics is megethol-
ogy”.
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of the present re-construction of Euclid’s system would be rather low.
Propositions I.4 and I.8 are actually the only ones in the first two books
whose proofs involve the method of superposition13 and it can even be
avoided, as Mueller [13, p. 22f] explains, in the case of Proposition I.8.
Hence we simply drop Euclid’s Axiom I.4 justifying superposition and
accept his Proposition I.4 as a new axiom instead; cf. below Ax. 10.

The greater-than-relation mentioned in Axiom I.5 is obviously a strict
one. Formally it is more comfortable to start with the relation “at most
as great than” which we shall denote by �. Equality and strict order
can be defined then as in Def. 14 below. Magnitudes are objects bear-
ing this relation to each other. We reserve the letters “l”, “m” and
“n” (subscripted when necessary) as variables for magnitudes. Formulas
containing variables for magnitudes should always be understood in such
a way that these variable all refer to individuals of the same subsort thus,
for instance, all to segments or all to angles.

Definitions 14 (Magnitudes and their ordering).

1. Mag(x)
df

⇐⇒ ∃y.[x � y ∨ y � x]

2. m ≺ n
df

⇐⇒ m � n ∧ n 6� m

3. m ≃ n
df

⇐⇒ m � n ∧ n � m

Since we conceive of megethology as an extension of mereology, it
is suggestive to understand the operations of addition and subtraction
mentioned in Axioms I.2 and I.3 as the mereological operations defined
above in Def. 7. Then, however, Euclid’s formulations need an amend-
ment. Even under the condition that, for instance, both s1 ≃ s2 and
t1 ≃ t2, we only expect the sums s1 + t1 and s2 + t2 to be equal in size
when the respective products (“overlaps”) of the summands are so, too,
which is especially the case when the two summands are apart from each
other, i.e., do not overlap. Non-overlapping obtains almost always when
Euclid adds magnitudes.14 Also in the case of mereological subtractions,
s1 ≃ s2 and t1 ≃ t2 will imply s1 − t1 ≃ s2 − t2 again only if the prod-
ucts s1 · t1 and s2 · t2 are of equal size. This will be especially the case
when the subtrahends are parts of the respective minuends since then

13 There is another application of this method in Proposition III.24.
14 A notable exception is Proposition II.7 where two overlapping rectangles of

equal size are “added” and it is said that the sum is twice as big as one of the
summands; cf. [8, p. 388f]. Obviously, in this case the “areas” are added rather than
the rectangular regions and the overlap of the added regions is counted twice.
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the products coincide with the subtrahends which are equal in size by
hypothesis.

In the discussion above, apartness should not be taken to be the
relation | defined in Def. 7-2. Euclid does not mind to glue segments
sharing a common boundary point or triangles with a common edge.
Apartness in the sense relevant in the present context means that mag-
nitudes, when overlapping at all, only do so in boundary points. As
Fig. 1 shows, Euclid distinguishes between figures on the one hand (like,
e.g., triangles and circles) and boundaries on the other. According to
Definition I.13, “[a] boundary is that which is an extremity of anything”
and Definition I.14 continues that “[a] figure is that which is contained
by any boundary or boundaries”; [8, p. 154]. A circle’s boundary is its
periphery15, that of a polygon a composite line (cf. Fig. 1) consisting
of several segments. Definition I.3 explains that “[t]he extremities of a
line are points”; [8, p. 154]. Since Euclid normally means “segments”
when he is talking about “lines”, his Definition I.13 suggests that the
boundaries of a segments are its endpoints and that its other points
are interior. When considered as parts of a line, segments have interior
points in the sense of modern topology, too. However, our segments are
part of the Euclidean plane; and considered as subsets of the plane, they
lack interior points in the standard topology of the plane.

Euclid’s explanations about “extremities” and “boundaries” are ob-
viously not sufficient for setting up a mereotopological theory of this
topic as it has been developed in our times by, e.g., Casati and Varzi [5,
ch. 5]. However, it is completely clear for the magnitudes considered in
the first two books of the Elements what their boundaries are. Hence
we postpone the problem how to determine the boundary points in or-
der to define first notions of overlap and apartness apt for the formal
rendering of Euclid’s common notions. In Def. 15, we use “BPnt” for
the relation between boundary points and the magnitudes they delimit.
Magnitudes sharing at most boundary points are “separated”. By means
of this newly defined concept, we provide formal renderings of Euclid’s
common notions in Ax. 9.

Definition 15 (Separation).

m ≀ n
df

⇐⇒ ∀p.[p ⊑ m,n → BPnt(p,m) ∧ BPnt(p, n)]

15 The boundary of a circle is described in its Definition I.15. The term periphery
(gr. perifèreia), however, has probably be added by a later editor of the Elements;
cf. [8, p. 184].
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(a) (b) (c) (d)

Figure 3. Simple rectilinear figures

Axioms 9 (Axioms for magnitudes).

1. � is a linear order.

2. m1 ≀m2 ∧ n1 ≀ n2 → [m1 � n1 ∧m2 � n2 → m1 +m2 � n1 + n2]
3. m2 ⊑ m1 ∧ n2 ⊑ n1 → [m1 � n1 ∧ n2 � m2 → m1 −m2 � n1 − n2]
4. m < n → m ≺ n.

We still have to determine the magnitudes at issue in the first two
books of the Elements. These are  besides segments and angles  poly-
gons and circles. Polygons and circles are subsorts of figures; cf. the
right branch of the tree graph of Fig. 1. In Definition I.19 Euclid defines
rectilinear figures as those whose boundaries are line segments. The fol-
lowing Def. 16-1 of polygons generalizes Euclid’s definition by admitting
some “degenerated” cases such as (c) and (d) in Fig. 3. We use bold face
capitals for polygons, e.g., “P ”, “Q”, “R”. The formula “Finite y.P (y)”
in Def. 16-1 should be read as “there are (at least one but only) finitely
many P s”. As is well-known, the notion of finiteness can be defined in
2nd-order logic.

Definitions 16 (Polygons and circles).

1. PGon(m)
df

⇐⇒ ∃P.[Finite y.P (y) ∧

∀y.[P (y) → Tri(y)] ∧m = Σy.P (y)]

2. ©pr
df
= p+ Σq.(pq � r)

3. Circ(m) = ∃p, r.m = ©pr

A circle16 is defined by Euclid as “a plane figure contained by one line
such that all the straight lines falling upon it from one point among those
lying within the figure are equal to one another”; cf. [8, p. 153]. Thus
an Euclidean circle is really that what in modern mathematical parlance

16 According to our convention concerning the use the relation sign �, this sign
may only be flanked of terms of equal sort. Hence pq in Def. 16-2 has to be segment
which implies that p 6= q.
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is called a (circular) “disk”. Def. 16-3 follows Euclid by conceiving of
each point between the center and the periphery as a part of the circle.
The next definitions explains for each of the four sorts of magnitudes
what are the boundary points of items of that sort; cf. Def. 17. Non-
boundary points are interior (cf. Def. 18-1) and the whole consisting of
the boundary points of a circle Γ is its periphery Γ̊ (Def. 18-2).

Definition 17 (Boundary points).
BPnt(p,m) iff either

1. m is a segment qr and p = q ∨ p = r; or
2. m is an angle ∠qrs and p ⊑ −→rq + −→rs; or
3. m is a polygon Σn.P (n), ∃n.[P (n) ∧ p ⊑ n] but

¬∃q, r, s.[Tri(△qrs) ∧ p ⊑ △qrs− (qr + qs+ rs) ∧ △qrs ⊑ m]; or
4. m is a circle ©qs and qp ≃ s.

Definition 18 (Interior points and periphery).

1. IPnt(p,m)
df

⇐⇒ p ⊑ m ∧ ¬BPnt(p,m)
2. Γ̊ = Σp.BPnt(p,Γ)

Our definitions and axioms immediately yield the following theorem.

Theorem 9 (Megethological counterparts of C1 and C3).

1. The relations ≃ of equality is an equivalence relation.

2. Betw+(p, q, r) ∧ Betw+(s, t, v) ∧ pq ≃ st ∧ qr ∼= tv → pr ≃ sv

Proof. Th. 9-1 readily follows from Ax. 9-1 and Def. 14-3.  In the
case of Th. 9-2 we have from Betw+(p, q, r) and Ax. 4 that pr = pq+ qr

and pq ≀ qr and similarly from Betw(s, t, v) that sv = st+ tv and st ≀ tv.
Applying Ax. 9-2 yields pr ≃ tv.

Analogues of the remaining congruence axioms from Def. 3  thus
C2, C4, and C5  are proved by Euclid. As already explained above, we
accept his Proposition I.4, which corresponds to C5, as an axiom.

Axiom 10 (The SAS (side-angle-side) equality criterion).

Tri(△p1q1r1) ∧ Tri(△p2q2r2) ∧ p1q1 ≃ p2q2 ∧ p1r1 ≃ p2r2 ∧
∠r1p1q1 ≃ ∠r2p2q2 → q1r1

∼= q2r2 ∧ ∠p1r1q1 ≃ ∠p2r2q2

∧ ∠p1q1r1 ≃ ∠p2q2r2 ∧ △p1q1r1 ≃ △p2q2r2

Counterparts of C2 are proved by Euclid in propositions I.2, I.3 by
means of constructions by ruler and compasses. In his Postulate I.3, Eu-
clid declares it always to be possible “[t]o describe a circle with any centre
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and distance”; [8, pp. 154, 169f]. In our mereological reconstruction of
Euclid’s framework, the existence of the circle with center p and radius r

is guaranteed by Def. 16-2 since ©pr contains at least its center p. That
©pr also contains further points and especially those of the periphery
will be ensured by axioms which we are going to introduce now. It is well
known that Euclid’s Postulate I.3 is not sufficient to prove the existence
of points of intersection between circles close enough to each other and
between a circle and the segments and lines crossing through it. In his
proofs of propositions I.2 and I.3, Euclid simply assumes the points of
intersection to exist. To ensure that the periphery of a circle intersects a
line crossing through its interior in exactly two points, we add the axiom
Ax. 11-1, which corresponds to the axiom characteristic of a platonic
plane; cf. Def. 5-2. Given the axioms for an H-plane, Ax. 11-1 implies
that the peripheries of two circles, none of which is a part of the other
and having a common interior point, share exactly two points; cf. the
discussion by Schreiber [21, pp. 103–107]. In our framework, we have to
adopt Ax. 11-2 as an additional axiom because we lack a counterpart of
C4 which Euclid, making use of his silent presuppositions concerning the
intersection points of circles, proves by means of a construction by ruler
and compasses, cf. Th. 11 below. Beyond the existence of a unique pair
of common peripheral points, our Ax. 11-2 postulates that these points
lie on opposite sides of the line connecting the centers of the circles. The
latter will be used in the proof of Th. 12-2 (= Euclid’s Proposition I.7)
below.

Axiom 11 (Circle axioms).

1. ∃p.[p ⊑ a,Γ ∧ IPnt(p,Γ)] → ∃2q.q ⊑ a, Γ̊

2. Let Γ = ©pr and ∆ = ©qs be such that ∃r.[IPnt(r,∆) ∧ IPnt(r,Γ)]
but neither Γ ⊑ ∆ nor ∆ ⊑ Γ . Then: ∃uv.[u 6= v∧u, v ⊑ Γ̊ ·∆̊∧∀w ⊑
Γ̊ · ∆̊.[w = u ∨ w = v] ∧ u 6⊑ (pq; v)]

From Ax. 11-1 we derive Th. 10 as an analogue to clause C2 of Def. 3.
The proof makes use of the “whole-greater-than-part” principle Ax. 9-4.

Theorem 10 (The counterpart of the congruence axiom C2).
p 6= q → ∃1r ⊑ −→pq.pr ≃ s

Proof. The center p of the circle Γ = ©ps is not a boundary point
of it (since pp is a point rather than a segment; cf. Def. 17-4). Hence,
according to Ax. 11 the line pq intersects Γ in two points, say r1 and r2.
Suppose that none of them lies on −→pq, so both of them are on that side on
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pq which is, relative to p, opposite to q. Then it follows from the order-
ing principles of sec. 2 that either Betw+(p, r1, r2) or Betw+(p, r2, r1).
Assume the first alternative (the case for the second is analogous). It
follows then, that both pr1 < pr2 and pr1 ≃ s ≃ pr2 which contradicts
Ax. 9-4. Thus one of the two points r1 and r2 lies on the ray −→pq (and
the other on the opposite ray).

The only axiom from Section 2 still awaiting its counterpart in our
re-construction of Euclid’s system is C4. So what remains to be proved is
the following proposition (remember that lower case Greek letters range
over angles).

Theorem 11 (The counterpart of C4).

Tri(△pqr) → ∃1r.∃s ⊑ (pq; r).[r = −→ps ∧ ∠spq ≃ α]

An (almost) identical assertion is proven by Euclid in his Proposi-
tion I.23. There he shows how to construct “[o]n a given straight line
and at a point on it [. . . ] a rectilinear angle equal to a given rectilinear
angle”; [8, p. 294].17 Let a be the line in question and p1 the point where
an angle is to be placed which is congruent to the angle α with vertex p.
Euclid chooses two points, q and r, on the legs of α and then constructs
a triangle △p1q1r1 with p1q1 ⊑ a, p1p2

∼= pq, p1r1
∼= pr, and q1r1

∼= qr.
That one always can construct such a triangle (at every place) with three
given sides (fulfilling the triangle inequality) has been proven by Euclid
before in Proposition I.22.

It is not possible here to follow the deductive route back from Propo-
sition I.23 to Euclid’s postulates and axioms and filling all the lacunae
left by him. It deserves to be noted, however, that Euclid does not use
his Postulate 5  i.e., his formulation of the axiom of parallels  on his
way to Proposition I.23. The first use of that axiom is made in the
proof of Proposition I.29. We may add that axiom in the following form
thus providing our universe ⊤ with the structure of a Platonic plane; cf.
clause 2 of Def. 5.

Axiom 12 (The axiom of parallels).

p 6⊑ a → ∃1b.[¬ a ◦ b ∧ p ⊑ b]

17 Euclid allows also for angles with arcs rather than lines as legs. A rectilinear
angle is an angle with linear legs.
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Figure 4. Euclid’s propositions I.6 and I.7

On the way to Proposition I.23 the “whole-greater-than-part” princi-
ple Ax. 9-4 is used several times.18 Since we cannot follow here Euclid’s
argumentation step by step, we illustrate his use of Ax. 9-4 by two typ-
ical examples instead, namely Proposition I.6 and I.7; cf. Fig. 4. These
are the first propositions in the Elements proved by applications of the
“whole-greater-than-part” principle. Whereas Proposition I.6 is only
used again in later books, Proposition I.7 is a link in the deductive chain
leading to Proposition I.23. It is used in order to prove the succeeding
Proposition I.8 corresponding to the SSS criterion for the congruence
of triangles. Furthermore, it plays also an important role in the the-
ory of polygonal areas, as we shall see later; cf. p. 402. Euclid, when
applying the “whole-greater-than-part” principle, never proves that one
of the geometric objects at issue is the proper part of the other but re-
lies, presumably, on the figures accompanying the propositions. Filling
such lacunae requires in most cases considerable efforts as the following
examples will show.

Theorem 12 (Propositions depending on the “whole-greater-than-part”
principle).

1. Tri(pqr) ∧ ∠qpr ≃ ∠pqr → pr ≃ qr

2. Tri(pqr) ∧ Tri(pqs) ∧ s ⊑ (pq; r) ∧ pr ≃ ps ∧ qr ≃ qs → r = s

Proof. 1. Assume pr 6≃ qr; then pr ≺ qr ∨ qr ≺ pr by Ax. 9-1. We
consider the case that qr ≺ pr; the other case is analogous. By Th. 10
there is a unique point s ⊑ −→pr with ps ≃ qr; cf. Fig. 4-(a). Using

18 According to Neuenschwander’s tables of the deductive dependencies in the
Elements [14], Ax. 9-4 is used in the proof of three propositions needed for the proof
of Proposition I.23.
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the Pasch-Principle (Th. 6) one shows that each point of a triangle lies
on a segment connecting a corner of that triangle to a point of the
opposite edge. So each point u of △pqs is part of a segment sv with
v ⊑ pq. Since s and v lie on edges of △pqr and triangles are convex by
Def. 9-5 we have sv ⊑ △pqr and thus u ⊑ △pqr. Because each point of
△pqs belongs, as we just have seen, to △pqr, too, △pqs ⊑ △pqr. From
Ax. 9-4 it follows that Betw+(p, s, r) and thus by Th. 2 that r 6⊑ ps and
therefore r 6⊑ △pqs. Hence △pqs < △pqr. By Ax. 10, however, we have
△pqr ≃ △pqs. The part would equal the whole; which is excluded by
Ax. 9-4.

2. Euclid’s proof is indirect once more and considers the constellation
displayed in Fig. 4 by the solid lines. The case represented (partly) by
the dotted lines can be handled analogously. Because of the hypothesis
pr ≃ ps of the theorem, the triangle △prs is isosceles. Using his Propo-
sition I.5 stating that isosceles triangles have equal base angles, Euclid
concludes that ∠prs ≃ ∠psr. From this he infers that ∠srq ≺ ∠psr justi-
fying this inference by his “whole-greater-than-part”-principle. Presum-
ably, he does so since he takes it for obvious that ∠srq < ∠prs and hence
∠srq ≺ ∠prs by Ax. 9-4. He continues by stating that ∠rsq “is much
greater” [8, p. 259] than ∠psr, presumably again because ∠psr < ∠rsq

and thus ∠psr ≺ ∠rsq. From ∠srq ≺ ∠psr and ∠psr ≺ ∠rsq, he infers
∠srq ≺ ∠rsq. But an application of Proposition I.5 to △qrs yields
∠rsq ≃ ∠srq contradicting the just inferred ∠srq ≺ ∠rsq. Euclid does
not give any justification for ∠srq < ∠prs and ∠psr < ∠rsq. We post-
pone this question for considering first the possibility that △prq ⊑ △psq

or, conversely, △psq ⊑ △prq.
Perhaps Euclid ignores these possibilities because they are at odds

with his “Whole-Greater-Than-Part” principle. We have △prq ≃ △psq

according to the SSS criterion of congruence. Thus both △prq < △psq

and △psq < △prq are excluded by Ax. 9-4. However, the SSS criterion
is only proved in Proposition I.8 by means of the theorem at issue now.
Instead of using the SSS criterion, we argue as follows. If one of the
triangles were a part of the other, p and q, would be on opposite sides
of rs; cf. Fig. 5-(a) where the case △psq < △prq is presented; the case
for △prq < △psq is analogous. Because of the hypotheses pr ≃ ps

and qr ≃ qs of our theorem, the points r and s would lie then on the
peripheries of two circles ∆ with center p and radius qr and Γ with
center q and radius qs; cf. Fig. 5-(a). Γ and ∆ would thus intersect
in two points both lying on the same side of the line pq through their
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centers. This, however, is excluded by Ax. 11-2. Hence we may assume
that p, and q are on the same side of rs.

Let us now fill the gaps left by Euclid in his proof. First we have
to justify that ∠srq < ∠prs. We do so by showing that q ⊑ ∠

iprs

and applying Th. 8 to this result. In order to prove q ⊑ ∠
iprs we

have to show (1) q ⊑ (rp; s) and (2) q ⊑ (rs; p). The last has just
been proven in the previous paragraph. Formula (1), on the other hand,
describes merely the fact that we are concerned with the constellation
dealt with by Euclid, namely that s is to the right of r. The “dotted”
constellation in Fig. 4-(b) is analogously characterized by (3) p ⊑ (rq; s).
So what we really have to prove is that (1) and (3) make up an exhaustive
disjunction. They cannot both be true since then s ⊑ ∠

iprq and p

and q would be on different sides of sr which we have already seen to
be impossible. But (1) and (3) cannot both be false either. If both
q 6⊑ (rp; s) and q 6⊑ (rs; p), then s would be an interior point of the angle
vertical to ∠prq. Again, rs would separate p and q in this case.

We have still to justify Euclid’s assumption that ∠psr < ∠rsq. We do
this again by referring to Th. 8 and by proving p to be an interior point
of ∠rsq. Thus it has to be shown that both p ⊑ (sq; r) and p ⊑ (sr; q).
The latter, however, has already been proved. For the first formula,
assume that p and r were on different sides of sq. Since s and r are
according to the hypothesis of the theorem on the same side of pq, the
segment joining p and r had to meet sq either in the segment sq  cf. the
segment sr1 in Fig. 5-(b)  or in the ray starting at s and directed away
from q  cf. the segment sr2 in Fig. 5-(b). In the first case, however, q
and s would be on opposite sides of pr; but we are considering the case
that “s is to right of r”, i.e., q ⊑ (pr; s). In the second case rs enters
△pqs at its vertex s. By means of the Pasch Principle one shows that
this line must leave △pqs through its edge pq. But then p and q lie
on different sides of rs which already has been shown to be impossible.
Hence we have shown that p ⊑ ∠

irsq and therefore both ∠psq < ∠rsq

and ∠psq ≺ ∠rsq. This, finally, completes the proof.
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Figure 5. Constellations considered in the proof of Proposition I.7

4. The Mereology and Megethology of Polygons

One of Euclid’s central concerns in the first two books of the Elements is
the determination of the areas of polygons.19 The same topic is treated
by Hilbert in Chapter 4 of his Grundlagen. Unlike Hilbert, who mea-
sures the area of polygons by means of line segments conceived as the
elements of “an algebra of segments, based on Pascal’s theorem” [11,
pp. 53–59/30–33], Euclid determines the area of such a figure by proving
it to be equal in area to a square. His ultimate result is Proposition II.14,
the last one of Book II, saying that it is always possible “[t]o construct
a square equal to a given rectilinear figure”; [8, p. 409]. The square
S equalling in size a given polygon Q is reached in two steps: first a
parallelogram P with P ≃ Q is constructed and then transformed into
the square S ≃ P ≃ Q. For constructing the intermediate parallelogram
P in Proposition I.45, Euclid dissects the polygon Q into triangles and
constructs for each of the triangular parts a corresponding parallelogram
following a procedure specified in the proof of his Proposition I.44. The
consecutive parallelograms then are attached side by side to each other
thus constituting a final big parallelogram corresponding to the original
polygon Q. By this procedure the first triangle receives a privileged sta-
tus since it fixes one edge and the base angle of the final big parallelogram
P ; cf. Fig. 6.

Quite obviously this procedure is based on a mereological analy-
sis of the task to be solved. Consider the special case displayed in

19 The mereotopology of polygons have been investigated by Pratt and Lemon
in [17].
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Figure 6. Euclid’s Proposition I.45

Fig. 6. The pentagon Dpqrst is conceived as the mereological sum of
the three non-overlapping triangles △rst, △rtq, and △qtp: Dpqrst =
△rst + △rtq + △qtp. In Proposition I.42 it is explained how “[t]o con-
struct, in a given rectilinear angle, a parallelogram equal to a given
triangle”; cf. [8, p. 339f]. This procedure is used for constructing the
first small parallelogram u1u2v1v2 with some given base angle α and

u1u2v1v2 ≃ △rst. This fixes, as said above, the edge u1v1 of the final
parallelogram yet to be constructed. The next task is to construct a par-
allelogram  again with base angle α and attached to the line segment
u2v2  equal in area to △rtq. This is exactly the task which is solved
by Proposition I.45. In Fig. 6, the parallelogram added is u2u3v2v3.
By Ax. 9-2 we know that the sum △rst + △rtq ≃ u2u3v2v3. In the
concluding third step of the construction the parallelogram u3u4v3v4

equal in area to △qtp is added. This step yields u1u4v1v4 which by
a further application of Ax. 9-2 is equal in size to the original Dpqrst.

Once again, there are several gaps in Euclid’s proofs. He tacitly
assumes, e.g., that it is always possible to dissect “rectilinear figures”
into triangles. This difficulty is circumvented here by replacing Euclid’s
notion of a rectilinear figure by that of a polygon which is so dissectable
by definition; cf. Def. 16-1. Furthermore, Euclid does not consider the
general case of an “n-gon” but only treats the special case of a rectan-
gle leaving it to the reader to reduce the general case by an inductive
argument to the case n = 4. Logically, this issue is not a minor point.
As Max Dehn remarks in his appendix to Pasch’ well-known book on
geometry, the theory of areas of polygons cannot be developed without
induction and thus “is not really elementary”; cf. [16, p. 267].20

20 An inductive proof that each polygon is dissectable into a number of triangles
is provided by Paul Bernays in a supplement to Hilbert’s Grundlagen; cf. [11, p. 249f].
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Figure 7. Euclid’s Proposition I.43

We shall not try to fill the caveats left by Euclid, but want to conclude
our discussion of his procedure by considering his proof of Proposition
I.43 which is essential for the proof of Proposition I.45 used to “sum
up” all the small parallelograms equalling the component triangles of a
polygon; cf. Fig. 6. The proof of Proposition I.43 contains an application
of Ax. 9-3 which is the only one of Euclid’s axioms (i.e., common notions)
which has not been used yet. Let t5 be a point on the diagonal pr of the
parallelogram pqrs; cf. Fig. 7. Furthermore, let t1t2 and t3t4 be line
segments parallel to the sides ps and pq of pqrs, respectively. Euclid
calls the parallelograms pt1t5t4 and t5t3rt2 whose diagonals are
parts of the diagonal pr of the original big parallelogram the “parallel-
ograms about the diameter” and the two parallelograms t4t5t2s and

t1qt3t5 their “complements”. Proposition 43 says: “In any parallel-
ogram the complements of the parallelograms about the diameter are
equal to one another”; cf. [8, p. 340]. So, using the labels introduced
above, what Euclid has to prove is t4t5t2s ≃ t1qt3t5.

In Proposition I.34 Euclid had already shown that the diagonal of a
parallelogram dissects this figure into two triangles of equal size, hence
△prs ≃ △pqr. Since, furthermore, △prs = △t4pt5 + t4t5t2s+△t2t5r

and △pqr = △pt1t5 + t1qt3t5 +△t5t3r, we have △t4pt5 + t4t5t2s+
△t2t5r ≃ △pt1t5 + t1qt3t5 +△t5t3r (∗). Again by Proposition I.34, it
follows that both △pt1t5 ≃ △t4pt5 and △t2t5r ≃ △t5t3r. Applying then
Axiom 9-2, we have △t4pt5 + △t2t5r ≃ △pt1t5 + △t5t3r (∗∗). But (∗)
and (∗∗), by Axiom 9-3 yield that t4t5t2s ≃ t1qt5t3. Euclid’s clever
strategy here is to supplement the two figures t4t5t2s and t1qt5t3
whose equality is at issue by figures whose equality in area is already

This supplement has been added to a later edition of Hilbert’s book so that it is not
included in Townsend’s translation available on the internet.
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known in such a way that the equality of the thus resulting figures is
known, too. The subtraction of the added parts then yields the equality
of the supplemented areas.

The proofs of the two propositions I.43 and I.45 exemplify Euclid’s
strategies for proving the equality of polygons P and Q. Either both
are dissected into an equal numbers of polygonal (non-overlapping) parts
which are pairwise equal to each other; respective summation of those
parts then yield P ≃ Q by Ax. 9-2. Or P and Q are extended to
polygons P + P1 and Q + Q1 and it is shown then that both the thus
extended polygons and the extenders P1 and Q1 are equal to each other.
P ≃ Q follows then by Ax. 9-3. Both strategies are also applied in
Hilbert’s treatment of area in Chapter IV of his Foundations of Ge-

ometry, cf. [11, pp. 69–82/38–47]. Hilbert [11, p. 70/38] calls polygons
dissectable in pairwise congruent21 triangles, equidecomposable (German:
“zerlegungsgleich”).22 Polygons which can be supplemented by pairwise
congruent polygons in such a way that the supplemented figures are
equidecomposable are “of equal content” (German: “ergänzungsgleich”,
i.e., “supplementation equivalent”).23

As Euclid, Hilbert is not very explicit as regards the mereological
details concerning the dissection of polygons and their combination into
more comprehensive ones. He leaves the operation of dissection (“Zer-
legung”) and composition (“Zusammensetzung”) undefined relying on a
sympathetic reader’s intuition with respect to these matters. A more ex-
plicit exposition of Hilbert’s theory of polygonal area, however, has been
added to a later edition of Hilbert’s book by his disciple Paul Bernays
in two appendices: Supplement III and V. For precise definitions of the
operations mentioned, Bernays found it necessary to generalize Hilbert’s
notion of a polygon24 to that of a “polygonal”. He first explains what
it means for a set of triangles to satisfy the “triangulation condition”;

21 We have now left Euclid’s system working with the relation ≃ of equality of
size; the role of this relation is now taken over by the relation ∼= of congruence.

22 Townsend, in his translation of Hilbert’s book, renders zerlegungsgleich by
(being) of equal area. The term equidecomposable  precisely matching the German
term  is used by Hartshorne [7, p. 197].

23 The two notions are equivalent in a euclidean plane for which the Archimedian
Axiom (for the addition of segments) is valid; cf. Hartshorne [7, p. 216].

24 Hilbert defines a polygon as a closed track of line segments (ger. “Streckenzug”,
eng. “broken line”). He allows for such polygons as that shown in Fig. 3-(c) but
disallows non-connected polygons like that shown in Fig. 3-(d)
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namely: two members of this set are either (1) completely disjoint, or
(2) have only one vertex in common, or (3) share an edge but no further
point. The decomposition of a Hilbertian polygon into triangles will sat-
isfy the triangulation condition; conversely, however, a set of triangles
fulfilling this condition need not be the decomposition of a Hilbertian
polygon. A “polygonal”, then, is obtained from a set of triangle sat-
isfying the triangulation condition by the following two operation: (1)
removing common edges of the triangles and (2) joining remaining edges
lying on the same line. Bernays provides (rather complicated) definitions
for the union p+ q and the intersection p · q of two triangular complexes
p and q.

Bernays’ results

1. The restriction of the relation of being supplementation equivalent
to the class of Hilbertian polygons is an equivalence relation.

2. That relation is also additive: if P , Q and R, S are two pairs
of disjoint supplementation equivalent polygonals, then P + Q and
R + S are supplementation equivalent, too.

3. For each pair of polygonals P and Q there are always polygonals P1

and Q1 such that P1, Q1, and D = P · Q do not overlap and

P = P1 + D Q = Q1 + D P + Q = P1 + Q1 + D.

On the basis of these results, a measure function for polygons can be
determined, i.e., a function mapping polygons in such a way to Hilbert’s
“algebra of segments” (which is an Archimedian ordered field) that poly-
gons are assigned the same item from that algebra iff they are supple-
mentation equivalent.25 As he himself notes, such a measure would be
useless if all polygons had the same content (would all be supplemen-
tation equivalent). Relying on simple school geometry, two rectangles
p1q1r1s1 and p2q2r2s2 such that p1q1

∼= p2q2 but q1r1 6∼= q2r2 would
constitute a simple counterexample showing that this is not the case. As-
sume to the contrary that the two rectangles are of equal content. Then
the rectangular triangles △p1q1r1 and △p2q2r2 would be so, too. They
have congruent bases but differ with respect to their “heights” (catheti)
q1r1 and q2r2. Hence we could reject the hypothesis that all polygons
are of equal area when we could prove that triangles of equal content

25 Hilbert calls this measure function “Inhaltsmaß”, i.e., “measure of content”;
Townsend renders this by “measure of area”; cf. [11, p. 77/42].
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with congruent bases have also congruent heights. That this is actually
the case is proven by both Hilbert and, as Hilbert [11, p. 74/41] himself
points out, by Euclid, too.

Theorem 13 ( Bases and heights of supplementation equivalent triangles).

1. Hilbert’s version: If two supplementation equivalent triangles have

equal bases, they have equal heights, too.

2. Euclid’s version (Proposition I.39): Equal triangles which are on the

same base and on the same side are also in the same parallels.

Euclid’s proof of Proposition I.39 makes use of the “whole-greater-
than-part” principle and depends furthermore upon Proposition I.7, i.e.,
our Th. 12-2, which was proven by that principle, too. Hilbert  citing
Euclid’s Axiom I.5 in the original Greek  explains: “In the demonstra-
tion of this theorem, however, Euclid appeals to the general proposi-
tion relating to magnitudes: ‘KaÈ to ílon toÜ mèrou
 meØzón [èstin℄’  a
method of procedure which amounts to the same thing as introducing a
new geometrical axiom concerning areas”; [11, p. 74/41]. Hilbert actu-
ally copes without it. The reason why he wants to avoid the Euclidean
principle, however, does not become quite clear. As he puts the matter,
his reason is just the strive for axiomatic economy. Hessenberg [10,
p. 57]26 is more explicit on this issue. He defines an ordering relation
between polygons in a way reminiscent of Ax. 9-4: “We call a polygon
P larger than a polygon Q (and Q smaller than P ) if P includes a
polygon which is supplementation equivalent to Q”; [10, p. 57]. Then
he formulates a question which is equivalent to Hilbert’s concern about
the (non-) triviality of his measure function: “Does the validity of one
of the three relationships P < Q, P = Q, P > Q always imply the
invalidity of the two others?” Citing Euclid, as Hilbert does, Hessenberg
adds the following comment to his question: “Euclid believed that it
could be safely answered by yes. The whole is greater than the part”;
[10, p. 57]. He goes on to explain, however, that Euclid’s attitude would
be an intolerable naivety after the discovery of uncountable sets which
have proper subsets of a cardinality equal to their own. For Hessenberg,
thus, the findings of set theory gave rise to an uncertainty concerning

26 The first edition of that book is from 1930. According to Diller’s explanation
[10, p. 3] in the preface to its second edition, the text passage cited in the main text
above belongs to a section which has been taken over from the first edition.
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the part-of-relation which also renders the whole Euclidean theory of
magnitudes problematic.

5. Points, Boundaries, and Measure Theory

We started this article by Prenowitz’ thought experiment whether Euclid
would recognize a major difference between his approach to geometry
and Hilbert’s modern one. It is thus appropriate to finish with another
question of the same kind: would Euclid accept our amendments of his
system as in line with his general conception of geometry? Though I
think that Euclid would appreciate some of them, I expect him never-
theless to be skeptic on one major point. As we have seen at the end of
the previous section, the discovery of sets equal in cardinality to some
of their proper subsets may have induced a skeptic attitude towards
Euclid’s “whole-greater-than-part” principle and to his “mereologico-
megethological” approach to geometry in general. Set theory, on the
other hand, has become the standard framework for mathematics (with
category theory as perhaps the only serious competitor) and hence for
geometry, too. As we shall explain in a moment, there is one problem
which any formulation of Euclidean geometry using atomistic mereol-
ogy will share with formulations using set theory. Since this problem
is absent in Euclid’s conception of geometry, we may conclude that he
would be dissatisfied with both reformulations of his geometry: the set-
theoretic one and that using atomistic mereology.

The problem at issue has been pointed out by Carathéodory in his
book on measure theory and integration [4].27 In Proposition I.34, Euclid
proves that each diagonal of a parallelogram bisects that figure into two
equal triangles; cf. [8, p. 323]. Commenting on Euclid’s proof procedure,
Caratheodory [4, 10] explains that

[. . . ] it is impossible to conceive of geometric figures cut into pieces in
this way or composed out of separate pieces as sets of points. A decision
had to be made in that case whether the points of the edges of a triangle
have to be reckoned among that triangle’s points or whether one prefers
to conceive of the triangle as the set of its inner points, and each possible

27 It did not remain unrecognized in the mereological literature though; cf., e.g.,
Randell, Cui, and Cohn’s well-known article on their Region Connection Calculus,
[19, p. 167], as well as the extensive discussions of boundaries by Casati and Varzi [5,
ch. 5].
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decision leads up to a contradiction: depending on the option chosen,
one will, in the case of the composition of a parallelogram out of two
triangles, either count the diagonal twice or it completely drops out of
the figure.

Obviously the same dilemma which Carathéodory describes for the
set-theoretic conceptions of regions arises also for the mereological one
identifying regions with collections of points. Given a parallelogram

pqrs, one has to decide to which of the triangles △pqs or △qrs the
diagonal qs belongs. In our re-construction of the Euclidean system, it
belongs to both. Distinguishing between the relations of apartness | (cf.
Def. 7-2) and that of separation ≀ (cf. Def. 15), however, we declared the
overlap between △pqs and △qrs for irrelevant for the question of the
equality (in size) of the two triangles. This is, perhaps, more hitting
through the dilemma than solving it.

Obviously, Euclid does not see any problem in the procedure applied
in his proof of Proposition I.34 (nor does Hilbert when dissecting and
composing figures in Chapter 4 of the Grundlagen). Presumably the
reason for this is that he adopts an Aristotelian theory of continua. In
Book V of the Physics Aristotle distinguishes three basic types of modes
how entities can follow each other: succession, contact, and continuity.
An object succeeds another one of the same kind if there is nothing of
the same kind between them. Objects are in contact with each other
if their “extremities” are together, and they are continuous if their ex-
tremities are one.28 Using these distinction then, Aristotle [1, 231 a 31,
I, p. 390f] goes on to argue that, for instance, “a line cannot be com-
posed of points, the line being continuous and the point indivisible”.29

The two “extremity” points of a segment pq are its boundaries, cf. the
leftmost branch in the tree of Fig. 1, demarcating it from the plane. An
interior point r of pq is the boundary separating the two subsegments
pr and rq being at the same time their common border. According to

28 The English word extremity is also used in translations of Euclid’s explana-
tions about the boundaries of a segment (Definition I.3) and the general notion of a
boundary (Definition I.13), cf. p. 389 above. Euclid’s Greek term (pèra
), however,
differs from Aristotle’s (êsqato
).

29 Brentano [3] explains the differences between the modern conception of the
continuum deriving from the works of Dedekind and Cantor on the one hand and the
Aristotelian on the other, defending the latter conception. A re-construction of “the
classical Dedekind-Cantor continuum” is provided by Hellman and Shapiro [9] within
the framework of a point-free mereology.
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this conception, however, points are definitely not parts of the line: how
could something exclusively consists just of boundaries? Similarly, in the
case of Proposition I.34 the diagonal is the common border of the two
triangles but is not a part of either.30 Euclid does not see any problems
in such boundary items as points (delimiting segments), lines (delimiting
surfaces), and surfaces (delimiting solids). Furthermore, it is surely no
accident that his definitions (at the beginning of Book I for the first
three items and of Book XI for surfaces) proceed exactly in that order.
He would probably have rejected definitions of points, lines, and surfaces
in terms of solids as an instance of the failure of “the exhibition of the
prior through the posterior”, as Aristotle [1, I, 142 a 17, p. 240] calls it
in the Topica. Nevertheless Euclidean mereology seems to be point-free
rather than atomistic.

Interestingly enough, Carathéodory builds his approach to measure-
ment and integration upon a point-free (quasi-) mereology.31 His aim is
to lay the foundations for a “general theory of content which comprises
both the Euclidean doctrine as a special case and the most general the-
ories of measure which have been developed in this century”; cf. [4,
p. 10]. Actually he develops two versions of a point-free mereology in
the first chapter of his book and proves them equivalent in section 17 of
that chapter. The basic objects of his theory, which he started to de-
velop in the late 1930s, are called “somata” (from the Greek word sÀma
meaning “body”) by him. As is explained by Bélanger and Marquis [2,
p. 12f], he seems to have influenced Nöbeling’s [15] point-free topology
both by this terminology and by the idea to “eliminate” points. In his
first formulation of his point-free mereology, Carathéodory [4, pp. 11-
17] motivates his axioms by considering the special application of it to
the analysis of planar figures. This generalizes the case for polygons
dealt with in section 4 of the present article. His sole undefined relation

30 Cf. Hellman and Shapiro [9, p. 513f] for a reconstruction of (part of) Aristotle’s
theory of continua and boundaries. Roeper [20] is another attempt to model Aris-
totle’s intuition within a mereological framework. Roeper’s approach is interesting
by making use of ideas also used in the formal semantics of mass terms. Aristotle’s
conception of continua may be inspired by the existence of “homogeneous masses” as
is evidenced by the introductory sentence of his Historia Animaliae where he mentions
flesh as a part of animals “that divide[s] into parts uniform with themselves”; cf. [1,
I, p. 774].

31 I add the qualification “quasi” since he postulates the existence of a null soma,
something strongly disliked by most mereologists.
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(a)

p1

p2 p3q6 q8 q10

q1 q2 q3 q4 q5

q7 q9 q11

(b)

Figure 8. Sums and dissections

between somata is that of being apart (ger. “fremd”) to each other. He
symbolizes this relation by “◦” which we have already used in Def. 6-2
for overlapping. Hence we shall symbolize his relation by the sign ≀
which, however, is now to be understood as a basic sign rather than as
introduced by Def. 15. Non-overlapping somata may be combined by
a sum operation Σ. Infinite sums are admitted since one wants, e.g.,
exhaust a circle by an infinite numbers of triangles; cf. Fig. 8-(a). For
reasons coming from measure theory, however, infinite sums may have
an at most denumerable number of summands; cf. [4, pp. 11f, 24].

The sum operation Σ is thus defined for (possibly doubly) indexed
systems of somata which are pairwise apart from each other. Using lower
case italics for somata and small Greek letters for systems of them, we
may state the first six of Carathéodory’s axioms as below.

Caratheodory’s first six (quasi-) mereological axioms

1. x ≀ y = y ≀ x
2. If ϕ is a permutation of ψ, then

∑

i

ϕ(i) =
∑

i

ψ(i).

3. If both x =
∑

ij

ϕ(i, j) and, for each i, yi =
∑

j

ϕ(i, j), then x =
∑

i

yi.

4. There exists a soma ⊥ such that ⊥ ≀ x and ⊥ + x = x.

5. (∀i.x ≀ ϕ(i)) → x ≀
∑

i

ϕ(i)

6. (∀i.ϕ(i) 6= ⊥) → ¬(ϕ(i) ≀
∑

j

ϕ(j)).

The theory based on these axioms is made applicable also to cases in-
volving overlapping somata by adding an axiom postulating that in such
a case always suitable non-overlapping somata can be found. Thus, for
instance, the soma displayed in Fig. 8-(b) is the sum of the rectangular
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soma p1 and the two circular somata p2 and p3 which all overlap which
each other. However, it can also be analyzed as the sum of the pairwise
disjunct somata q1, q2, . . . , q11.

Carathéodory’s dissectability axiom

7. If x1, x2, . . . , xm are arbitrary somata, then there are somata y1, y2,

. . . , yn which are pairwise apart from each other such that for each

xj (1 ¬ j ¬ m) which does not equal an yk (1 ¬ k ¬ n) there are yj1
,

yj2
, . . . , yjk

(1 ¬ j1, j2, . . . , jk ¬ n) such that xj = yj1
+yj2

+· · ·+yjk
.

Carathéodory [4, pp. 28–32] proves that structures fulfilling the seven
axioms just stated are Boolean rings in which the (lattice-theoretic coun-
terpart of the) symmetric difference of somata takes the role of addi-
tion and in which there always exist the (ordinary) sum of denumerably
many somata. In his approach to measure theory and integration, these
structures take over the role played by σ-algebras of subsets of some
basic set X in standard, set-theory based accounts to these disciplines.
Cartheodory’s main innovation consists in his demonstration how the
work of the point functions defined over the base set of a σ-algebra can
be done by special “local” functions (ger. “Ortsfunktionen”) defined on
somata.

A numerical function measuring the areas of polygons could obviously
be developed in Carathéodory’s framework. Unlike the reconstruction of
Euclid’s approach which has been proposed in the present article, this
would not equate figures with collections of points. This, surely, is closer
to Euclid’s original conception. Conversely, however it suffers from the
lack of any account of the boundaries of somata. How, one could imagine
Euclid having asked, could a soma exist without being delimited from
its environment?
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