Gianluigi Bellin, Massimiliano Carrara Daniele Chiffi and Alessandro Menti

ERRATA CORRIGE to "Pragmatic and dialogic interpretation of bi-intuitionism. Part I"

Abstract

The goal of [3] is to sketch the construction of a syntactic categorical model of the bi-intuitionistic logic of assertions and hypotheses $\mathbf{A H}$, axiomatized in a sequent calculus AH-G1, and to show that such a model has a chirality-like structure inspired by the notion of dialogue chirality by P-A. Melliès [8]. A chirality consists of a pair of adjoint functors $L \dashv R$, with $L: \mathcal{A} \rightarrow \mathcal{B}, R: \mathcal{B} \rightarrow \mathcal{A}$, and of a functor ()$^{*}: \mathcal{A} \rightarrow \mathcal{B}^{o p}$ satisfying certain conditions. The definition of the logic AH in [3] needs to be modified so that our categories \mathcal{A} and \mathcal{B} are actually dual. With this modification, a more complex structure emerges.

Keywords: bi-intuitionism; categorical proof theory; justificationism; meaning-as-use; speech-acts theory.

In the paper [3] (Bellin et al, "Pragmatic and dialogic interpretations of bi-intuitionism. Part I") a bi-intuitionistic logic for pragmatics of assertions and conjectures $\mathbf{A H}$ is given, extending both the intuitionistic logic of assertions (essentially, intuitionistic propositional logic Int) and the co-intuitionistic logic of hypotheses (co-Int). A modal translation into $\mathbf{S} 4$ is given, see (3.2) in Section 3 for intuitionistic logic and (3.4) in Section 3.1 for co-intuitionism. The logic $\mathbf{A H}$ is axiomatized by the sequent
calculus AH-G1 given in Section 4, Tables 4.1-4.5. ${ }^{1}$ The fragment of the language $\mathcal{L}^{A H}$ relevant here is given by the following grammar: ${ }^{2}$

$$
\mathcal{L}^{A H}: \begin{array}{ll}
\mathcal{L}^{A}: & A, B:=\vdash p|\curlyvee| A \cap B|\sim A|\left[C^{\perp}\right] \\
\mathcal{L}^{H}: & C, D:=\mathcal{H} p|\curlywedge| C \curlyvee D|\frown C|\left[A^{\perp}\right]
\end{array}
$$

where $C^{\perp} \notin \mathcal{L}^{A}, A^{\perp} \notin \mathcal{L}^{H}$ and $C^{\perp}, A^{\perp} \in \mathcal{L}^{A H}$.

Symmetry and chiralities

The main idea is to study a fundamental property of negations in the logic AH in a more abstract framework. Let us use the following abbreviations:

$$
\begin{equation*}
\checkmark C:=\sim\left(C^{\perp}\right) \quad \text { and } \quad \diamond A:=\frown\left(A^{\perp}\right) \tag{1}
\end{equation*}
$$

Then in AG-G1 we can prove the following facts: ${ }^{3}$

$$
\begin{equation*}
A ; \Rightarrow \backsim \diamond A ; \quad \text { and } \quad ; \diamond \odot C \Rightarrow ; C \tag{2}
\end{equation*}
$$

We aim at characterizing the property (2) through Melliès' notion of dialogue chirality. A dialogue chirality requires the following data (see [8, Section 3, Definition 2]):

1. two monoidal categories (\mathcal{A}, \wedge, true) and (\mathcal{B}, \vee, false);
2. an adjunction $L \dashv R$ between functors $L: \mathcal{A} \rightarrow \mathcal{B}$ and $R: \mathcal{B} \rightarrow \mathcal{A}$.
3. a monoidal functor ($)^{*}: \mathcal{A} \rightarrow \mathcal{B}^{o p}$ satisfying additional conditions that make it possible to define a notion of implication in \mathcal{A} using disjunction in \mathcal{B} and the functors ()* and R :

$$
\mathcal{A}(m \wedge a, R(b)) \equiv \mathcal{A}\left(a, R\left(m^{*} \vee b\right)\right) .
$$

Remark 1. We may assume that the functor ()* is invertible and therefore determines a monoidal equivalence between \mathcal{A} and $\mathcal{B}^{o p}$ (see [7, Definition 6, Section 6]).

[^0]In our context we have the following structures.

1. Define the logic \mathbf{A} as the purely intuitionistic part of $\mathbf{A H}$ on the language \mathcal{L}^{A}. Let \mathcal{A} be the free cartesian category on the syntax of \mathbf{A}, i.e., with formulas \mathcal{L}^{A} as objects and (equivalence classes of) intuitionistic sequent calculus derivations on \mathbf{A} as morphisms, with additional structure to model intuitionistic negation (\sim).
2. Similarly, define the logic \mathbf{H} as the purely co-intuitionistic part of $\mathbf{A H}$ on the language \mathcal{L}^{H} and let \mathcal{H} be the free co-cartesian category on the syntax of \mathbf{H}, with additional structure to model co-intuitionistic supplement (\frown).
3. We claimed that both a contravariant functor ()$^{*}: \mathcal{A} \rightarrow \mathcal{H}^{o p}$ and its inverse can be defined from the action of the two connectives ()$^{\perp}$ of $\mathbf{A H}$ on the formulas and proofs of \mathbf{A} and of \mathbf{H}. Thus we assumed that the functor ()* represents a notion of duality between the models of \mathbf{A} and of \mathbf{H} and that its definition on proofs can be given through the sequent calculus AH-G1.
4. The functors $L=\lessdot$ and $R=\square$ are defined on objects as in (1). The AH-G1 proofs of (2) can be interpreted as the unit and the co-unit of the adjunction, i.e., proofs η of $A ; \Rightarrow \odot A$; and ϵ of ; $\odot \boxtimes C \Rightarrow ; C$.

Remark 2. (i) In our definition, $R(C)=\square C=\sim\left(C^{\perp}\right)$ and $L(A)=$ $\diamond A=\frown\left(A^{\perp}\right)$ express "notions of double negations" and are covariant, so that a proof of $A ; \Rightarrow B$ is mapped to $; \diamond A \rightarrow ; \diamond B$ and similarly ; $C \Rightarrow ; D$ is mapped to $\square C ; \Rightarrow \square D$. In fact we are trying to characterize properties of the interaction of the connectives ()$^{\perp}$ with intuitionistic negation and co-intuitionistic supplement. Simpler notions of chirality, such as cartesian closed chiralities (see [7, Section 1]), may also be explored in bi-intuitionism.
(ii) In this note we only address the definition of the duality functor ()*, assuming that it represents a notion of duality between \mathcal{A} and \mathcal{H}, which is based on a duality of the logics \mathbf{A} and \mathbf{H}, and that the duality of logics corresponds to a duality in the $\mathbf{S} 4$ translation.

Logic and dualities

There is an obvious oversight in the interpretation of duality in "polarized" bi-intuitionism AH that undermines the main claim (Proposition 4.4), i.e., that the free categorical model built from the syntax of $\mathbf{A H}$
can be given a chirality-like structure. Once the error is removed, a more complex structure emerges.

Indeed the logics \mathbf{A} and \mathbf{H} do not represent a duality, as we can see from an informal argument and from notion of duality in the $\mathbf{S} 4$ translation. Informally, the dual of an assertion that p is the hypothesis of the negation of p; the dual of a hypothesis that p is the assertion of the negation of p.

Consider an elementary assertion $\vdash p$ in \mathcal{L}^{A}. In $\mathbf{S} 4$ the dual of $(\vdash p)^{M}=\square p$ is $\neg \square p=\diamond \neg p$. Although in the logic AH $\left((\vdash p)^{\perp}\right)^{M}=$ $\neg \square p$, in the language \mathcal{L}^{H} we could only have $\diamond \neg p=(\mathcal{H} H)^{M}$ and the only formula H such that $(\mathcal{H} H)^{M}=\diamond \neg p$ is $\neg p$; but $\mathcal{H} \neg p \notin \mathcal{L}^{H}$. Thus $(\vdash p)^{*}=\mathcal{H} \neg p$ is the only possible choice for a duality map () ${ }^{*}$ compatible with the $\mathbf{S} 4$ translation. Notice that here ' \neg ' represent classical negation, not intuitionistic negation nor co-intuitionistic supplement.

Symmetrically, the dual in S4 of $(\mathcal{H} p)^{M}=\diamond p$ is $\neg \diamond p=\square \neg p=$ $(\vdash \neg p)^{M}$; in AH $\left((\mathcal{H} p)^{\perp}\right)^{M}=\neg \diamond p$ but $\vdash \neg p \notin \mathcal{L}^{A}$; also $(\mathcal{H} p)^{*}=\vdash \neg p$ is the only possible choice for a duality map compatible with the $\mathbf{S} 4$ translation. On the other hand, intuitionistic and co-intuitionistic connectives are actually dual.

We have the following definition of duality in our bi-intuitionistic logic of assertions and hypotheses.

Definition 1. Consider the languages $\mathcal{L}^{H_{*}}$ and $\mathcal{L}^{A_{*}}$ generated by the following grammars:

$$
\begin{array}{ll}
\mathcal{L}^{H_{*}}: & C, D:=\quad \mathcal{H} \neg p|\curlywedge| C \curlyvee D \mid \frown C \\
\mathcal{L}^{A_{*}}: & A, B:=\quad \vdash \neg p|\curlyvee| A \cap B \mid \sim A .
\end{array}
$$

Now we define the languages $\mathcal{L}^{A H_{*}}$ and $\mathcal{L}^{A_{*} H}$:

$$
\begin{aligned}
& \mathcal{L}^{A H_{*}}: \begin{array}{cccccc}
\mathcal{L}^{A}: & A, B:= & \vdash p|\curlyvee| A \cap B|\sim A| & {\left[C^{\perp}\right]} \\
\mathcal{L}^{H_{*}}: & C, D:= & \mathcal{H} \neg p|\curlywedge| C \curlyvee D|\frown C| & {\left[A^{\perp}\right]}
\end{array} \\
& \mathcal{L}^{A_{*} H}: \begin{array}{cll|l|l}
\mathcal{L}^{A_{*}}: & A, B:= & \vdash \neg|\curlyvee| A \cap B|\sim A| & {\left[C^{\perp}\right]} \\
\mathcal{L}^{H}: & C, D:= & \mathcal{H} p & |\curlywedge| C \curlyvee D|\frown C| & {\left[A^{\perp}\right]}
\end{array}
\end{aligned}
$$

Then we have the following duality maps: ${ }^{4}$

[^1]Errata corrige to: "Pragmatic ... Part I"

$$
\begin{aligned}
()^{*} & :=\mathcal{L}^{A} \rightarrow \mathcal{L}^{H_{*}}: & ()^{*}: & =\mathcal{L}^{H} \rightarrow \mathcal{L}^{A_{*}}: \\
(\vdash p)^{*} & =\mathcal{H} \neg p & (\mathcal{H} p)^{*} & \vdash \neg p \\
(\curlyvee)^{*} & =\lambda & (\curlywedge)^{*} & =\curlyvee \\
(A \cap B)^{*} & =A^{*} \curlyvee B^{*} & (C \curlyvee D)^{*} & =C^{*} \cap D^{*} \\
(\sim A)^{*} & =\frown\left(A^{*}\right) & (\neg C)^{*} & \sim C^{*}
\end{aligned}
$$

Proposition 1. The maps () ${ }^{*}: \mathcal{L}^{A} \rightarrow \mathcal{L}^{H_{*}}$ and ()*: $\mathcal{L}^{H} \rightarrow \mathcal{L}^{A_{*}}$ are invertible.

Then the internal duality connectives A^{\perp} and C^{\perp} of can be interpreted by the duality maps of $\mathcal{L}^{A H_{*}}$ and of $\mathcal{L}^{A_{*} H}$. Namely, for A and C in $\mathcal{L}^{A H_{*}}$

$$
A^{\perp}=A^{*} \quad C^{\perp}=C^{*}
$$

and similarly for A and C in $\mathcal{L}^{A_{*} H}$.
The sequent calculus AH-G1 on the language $\mathcal{L}^{A H_{*}}$ allows us to extend the duality maps ()* on formulas to maps on proofs

$$
A ; \Rightarrow B ; \quad \mapsto \quad ; B^{*} \Rightarrow ; A^{*}
$$

Therefore we can define the following data:

1. A functor ($)^{*}: \mathcal{A} \rightarrow \mathcal{H}_{*}$ sending $\vdash p$ to $\mathcal{H} \neg p \in \mathcal{L}^{H_{*}}$; it has an inverse functor ($)^{*}: \mathcal{H}_{*} \rightarrow \mathcal{A}$ sending $\mathcal{H} \neg p$ to $\stackrel{\vdash p}{ }$.
2. A functor ()$^{*}: \mathcal{H} \rightarrow \mathcal{A}_{*}$ sending $\mathcal{H} p$ to $\vdash \neg p \in \mathcal{L}^{A_{*}}$ with inverse ()$^{*}: \mathcal{A}_{*} \rightarrow \mathcal{H}$.
3. A covariant functor $L=\diamond: \mathcal{A} \rightarrow \mathcal{H}_{*}$, left adjoint of the functor $R=\square: \mathcal{H}_{*} \rightarrow \mathcal{A}$.
4. There is another pair of covariant adjoint functors $R^{\prime}=\square: \mathcal{H} \rightarrow \mathcal{A}_{*}$ and $L^{\prime}=\diamond: \mathcal{A}_{*} \rightarrow \mathcal{H}$.

Question. From our data can we define two chiralitiy-like structures in the logics $\mathbf{A H}_{*}$ and $\mathbf{A}_{*} \mathbf{H}$ over the languages $\mathcal{L}^{A H_{*}}$ and $\mathcal{L}^{A_{*} H}$?

To answer the question one should show how the sequent calculus AH-G1 over the new languages could be used to define the categorical structures. Further questions on the present formulation of biintuitionism and duality are asked in the conclusion.

[^2]Notice that since the actions of () ${ }^{\perp}$ and ()* coincide, we can use the duality ($)^{*}$ to eliminate the ()$^{\perp}$ connectives, as shown in the following example.
Example 1. Consider the expression

$$
\begin{equation*}
; L(\mathrm{a}) \Rightarrow ; \mathrm{m}^{*} \vee L(\mathrm{~m} \wedge \mathrm{a}), \tag{3}
\end{equation*}
$$

where both $\mathrm{a}=\vdash a$ and $\mathrm{m}=\vdash m$ belong to \mathcal{L}^{A}. After expanding the definitions the sequent (3) is provable in AH-G1 as follows:

$$
\begin{gathered}
\frac{\mathrm{m} ; \Rightarrow \mathrm{m} ; \quad \mathrm{a} ; \Rightarrow \mathrm{a} ;}{\mathrm{m} ; \mathrm{a} ; \Rightarrow \mathrm{m} \cap \mathrm{a} ;} \\
\frac{(\mathrm{m} ;}{;(\mathrm{m} \cap \mathrm{a})^{\perp} \Rightarrow ; \mathrm{m}^{\perp}, \mathrm{a}^{\perp}} \\
\mathrm{R} \\
\mathrm{R}, \perp \mathrm{R}, \perp \mathrm{~L} \\
\frac{; \frown\left(\mathrm{a}^{\perp}\right) \Rightarrow ; \mathrm{m}^{\perp}, \frown(\mathrm{m} \cap \mathrm{a})^{\perp}}{; \frown\left(\mathrm{a}^{\perp}\right) \Rightarrow ; \mathrm{m}^{\perp}} \curlyvee \frown(\mathrm{m} \cap \mathrm{a})^{\perp} \\
\mathrm{L}
\end{gathered} \mathrm{R}
$$

Applying the map ($)^{*}: \mathcal{L}^{A} \rightarrow \mathcal{L}^{H_{*}}$, only to eliminate the ($)^{\perp}$ connectives, the sequent (3) is transformed as follows:

$$
; \frown(\mathcal{H} \neg a) \Rightarrow ;(\mathcal{H} \neg m) \curlyvee \frown(\mathcal{H} \neg m \vee \mathcal{H} \neg a) .
$$

Thus, the proof of (3) is in the language $\mathcal{L}^{A H_{*}}$, but can be transformed into a proof in \mathbf{H}_{*}. On the other hand, applying () ${ }^{*}$ to the sequent (3), one obtains a proof in \mathbf{A} of

$$
\vdash m \cap \sim(\vdash m \cap \vdash a) ; \Rightarrow \sim \vdash a .
$$

However, other cases are not covered by the above definitions.
Example 2. Consider the formal expression

$$
\begin{equation*}
\mathrm{m} \wedge R\left(\mathrm{~m}^{*} \vee \mathrm{~b}\right) ; \Rightarrow R(\mathrm{~b}) ; \tag{4}
\end{equation*}
$$

where $\mathrm{m}=\vdash m \in \mathcal{L}^{A}$ and $\mathrm{b}=\mathcal{H} b \in \mathcal{L}^{H}$. After expanding the definitions the sequent (4) becomes

$$
\mathrm{m} \cap \sim\left(\mathrm{~m}^{\perp} \curlyvee \mathrm{b}\right)^{\perp} ; \Rightarrow \sim\left(\mathrm{b}^{\perp}\right) ;
$$

But applying the map ($)^{*}: \mathcal{L}^{A} \rightarrow \mathcal{L}^{H_{*}}$ we obtain $\mathrm{m}^{\perp}=\mathcal{H} \neg m$ and now $\mathcal{H} \neg m \curlyvee \mathcal{H} b$ does not belong to \mathcal{L}^{H}.

Conclusions and further questions

In conclusion, it seems that a grammar for a language formally expressing our notions of duality should be as follows:

$$
\begin{array}{llll}
& \mathcal{L}^{A A_{*} H H_{*}}: & \mathcal{L}^{A A_{*}}: & A, B:=\vdash p|\vdash \neg p| \curlyvee|A \cap B| \sim A \mid\left[C^{\perp}\right] \\
& \mathcal{L}^{H_{*} H}: & C, D:=\mathcal{H}^{*}|\mathcal{H} p| \curlywedge|C \curlyvee D| \frown C \mid\left[A^{\perp}\right]
\end{array}
$$

One can define maps ()$^{*}: \mathcal{L}^{A A_{*}} \rightarrow \mathcal{L}^{H H_{*}}$ and ()$^{*}: \mathcal{L}^{H H_{*}} \rightarrow \mathcal{L}^{A A_{*}}$ so that the sequent (4) becomes

$$
\vdash m \cap \sim(\vdash m \cap \vdash \neg b) ; \Rightarrow \sim \vdash \neg b ;
$$

However, the sequent calculus AH-G1 over the language $\mathcal{L}^{A A_{*} H H_{*}}$ is no longer complete for the $\mathbf{S} 4$ semantics.

Perhaps one can say that a pragmatic interpretation of bi-intuitionistic logic suitable for representing bi-intuitionistic dualities is the logic $\mathbf{A A}_{*} \mathbf{H H}_{*}$ of assertions, objections, hypotheses and denials, where an objection to the assertion $\vdash p$ is the hypothesis $\mathcal{H} \neg p$ that p is not true and a denial of a hypothesis $\mathcal{H} p$ is the assertion $\vdash \neg p$ that p is false. Thus all elementary formulas of the forms $\vdash p, \vdash \neg p, \mathcal{H} p$ and $\mathcal{H} \neg p$ must belong to the language of $\mathbf{A} \mathbf{A}_{*} \mathbf{H H}_{*}$. We expect that an axiomatization of $\mathbf{A} \mathbf{A}_{*} \mathbf{H H}_{*}$ can be obtained by the sequent calculus $\mathbf{A H} \mathbf{H} \mathbf{G 1}$ together with the following proper axioms that express logical relations between the elementary formulas according to their intended meaning. We conjecture that such a sequent calculus is sound and complete for the $\mathbf{S} 4$ semantics and enjoys the cut-elimination property.

$$
\begin{array}{ll}
\vdash p ; \mathcal{H} \neg p \Rightarrow ; & ; \Rightarrow \vdash p ; \mathcal{H} \neg p \\
\vdash \neg p ; \mathcal{H} p \Rightarrow ; & ; \Rightarrow \vdash \neg p ; \mathcal{H} p \\
\vdash p, \vdash \neg p ; \Rightarrow \mathbf{u} ; & ; \mathbf{j} \Rightarrow ; \mathcal{H} p, \mathcal{H} \neg p \\
\vdash p, \vdash \neg p ; \mathbf{j} \Rightarrow ; & ; \Rightarrow \mathbf{u} ; \mathcal{H} p, \mathcal{H} \neg p
\end{array}
$$

Remark 3. In the modal translation we have $(\mathcal{H} \neg p)^{M}=\left((\vdash p)^{\perp}\right)^{M}$ and $(\vdash \neg p)^{M}=\left((\mathcal{H} p)^{\perp}\right)^{M}$. Notice that if we replace $\mathcal{H} \neg p$ and $\vdash \neg p$ with their counterparts $(\vdash p)^{\perp}$ and $(\mathcal{H} p)^{\perp}$, respectively, then the Proper Axioms of $\mathbf{A} \mathbf{A}_{*} \mathbf{H H}_{*}$ become provable in $\mathbf{A H} \mathbf{- G 1}$. The first four are proved trivially; the last four require the proper axioms of assertions and hypotheses

$$
\begin{equation*}
\vdash p ; \mathbf{j} \Rightarrow ; \mathcal{H} p \quad \text { and } \quad \vdash p ; \Rightarrow \mathbf{u} ; \mathcal{H} p \tag{5}
\end{equation*}
$$

The axioms (5) break the symmetry between assertions and hypotheses: here logic prevails over symmetry. But they are needed here to guarantee the coherence of two systems of duality.

There are more general questions about the proof-theory of our logics and of the sequent calculus AH-G1 which we can only mention briefly here.
Remark 4. (i) The expressions ' $\vdash \neg p$ ' for denial that p and ' $\mathcal{H} \neg p$ ' for objection to p appear to formalize classical notions, given that ' \neg ' is classical negation. Indeed the assertion of a classical negation can be regarded as an intuitionistic statement only under special conditions such as the decidability of p. Is the logic $\mathbf{A} \mathbf{A}_{*} \mathbf{H} \mathbf{H}_{*}$ an intermediate logic between intuitionistic and classical logic? ${ }^{5}$
(ii) The connectives $(A)^{\perp}$ and $(C)^{\perp}$ have the meaning of negations. Their main property

$$
\begin{equation*}
(A)^{\perp \perp} \equiv A \quad \text { and } \quad(C)^{\perp \perp} \equiv C \tag{6}
\end{equation*}
$$

makes it possible to represent the functors ()* within the calculus AH-G1. But are these intuitionistically acceptable connectives? This is presupposed in our interpretation of bi-intuitionism, but it has not been argued for explicitly.

The form of the implication right rule

$$
\frac{\Theta, A_{1} ; \Rightarrow A_{2} ; \Upsilon}{\Theta ; \Rightarrow A_{1} \supset A_{2} ; \Upsilon}
$$

allowing extra formulas Υ in the sequent premise without restrictions, and similarly of the subtraction left

$$
\frac{\Theta ; C_{1} \Rightarrow ; C_{2}, \Upsilon}{\Theta ; A_{1} \supset A_{2} ; \Upsilon}
$$

allowing extra formulas Θ in the sequent premise, is equivalent to allowing the connectives ()$^{\perp}$ with the properties (6) in a calculus with cutelimination (see [1, Section 2.4]). This feature is characteristic of the calculus AH-G1 in opposition to the tradition of Rauszer's bi-intuitionism. However, the interaction between intuitionistic and co-intuitionistic logic may take different forms and be formalized in different ways than through the connectives ()$^{\perp}$. A definition of intuitionistic dualities that would be less dependant on duality in the $\mathbf{S} 4$ translation is certainly desirable.

[^3]
References

[1] Bellin, G., "Assertions, hypotheses, conjectures, expectations: Rough-sets semantics and proof-theory", pp. 193-241 in Advances in Natural Deduction. A Celebration of Dag Prawitz's Work, L. C. Pereira, E. H. Haeusler, and V. de Paiva (eds.), series "Trends in Logic", vol. 39, Springer Science + Business Media Dordrecht 2014. DOI:10.1007/978-94-007-7548-0_10
[2] Bellin, G., and C. Biasi, "Towards a logic for pragmatics. Assertions and conjectures", Journal of Logic and Computation, 14, 4 (2004): 473-506. DOI:10.1093/logcom/14.4.473
[3] Bellin, G., M. Carrara, D. Chiffi, and A. Menti, "Pragmatic and dialogic interpretations of bi-intuitionism. Part I", Logic and Logical Philosophy, 23, 4 (2014), 449-480. DOI:10.12775/LLP. 2014.011
[4] Biasi, C., and F. Aschieri, "A term assignment for polarized bi-intuitionistic logic and its strong normalization", Fundamenta Informaticae, 84, 2 (2008): 185-205.
[5] Crolard, T., "Subtractive logic", Theoretical Computer Science, 254, 1-2 (2001): 151-185. DOI:10.1016/S0304-3975 (99) 00124-3
[6] Drobyshevich, S., "On classical behavior of intuitionistic modalities", Logic and Logical Philosophy, 24 (2015): 79-106. DOI:10.12775/LLP. 2014.019
[7] Melliès, P.-A., "Dialogue categories and chiralities", manuscript (available at the author's web page: http://www.pps.univ-paris-diderot.fr/~mellies/tensorial-logic/2-dialogue-categories-and-chiralities.pdf).
[8] Melliès, P.-A., "A micrological study of negation", manuscript (available at the author's web page: http://www.pps.univ-paris-diderot.fr/ ~mellies/tensorial-logic/4-micrological-study-of-negation. pdf).

Gianluigi Bellin and Alessandro Menti
Dipartimento di Informatica
Università di Verona
Strada Le Grazie
37134 Verona, Italy
gianluigi.bellin@univr.it
alessandro.menti@alessandromenti.it
Massimiliano Carrara Daniele Chiffi
FISPPA Department
University of Padua
Padova, Italy
massimiliano.carrara@unipd.it

LEMBS
University of Padua
Padua, Italy
daniele.chiffi@unipd.it

[^0]: ${ }^{1}$ Essential feature of intuitionistic elementary formulas in $\mathbf{A L}$ is that they consist of a sign of illocutionary force of assertion (\vdash) or hypothesis (\mathcal{H}) applied to an atomic proposition p; here a case is made for allowing also elementary formulas of the form $\vdash \neg p$ and $\mathcal{H} \neg p$, where ' \neg ' is classical negation.
 ${ }^{2}$ Here intuitionistic negation is definable as $\sim A:=A \supset \mathbf{u}$ if we have implication $A \supset B$ and an expression \mathbf{u} (unjustified) in \mathcal{L}^{A}; also co-intuitionistic supplement can be defined as $\frown C:=\mathbf{j} \backslash C$ if we have subtraction $C \backslash D$ and \mathbf{j} (justified) in \mathcal{L}^{H}.
 ${ }^{3}$ Expanding the definitions, we see that $\downarrow \diamond A \equiv \sim \sim A$ and $\diamond \square C \equiv \frown \frown C$.

[^1]: ${ }^{4}$ As pointed out by Crolard [5, p. 160], in Rauszer's bi-intuitionism (HeytingBrouwer algebras) there is a pseudo-duality between intuitionism and co-intuitionism, since "atoms are unchanged" by the duality. Things are different in a logic of assertions and hypotheses. The correct definition was given in [2, Section 2.3, Definition 5], where the dual of $\vdash p$ is $\mathcal{H} \neg p$. The solution in Section 5 is close to the one suggested

[^2]: here: elementary formulas with non-atomic radical are admitted. Also in [1, Section 2.3 definition 3] the correct definition of duality is considered. A loose usage of the expression"duality between assertions and hypotheses" within a system of biintuitionistic logic can be found in those papers and also in [4].

[^3]: ${ }^{5}$ On the issue of adding modalities for necessity, possibility, unnecessity and impossibility to intuitionistic logic (see [6]).

