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CLASSICAL MEREOLOGY IS NOT
ELEMENTARILY AXIOMATIZABLE

Abstract. By the classical mereology I mean a theory of mereological struc-
tures in the sense of [10]. In [7] I proved that the class of these structures is
not elementarily axiomatizable. In this paper a new version of this result is
presented, which according to my knowledge is the first such presentation
in English. A relation of this result to a certain Hsing-chien Tsai’s theorem
from [13] is emphasized.
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1. Mereological structures

By a mereological structure (in Tarski sense [10]) we mean any relational
structure of the form 〈M, ⊑〉, with a non-empty set M and a transitive
relation ⊑ in M ,1 satisfying the following condition:2

∀S∈2M \{∅}∃1
x∈M x sum S , (∃1sum)

where sum is the following binary relation in M × 2M :

x sum S ⇐⇒ ∀y∈S y ⊑ x ∧

∀z∈M

(

z ⊑ x ⇒ ∃y∈S∃u∈M (u ⊑ y ∧ u ⊑ z)
)

.
(df sum)

1 I.e., the relation ⊑ in M satisfies the condition (t⊑) being a special case of (tR)
given in Appendix B, where R := ⊑ and U := M (p. 495).

2 A formula of the form p∃
1

x∈X ϕ(x)q says that in a set X there exists ex-
actly one object x such that ϕ(x). This formula is an abbreviation of p∃x∈X ϕ(x) ∧

∀x,y∈X(ϕ(x) ∧ ϕ(x/y) ⇒ x = y)q.
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The class of all mereological structures will be denoted by ‘MS’. Follow-
ing Leśniewski [4], we call ⊑ an ingrediens relation and in the case of
x ⊑ y we say that x is ingrediens of y (i.e., x is (proper) part of y or
x = y; see (⋆)). Moreover, in the case of x sum S we say that an object
x is a mereological sum (or a collective class) of all members of a (dis-
tributive) set S. The axioms (t⊑) and (∃1sum) say, respectively, that
the relation ⊑ is transitive in M and that for every non-empty subset S
of M there exists exactly one mereological sum of all members of S.

For any structure 〈M, ⊑〉 from the class MS we obtain that ⊑ is
a separative partial order, i.e., ⊑ is also reflexive, antisymmetrical and
separative, i.e., ⊑ satisfies the conditions (r⊑), (antis⊑), and (sep

⊑
) (see

[6, 7, 8, 10]).3

From (r⊑) we obtain that sum is included in M × 2M \ {∅}, that is:

∀S∈2M (∃x∈M x sum S =⇒ S 6= ∅),

so, in the light of (∃1sum), we have:

∀S∈2M \{∅}∃x∈M x sum S , (∃sum)

∀S∈2M ∀x,y∈M (x sum S ∧ y sum S =⇒ x = y), (fun-sum)

i.e., the relation sum is a (partial) function of the second argument.
By (∃1sum), there exists the unity 1 of this structure, since M 6= ∅:4

1 := (ι z) z sum M , (df 1)

1 = (ι z) ∀y∈M y ⊑ z .

Moreover, we can introduce a unary (partial) operation on 2M \ {∅} of
being of the mereological sum of all members of a given non-empty set:

S 6= ∅ =⇒
⊔

S := (ι z) z sum S . (df
⊔

)

Thus, 1 =
⊔

M and we can introduce the following binary operation
in M :

x ⊔ y :=
⊔

{x, y} . (df ⊔)

3 See the conditions (rR), (antisR), and (sep
R

) from Appendix B for R := ⊑ and
U := M (pp. 494–495).

4 The Greek letter ‘ι’ stands for the standard description operator. The expres-
sion p(ιx) ϕ(x)q is read “the only object x which satisfies the condition ϕ(x)”. Before
using it, first we have to prove that there exists exactly one object x such that ϕ(x),
i.e., ∃

1
x ϕ(x).
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Of course, ⊔ is idempotent and commutative, and we obtain:

x ⊔ y =
⊔

{u ∈ M : u ⊑ x ∨ u ⊑ y}.

x ⊑ y ⇐⇒ y = x ⊔ y .

For any mereological structure 〈M, ⊑〉 we introduce three auxiliary
binary relations in M : of being (proper) part, of overlapping and of being
exterior to:

x < y ⇐⇒ x ⊑ y ∧ x 6= y, (df<)

x ◯ y ⇐⇒ ∃z∈M (z ⊑ x ∧ z ⊑ y), (df◯)

x H y ⇐⇒ ¬ x ◯ y . (df H)

If x < y (resp. x ◯ y; x H y), then we say that: x is (proper) part of y
(resp. x overlaps y; x is exterior to y). Of course, ◯ and H are symmetric.
By (r⊑), ◯ is reflexive, H is irreflexive, ⊑ is included in ◯ (so H is disjoint
from ⊑ and <). The relation < is irreflexive, asymmetric, and transitive.
Thus, we have the following conditions: (irr<), (as<), (t<), (r◯), (s◯),
(irrH), and (sH).

5 Moreover, all mereological structures satisfy the so-
called Weak Supplementation Principle:

∀x,y∈M (x < y =⇒ ∃z∈M(z < y ∧ z H x)). (WSP)

The aforementioned formula (sep
⊑

) is called Strong Supplementation
Principle.

By (r⊑) and (antis⊑), we also obtain:

∀x,y∈M (x ⊑ y ⇐⇒ x < y ∨ x = y), (⋆)

∀x,y∈M (x < y ⇐⇒ x ⊑ y ∧ y 6⊑ x),

We say that a mereological structure 〈M, ⊑〉 is non-trivial iff M has
at least two members. It is equivalent to the fact that M has at least
two members which are exterior to each other and to the fact that in M
there is no smallest element, that is:

|M | > 1 ⇐⇒ ∃x,y∈M x H y ⇐⇒ ¬ ∃x∈M ∀y∈M x ⊑ y, (#)

where |M | is the cardinality of M .
By (r⊑), we have {〈x, y〉 ∈ M × M : x ◯ y} 6= ∅. So, by (∃1sum), we

can introduce the following partial binary operation ⊓ : {〈x, y〉 ∈ M×M :
x ◯ y} → M :

x ◯ y =⇒ x ⊓ y :=
⊔

{u ∈ M : u ⊑ x ∧ u ⊑ y}. (df ⊓)

5 Again, see the conditions (irrR), (asR), (tR), (rR), and (sR) from Appendix B
for U := M and R := <,◯, H, respectively (pp. 494–495).
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The object x ⊓ y is called the (mereological) product of two overlapping
objects x and y. For the operations ⊔ and ⊓ we obtain:

x ◯ y =⇒ (x = x ⊓ y ⇔ y = x ⊔ y),

x ◯ y =⇒ ∀u∈M (u ⊑ x ⊓ y ⇔ u ⊑ x ∧ u ⊑ y) .

Notice that we can prove the following equivalence (see e.g. [6, 7, 8]):

∀S∈2M ∀x∈M

(

x sum S ⇐⇒ ∀z∈M(z ◯ x ⇔ ∃y∈S y ◯ z)
)

. (%)

All members of M overlap 1, so in the light of (WSP) we have:

∀x∈M

(

x 6= 1 ⇐⇒ ∃y∈M y H x
)

.

Hence, for any x 6= 1 we have {u ∈ M : u H x} 6= ∅ and by (%) we obtain
⊔

{u ∈ M : u Hx} 6= 1. Thus, in non-trivial mereological structures we
can introduce the following unary operation − : M \ {1} → M \ {1}:

x 6= 1 =⇒ −x :=
⊔

{u ∈ M : u H x}. (df −)

The object −x will be called the (mereological) complement of x. The
following hold in all mereological structures (cf. e.g. [6, 7, 8]):

∀x∈M\{1} x = − − x,

∀x∈M\{1} x H −x,

∀x∈M\{1} x ⊔ −x = 1,

∀x,y∈M\{1}(−x = −y ⇐⇒ x = y),

∀x,y∈M\{1}(x ⊑ y ⇐⇒ −y ⊑ −x),

∀x,y∈M\{1}(x < y ⇐⇒ −y < −x),

∀x,y∈M (x H y ⇐⇒ y 6= 1 ∧ x ⊑ −y),

∀x,y∈M (x 6⊑ y ⇐⇒ y 6= 1 ∧ x ◯−y).

For every structure 〈M, ⊑〉 from MS we obtain:

∀S∈2M ∀x∈M (x sum S ⇐⇒ S 6= ∅ ∧ x sup
⊑

S).

∀S∈2M \{∅}

(
⊔

S = sup
⊑

S
)

Thus, by (#): 〈M, ⊑〉 is non-trivial iff there is no z such that z sup
⊑

∅
iff sum and sup

⊑
are equal:

|M | > 1 ⇐⇒ ∀S∈2M ∀z∈M(z sum S ⇔ z sup
⊑

S).
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Of course: x ⊔ y = sup
⊑

{x, y}. Moreover, we have:

x ◯ y =⇒ x ⊓ y = inf⊑{x, y}.

In the light of (%), and after Leśniewski [5, Chapter X], we can choose
a different explication of the concept of a collective set. In [3] Leonard
and Goodman expressed this concept in the language of set theory, as
the relation of being a fusion of all elements of a given distributive set.
This relation is designated by ‘fu’ and for all x ∈ M and S ⊆ M we put:

x fu S ⇐⇒ ∀z∈M (z ◯ x ⇔ ∃y∈S y ◯ z). (df fu)

Thus, by (%), in all mereological structures fu = sum.
We have the following equivalent axiomatizations of the class MS:

Theorem 1.1 ([6, 7, 8]). For any non-empty set M and any binary

relation ⊑ in M the following conditions are equivalent (relations <, ◯,

sum, and fu are defined as above):

1. 〈M, ⊑〉 is a member of MS.

2. 〈M, ⊑〉 satisfies (t⊑), (fun-sum) and (∃sum).
3. 〈M, ⊑〉 satisfies (t⊑), (antis⊑), (sep

⊑
) and (∃sum).

4. 〈M, ⊑〉 satisfies (t⊑), (WSP), and (∃sum).
5. 〈M, ⊑〉 satisfies (t⊑), (antis⊑), (sep

⊑
), and

∀S∈2M \{∅}∃x∈M x fu S . (∃fu)

6. 〈M, ⊑〉 satisfies (t⊑), (antis⊑), (∃sum), and

∀S∈2M ∀x,y∈M (x fu S ∧ y fu S =⇒ x = y). (fun-fu)

2. The connection between mereological structures and complete
Boolean lattices (complete Boolean algebras)

The following theorems6 reveal some essential dependencies between
mereological structures and complete Boolean lattices (resp. algebras).

Theorem 2.1 (cf. e.g. [11, 7]). Let 〈B, ≤, 0, 1〉 be a non-trivial complete

Boolean lattice. We put M := B \ {0} and ⊑ := ≤|M := ≤ ∩ (M × M).
Then 〈M, ⊑〉 is a mereological structure, 1 is the unity of 〈M, ⊑〉, and:

∀S∈2M \{∅} sup
≤

S = sup
⊑

S =
⊔

S .

6 Concerning these theorems see footnote 1 in [11, pp. 333–334].
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For any Boolean algebra 〈A, +, *, -, 0, 1〉 and for the relation ≤, which
is defined by (df ≤), p. 495, the structure 〈A, ≤, 0, 1〉 is a Boolean lat-
tice. Thus Theorem 2.1 also holds for any non-trivial complete Boolean
algebra with ≤.

Theorem 2.2 (cf. e.g. [11, 7]). Let 〈M, ⊑〉 be any mereological structure

and 0 be an arbitrary object such that 0 /∈ M . We put M0 := M ∪ {0}
and ⊑0 := ⊑ ∪ ({0} × M0 ), i.e., for any x, y ∈ M0 : x ⊑0 y ⇐⇒
x ⊑ y ∨ x = 0 . Then 〈M0 , ⊑0 , 0 , 1〉 (where 1 is the unity of 〈M, ⊑〉) is

a non-trivial complete Boolean lattice such that:

∀S∈2M \{∅} sup
⊑0 S = sup

⊑
S =

⊔

S . (†)

Moreover, for any x, y ∈ M0 we have:

x + y =















x ⊔ y if x, y ∈ M

x if y = 0

y if x = 0

x · y =

{

x ⊓ y if x ◯ y

0 otherwise

∽x =















−x if x ∈ M \ {1}

0 if x = 1

1 if x = 0

where the operations +, · and ∽ are defined by (df +), (df ·), and (df∽),
respectively (pp. 495–496). So 〈M0 , +, ·,∽, 0 , 1〉 is a complete Boolean

algebra such that the relation ≤, introduced by (df≤), is equal to ⊑0 .

In the light of theorems 2.1 and 2.2 we obtain the following theorem.

Theorem 2.3 (cf. e.g. [9]). For any non-empty set M and for any binary

relation ⊑ in M the following conditions are equivalent.

(i) 〈M, ⊑〉 belongs to MS.

(ii) For some (equivalently: any) 0 /∈ M , for M0 := M ∪ {0} and for

⊑0 := ⊑∪ ({0}×M0 ) the structure 〈M0 , ⊑0 , 0 , 1〉 (where 1 is the

unity of 〈M, ⊑〉) is a non-trivial complete Boolean lattice.

(iii) For some non-trivial complete Boolean lattice 〈B, ≤, 0, 1〉 we have

M = B \ {0}, ⊑ = ≤|M , and 1 = 1.

(iv) For some non-trivial complete Boolean algebra 〈A, +, *, -, 0, 1〉 we

have M = A \ {0}, 1 = 1, and ⊑ = ≤|M , where ≤ is defined by

(df≤).
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Proof. “(i)⇒(ii)” By Theorem 2.2.
“(ii)⇒(iii)” We put B := M0 , ≤ := ⊑0 , 0 := 0 , and 1 := 1. Then

M = B \ {0} and ⊑ = ≤|M .
“(ii)⇒(iv)” In a non-trivial complete Boolean lattice 〈M0 , ⊑0 , 0 , 1〉

by means of (df +), (df ·) and (df∽) we define the operations +, · and ∽,
respectively. So 〈M0 , +, ·,∽, 0 , 1〉 is a complete Boolean algebra and 
by Theorem 2.2  the relation ≤, introduced by (df ≤), is equal to ⊑0 .
So ⊑ = ≤|M .

“(iii)⇒(i)” By Theorem 2.1.
“(iv)⇒(i)” By the relationship between complete Boolean algebras

and complete Boolean lattices, and Theorem 2.1 (see p. 490).

3. The main result

For mereological structures we use the first-order language L⊑ with
equality which has only one binary predicate ‘⊑’. Of course, all mereo-
logical structures are L⊑-structures.

First, we introduce the following L⊑-structures: Pω := 〈2ω \ {∅}, ⊆〉
and FCω := 〈FC(ω) \ {∅}, ⊆〉, where FC(ω) is the set of all finite and all
co-finite subsets of ω. In [7] we noticed:
• By Theorem 2.1, Pω is a mereological structure, since the Boolean

lattice B1 := 〈2ω, ⊆, ∅, ω〉 is complete (see p. 497).
• By Theorem 2.2, FCω is not a mereological structure, because the

Boolean lattice B2 := 〈FC(ω), ⊆, ∅, ω〉 is not complete (see p. 497).
Second, in [7] we proved:

Fact 3.1. The L⊑-structures Pω and FCω are elementarily equivalent,

i.e., Th(Pω) = Th(FCω).

The proof from [7]. We use Corollary B.4 and the following fact:

Claim. We assign to an arbitrary L⊑-structure A = 〈A, ⊑〉 an arbitrary

0 /∈ A along with the structure A0 = 〈A0 , ⊑0 〉 defined as in Theo-

rem 2.2. We connect this structure with the first-order language L0
≤

with identity and two specific constants: the binary predicate ‘≤’ and

the individual constant ‘0’, which are interpreted with the help of ⊑0

and 0 , respectively.

Let σ be an arbitrary L⊑-sentence. We turn σ into a L0
≤

-sentence σ∗

with the help of the following transformation: in place of the predicate

‘⊑’ we substitute the predicate ‘≤’; we exchange an arbitrary quantifier
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binding xi with a quantifier limited by the condition: ¬ xi = 0.7 Then:
A � σ iff A0

� σ∗.

So for any L⊑-sentence σ we have:

σ ∈ Th(Pω) (by Claim) iff σ∗ ∈ Th(B1) (by Corollary B.4)

iff σ∗ ∈ Th(B2) (by Claim)

iff σ ∈ Th(FCω) .

Another proof based on some result of [12]. In [12] Tsai proved
that Pω and FCω are models of some complete first-order L⊑-theory. So
these models are elementarily equivalent.

Finally, considering the structures Pω and FCω, by Fact 3.1 and
Fact A.1 from Appendix A, we obtain:

Theorem 3.2 ([7]). The class MS of all mereological structures is not

elementarily axiomatizable.

4. A comment on some result of [13]

In [13] Tsai considers a certain first-order L⊑-theory CEM + (G) with
equality (‘P ’ is used instead of ‘⊑’). This theory has the following specific
axioms: (r⊑), (antis⊑), (t⊑) and (sep

⊑
)8, and the axioms of “finite sum”,

“finite product” and “the greatest member”:

∀x∀y(∃u(x ⊑ u ∧ y ⊑ u) =⇒ ∃z∀w(w ◯ z ⇔ (w ◯ x ∨ w ◯ y))) (FS)

∀x∀y(x ◯ y =⇒ ∃z∀w(w ⊑ z ⇔ (w ⊑ z ∧ w ⊑ y))) (FP)

∃x∀y y ⊑ x . (G)

We put AxT := {(r⊑), (antis⊑), (t⊑), (sep
⊑

), (FS), (FP), (G)}.
All models of the theory CEM + (G) (i.e., all L⊑-structures from

Mod(AxT)) Tsai calls “mereological structures”. Moreover, Tsai says
that a structure 〈M, ⊑〉 from Mod(AxT) is “complete” iff for any non-
empty subset S of M , there is x ∈ M such that x fu S, where fu is
the binary relation defined by (df fu). That is, a given structure from
Mod(AxT) is “complete” iff it satisfies the condition (∃fu). We denoted

7 Formally: after exchanging the predicate ‘⊑’, instead of p∀xi
ϕq and p∃xi

ϕq we
take p∀xi

(¬ xi = 0 → ϕ)q and p∃xi
(¬ xi = 0 ∧ ϕ)q, respectively.

8 In [13] these are the formulas: (P1)–(P3), and (SSP), respectively
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the class of “complete” structures from Mod(AxT) by cMod(AxT). We
have: cMod(AxT) ( Mod(AxT).

By Theorem 1.1 we see that the class of all L⊑-structures which sat-
isfy the conditions (t⊑), (antis⊑), (sep

⊑
), (∃fu) is equal to MS. Moreover,

in the light of Section 1, all structures from MS satisfy the conditions
(FS), (FP), (G). Thus, we have: cMod(AxT) = MS.

In [13, the proof of Claim 1] the following meta-sentence:

(C) ‘Being a complete mereological structure’ is first-order definable

means that “there is such a sentence α in the mereological language [i.e.
L⊑] which defines the completeness of a mereological structure [in au-
thor’s sense], that is, for any mereological structure M , M is complete if
and only if M � α”. Thus  in our terminology  the meta-sentence (C)
has the following meaning:

• for some sentence α in L⊑, for any L⊑-structure A from Mod(AxT):
A ∈ cMod(AxT) iff A � α.

In other words,

• for some sentence α in L⊑, for any L⊑-structure A: A ∈ cMod(AxT)
iff A ∈ Mod(AxT ∪ {α}).

So (C) says that

(C′) for some sentence α in L⊑, Mod(AxT ∪ {α}) = cMod(AxT) = MS.

Thus, (C) says that the class MS is finitely elementarily axiomatizable9,
since instead of any finite set {σ1, . . . , σn} of sentences we can use pσ1 ∧
· · · ∧ σnq. Tsai proves that (C) is not true (see [13, Claim 1]). So  in
our terminology  he proves that the class MS is not finitely elementarily
axiomatizable. Our Theorem 3.2 gives the stronger result: MS is not
elementarily axiomatizable.

A. Appendix: Elementarily axiomatizable classes of structures

L-structures. Models. Let L be any first-order language (with or with-
out equality). An L-structure is an ordered pair of the form 〈U, ℑ〉, where
U is a non-empty set (the universe of structure) and ℑ is a set-theoretical
interpretation of non-logical symbols of L.

9 See Appendix A, p. 494
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If an L-formula ϕ is true in an L-structure A, then we write A � ϕ.
All L-formulas without free variables are called L-sentences. For any
L-sentence ϕ and any L-structure A: ϕ is true in A iff A satisfies ϕ.

For any set Φ of L-formulas, a model of Φ is any L-structure A such
that for any ϕ ∈ Φ we have A � ϕ, i.e., all formulas of Φ are true in A (we
write: A � Φ). Let Mod(Φ) be the class of all models of Φ. Of course,
for any sets of L-formulas Φ and Ψ : if Φ ⊆ Ψ then Mod(Ψ) ⊆ Mod(Φ).

Elementarily equivalent structures. A theory of an L-structure A is the
set of all L-sentences which are true in A, that is, the following set:

Th(A) := {ϕ : ϕ is an L-sentence and A � ϕ}.

L-structures A and B are elementarily equivalent iff Th(A) = Th(B),
i.e., A and B satisfy the same L-sentences.

Elementarily axiomatizable class of structures. Let K be any class of L-
structures. We say that K is elementarily axiomatizable (or elementary
in the wider sense) iff there is a set Σ of L-sentences such that K =
Mod(Σ). If additionally the set Σ is finite, then we say that K is finitely
elementarily axiomatizable (or elementary in the narrow sense).

Directly from definitions we obtain:

Fact A.1. Every elementarily axiomatizable class of L-structures is

closed under elementary equivalence. In other words, for any class K

of L-structures and any L-structures A and B: if K is an elementarily

axiomatizable, A ∈ K and Th(A) = Th(B), then B ∈ K .

B. Appendix: Some facts about binary relations, Boolean
algebras, and Boolean lattices

Some types of binary relations. Let U be any non-empty set. All sub-
sets of U × U are called binary relations on U . A binary relation R is
called, respectively, reflexive, irreflexive, symmetric, asymmetric, anti-
symmetric, transitive, separative iff R fulfills respective condition from
the following set:

∀x∈U x R x , (rR)

∀x∈U ¬ x R x , (irrR)

∀x,y∈U (x R y ⇒ y R x), (sR)

∀x,y∈U ¬(x R y ∧ y R x), (asR)
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∀x,y∈U (x R y ∧ y R x =⇒ x = y), (antisR)

∀x,y,z∈U (x R y ∧ y R z =⇒ x R z), (tR)

∀x,y∈U

(

¬ x R y =⇒ ∃z∈U (z R x ∧ ¬ ∃u∈U (u R y ∧ u R z))
)

. (sep
R

)

Partially ordered sets. A pair 〈U, R〉 is a partially ordered set iff U is
non-empty set and R satisfies (rR), (antisR), (tR). Besides, 〈U, R〉 is
separative iff it satisfies (sep

R
).

In any partially ordered set 〈U, R〉 we introduce two binary relations
sup

R
of being of the least upper bound of and infR of being of the greatest

lower bound of which are included in U × 2U :

x sup
R

S ⇐⇒ ∀z∈S z R x ∧ ∀y∈M (∀z∈S z R y ⇒ y R x), (df sup
R

)

x infR S ⇐⇒ ∀z∈S x R z ∧ ∀y∈M (∀z∈S y R z ⇒ x R y). (df infR)

By (antisR), sup
R

and infR are (partial) functions of the second argument:

∀S∈2U ∀x,y∈U (x sup
R

S ∧ y sup
R

S =⇒ x = y), (fun-sup
R

)

∀S∈2M ∀x,y∈U (x infR S ∧ y infR S =⇒ x = y). (fun-infR)

So if x sup
R

S (resp. x infR S), then we also write x = sup
R

S (resp.
x = infR S).

A partially ordered set 〈U, R〉 is called complete iff it fulfils the follow-
ing condition: ∀S∈2U ∃x∈U x sup

R
S (equivalently, ∀S∈2U ∃x∈U x infR S).

Boolean algebras. An algebraic structure 〈A, +, *, -, 0, 1〉 is a Boolean al-
gebra iff it satisfies certain well-known equalities (cf. e.g. [1]). A Boolean
algebra is non-trivial iff |A| > 1 iff 0 6= 1. The binary relation ≤ in A
defined by

x ≤ y ⇐⇒ y = x + y ⇐⇒ x = x * y (df ≤)

is a separative partial order.

Lattices. A partially ordered set 〈L, ≤〉 is a lattice iff for any x, y ∈ L
there are the least upper bound and the greatest lower bound of {x, y}.
So we have the following two binary operations on L:

x + y := sup
≤

{x, y} , (df +)

x · y := inf≤{x, y} . (df ·)

Of course, + and · are idempotent and commutative, and we obtain:

x ≤ y ⇐⇒ y = x + y ⇐⇒ x = x · y .
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A lattice 〈L, ≤〉 is bounded iff it has a least element 0 and a great-
est element 1, i.e., we have: ∀x∈L 0 ≤ x and ∀x∈L x ≤ 1. Then we
write 〈L, ≤, 0, 1〉. A bounded lattice is non-trivial iff 0 6= 1. Moreover,
a bounded lattice 〈L, ≤, 0, 1〉 is complemented iff each element of L has
a complement, i.e., we have ∀x∈L∃y∈L(x + y = 1 ∧ x · y = 0).

Boolean lattices. A bounded lattice 〈B, ≤, 0, 1〉 is a Boolean lattice iff it
is distributive, i.e., for the operations + and · the following condition
holds: ∀x,y,z∈B[x · (y + z) = ((x · y) + (x · z))], and complemented (see
e.g. [1]). Under these conditions for any x ∈ B there is the unique
complement of x; so we can put

∽x := (ι z)(x + z = 1 ∧ x · z = 0). (df∽)

We have: 〈B, +, ·,∽, 0, 1〉 is a Boolean algebra and ≤ = ≤, where ≤ is
defined by (df ≤).

For a Boolean lattice B = 〈B, ≤, 0, 1〉, an element a of B is an atom
of B iff a 6= 0 and for any x ∈ A: if 0 6= x 6= a, then x � a. B is atomic
iff for each x ∈ B \ {0} there is an atom a such that a ≤ x.

For any (complete) Boolean algebra A = 〈A, +, *, -, 0, 1〉, the struc-
ture BA := 〈A, ≤, 0, 1〉 is a (complete) Boolean lattice and the operations
+, *, and - coincide, respectively, with +, ·, and ∽. Of course, atoms
of A are exactly atoms of BA. Moreover, A is atomic iff BA is atomic.

For all Boolean lattices we can use the first-order language L0,1
≤ with

equality, which has one binary predicate ‘≤’ and two individual constans
‘0’ and ‘1’. Of course, all Boolean lattices are L0,1

≤ -structures.

Elementary invariants. Let ω be the set of all natural numbers. As
in [2, pp. 289–290], to any Boolean lattice B we can assign exactly
one special triple inv(B) = 〈inv1(B), inv2(B), inv3(B)〉 of elementary
invariants of B, where inv1(B) ∈ {−1} ∪ ω, inv2(B) ∈ {0, 1}, and
inv3(B) ∈ ω ∪ {ω}.

Elementary invariants fully characterize Boolean lattices (algebras)
with regard to their elementary equivalence (see Appendix A, p. 494).
Namely, we have the following theorem:

Theorem B.1 (cf. e.g. [2]). Any two Boolean lattices have the same

elementary invariants iff they are elementarily equivalent.
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Moreover, notice that the following facts hold:

Lemma B.2 (cf. e.g. [7]). For any Boolean lattice B:

1. B is atomic iff inv1(B) = 0 = inv2(B).
2. If B is atomic and has infinitely many atoms, then inv3(B) = ω.

Applications. We put B1 := 〈2ω, ⊆, ∅, ω〉 and B2 := 〈FC(ω), ⊆〉, where
FC(ω) is the set of all finite and all co-finite subsets of ω. It is well
known that B1 and B2 are atomic non-trivial Boolean lattices, which
have infinitely many atoms. Moreover, B1 is complete, but B2 is not
complete. So, in the light Lemma B.2, we obtain:

Corollary B.3. inv(B1) = 〈0, 0, ω〉 = inv(B2).

Thus, from the above lemma and Theorem B.1, we have:

Corollary B.4. The Boolean lattices B1 and B2 are elementarily

equivalent, i.e., Th(B1) = Th(B2).

Finally, by the above corollary and Fact A.1, we get:

Theorem B.5. The class of all complete Boolean lattices (resp. alge-

bras) is not elementarily axiomatizable.
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