

Logic and Logical Philosophy Volume 25 (2016), 225–233 DOI: 10.12775/LLP.2015.005

Gianluigi Bellin, Massimiliano Carrara Daniele Chiffi and Alessandro Menti

ERRATA CORRIGE to "Pragmatic and dialogic interpretation of bi-intuitionism. Part I"

Abstract. The goal of [3] is to sketch the construction of a syntactic categorical model of the bi-intuitionistic logic of assertions and hypotheses **AH**, axiomatized in a sequent calculus **AH-G1**, and to show that such a model has a chirality-like structure inspired by the notion of dialogue chirality by P-A. Melliès [8]. A chirality consists of a pair of adjoint functors $L \dashv R$, with $L: \mathcal{A} \to \mathcal{B}, R: \mathcal{B} \to \mathcal{A}$, and of a functor ()*: $\mathcal{A} \to \mathcal{B}^{op}$ satisfying certain conditions. The definition of the logic **AH** in [3] needs to be modified so that our categories \mathcal{A} and \mathcal{B} are actually dual. With this modification, a more complex structure emerges.

Keywords: bi-intuitionism; categorical proof theory; justificationism; meaning-as-use; speech-acts theory.

In the paper [3] (Bellin *et al*, "Pragmatic and dialogic interpretations of bi-intuitionism. Part I") a *bi-intuitionistic logic for pragmatics of assertions and conjectures* **AH** is given, extending both the intuitionistic logic of assertions (essentially, intuitionistic propositional logic **Int**) and the co-intuitionistic logic of hypotheses (**co-Int**). A modal translation into **S4** is given, see (3.2) in Section 3 for intuitionistic logic and (3.4) in Section 3.1 for co-intuitionism. The logic **AH** is axiomatized by the sequent

calculus **AH-G1** given in Section 4, Tables 4.1–4.5.¹ The fragment of the language \mathcal{L}^{AH} relevant here is given by the following grammar:²

$$\mathcal{L}^{AH}: \begin{array}{ccc} \mathcal{L}^{A:} & A, B := & \vdash p \mid \curlyvee \mid A \cap B \mid \sim A \mid [C^{\perp}] \\ \mathcal{L}^{H:} & C, D := & \mathcal{H}p \mid \land \mid C \curlyvee D \mid \neg C \mid [A^{\perp}] \end{array}$$

where $C^{\perp} \notin \mathcal{L}^A$, $A^{\perp} \notin \mathcal{L}^H$ and C^{\perp} , $A^{\perp} \in \mathcal{L}^{AH}$.

Symmetry and chiralities

The main idea is to study a fundamental property of negations in the logic **AH** in a more abstract framework. Let us use the following abbreviations:

$$\Box C := \sim (C^{\perp}) \quad \text{and} \quad \diamondsuit A := \sim (A^{\perp})$$
 (1)

Then in AG-G1 we can prove the following facts:³

$$A ; \Rightarrow \Box \otimes A; \qquad \text{and} \qquad ; \otimes \Box C \Rightarrow ; C \qquad (2)$$

We aim at characterizing the property (2) through Melliès' notion of *dialogue chirality*. A dialogue chirality requires the following data (see [8, Section 3, Definition 2]):

1. two monoidal categories $(\mathcal{A}, \wedge, \text{true})$ and $(\mathcal{B}, \vee, \text{false})$;

- 2. an adjunction $L \dashv R$ between functors $L: \mathcal{A} \to \mathcal{B}$ and $R: \mathcal{B} \to \mathcal{A}$.
- 3. a monoidal functor ()*: $\mathcal{A} \to \mathcal{B}^{op}$ satisfying additional conditions that make it possible to define a notion of implication in \mathcal{A} using disjunction in \mathcal{B} and the functors ()* and R:

$$\mathcal{A}(m \wedge a, R(b)) \equiv \mathcal{A}(a, R(m^* \lor b)).$$

Remark 1. We may assume that the functor ()* is invertible and therefore determines a monoidal equivalence between \mathcal{A} and \mathcal{B}^{op} (see [7, Definition 6, Section 6]).

¹ Essential feature of intuitionistic elementary formulas in **AL** is that they consist of a sign of illocutionary force of assertion (\vdash) or hypothesis (\mathcal{H}) applied to an *atomic* proposition p; here a case is made for allowing also elementary formulas of the form $\vdash \neg p$ and $\mathcal{H} \neg p$, where ' \neg ' is classical negation.

² Here intuitionistic negation is definable as $\sim A := A \supset \mathbf{u}$ if we have implication $A \supset B$ and an expression \mathbf{u} (*unjustified*) in \mathcal{L}^A ; also co-intuitionistic supplement can be defined as $\sim C := \mathbf{j} \smallsetminus C$ if we have subtraction $C \smallsetminus D$ and \mathbf{j} (*justified*) in \mathcal{L}^H .

³ Expanding the definitions, we see that $\Box \otimes A \equiv \sim \sim A$ and $\otimes \Box C \equiv \sim \sim C$.

In our context we have the following structures.

- 1. Define the logic \mathbf{A} as the purely intuitionistic part of $\mathbf{A}\mathbf{H}$ on the language \mathcal{L}^A . Let \mathcal{A} be the free cartesian category on the syntax of \mathbf{A} , i.e., with formulas \mathcal{L}^A as objects and (equivalence classes of) intuitionistic sequent calculus derivations on \mathbf{A} as morphisms, with additional structure to model intuitionistic negation (\sim).
- 2. Similarly, define the logic **H** as the purely co-intuitionistic part of **AH** on the language \mathcal{L}^{H} and let \mathcal{H} be the free co-cartesian category on the syntax of **H**, with additional structure to model co-intuitionistic supplement (γ).
- 3. We claimed that both a contravariant functor $()^* \colon \mathcal{A} \to \mathcal{H}^{op}$ and its inverse can be defined from the action of the two connectives $()^{\perp}$ of **AH** on the formulas and proofs of **A** and of **H**. Thus we assumed that the functor $()^*$ represents a notion of duality between the models of **A** and of **H** and that its definition on proofs can be given through the sequent calculus **AH-G1**.
- 4. The functors $L = \diamondsuit$ and $R = \boxdot$ are defined on objects as in (1). The **AH-G1** proofs of (2) can be interpreted as the unit and the co-unit of the adjunction, i.e., proofs η of $A; \Rightarrow \boxdot \diamondsuit A;$ and ϵ of ; $\diamondsuit \boxdot C \Rightarrow$; C.

Remark 2. (i) In our definition, $R(C) = \Box C = \sim (C^{\perp})$ and $L(A) = \Diamond A = \sim (A^{\perp})$ express "notions of double negations" and are covariant, so that a proof of $A; \Rightarrow B$ is mapped to ; $\Diamond A \rightarrow ; \Diamond B$ and similarly ; $C \Rightarrow ; D$ is mapped to $\Box C; \Rightarrow \Box D$;. In fact we are trying to characterize properties of the interaction of the connectives ()^{\perp} with intuitionistic negation and co-intuitionistic supplement. Simpler notions of chirality, such as cartesian closed chiralities (see [7, Section 1]), may also be explored in bi-intuitionism.

(ii) In this note we only address the definition of the duality functor ()*, assuming that it represents a notion of duality between \mathcal{A} and \mathcal{H} , which is based on a duality of the logics **A** and **H**, and that the duality of logics corresponds to a duality in the **S4** translation.

Logic and dualities

There is an obvious oversight in the interpretation of duality in "polarized" bi-intuitionism **AH** that undermines the main claim (Proposition 4.4), i.e., that the free categorical model built from the syntax of **AH** can be given a chirality-like structure. Once the error is removed, a more complex structure emerges.

Indeed the logics **A** and **H** do not represent a duality, as we can see from an informal argument and from notion of duality in the **S4** translation. Informally, the dual of an assertion that p is the hypothesis of the negation of p; the dual of a hypothesis that p is the assertion of the negation of p.

Consider an elementary assertion $\vdash p$ in \mathcal{L}^A . In **S4** the dual of $(\vdash p)^M = \Box p$ is $\neg \Box p = \Diamond \neg p$. Although in the logic **AH** $((\vdash p)^{\perp})^M = \neg \Box p$, in the language \mathcal{L}^H we could only have $\Diamond \neg p = (\mathcal{H}H)^M$ and the only formula H such that $(\mathcal{H}H)^M = \Diamond \neg p$ is $\neg p$; but $\mathcal{H} \neg p \notin \mathcal{L}^H$. Thus $(\vdash p)^* = \mathcal{H} \neg p$ is the only possible choice for a duality map ()* compatible with the **S4** translation. Notice that here ' \neg ' represent classical negation, not intuitionistic negation nor co-intuitionistic supplement.

Symmetrically, the dual in **S4** of $(\mathcal{H}p)^M = \Diamond p$ is $\neg \Diamond p = \Box \neg p = (\vdash \neg p)^M$; in **AH** $((\mathcal{H}p)^{\perp})^M = \neg \Diamond p$ but $\vdash \neg p \notin \mathcal{L}^A$; also $(\mathcal{H}p)^* = \vdash \neg p$ is the only possible choice for a duality map compatible with the **S4** translation. On the other hand, intuitionistic and co-intuitionistic *connectives* are actually dual.

We have the following definition of duality in our *bi-intuitionistic* logic of assertions and hypotheses.

DEFINITION 1. Consider the languages \mathcal{L}^{H_*} and \mathcal{L}^{A_*} generated by the following grammars:

$$\begin{array}{cccc} \mathcal{L}^{H_*} \colon & C, D \ := & \mathcal{H} \neg p \ | \ \land \ | \ C \curlyvee D \ | \ \frown C \\ \mathcal{L}^{A_*} \colon & A, B \ := & \vdash \neg p \ | \ \curlyvee \ | \ A \cap B \ | \ \sim A. \end{array}$$

Now we define the languages \mathcal{L}^{AH_*} and \mathcal{L}^{A_*H} :

$$\mathcal{L}^{AH_*}: \begin{array}{ccc} \mathcal{L}^A: & A, B := & \vdash p \mid \Upsilon \mid A \cap B \mid \sim A \mid & [C^{\perp}] \\ \mathcal{L}^{H_*}: & C, D := & \mathcal{H} \neg p \mid \land \mid C \Upsilon D \mid \neg C \mid & [A^{\perp}] \end{array}$$

$$\mathcal{L}^{A_*H}: \begin{array}{ccc} \mathcal{L}^{A_*}: & A, B := & \vdash \neg p \mid \Upsilon \mid A \cap B \mid \sim A \mid & [C^{\perp}] \\ \mathcal{L}^H: & C, D := & \mathcal{H}p \mid \land \mid C \Upsilon D \mid \neg C \mid & [A^{\perp}] \end{array}$$

Then we have the following duality maps:⁴

⁴ As pointed out by Crolard [5, p. 160], in Rauszer's bi-intuitionism (Heyting-Brouwer algebras) there is a *pseudo-duality* between intuitionism and co-intuitionism, since "atoms are unchanged" by the duality. Things are different in a logic of assertions and hypotheses. The correct definition was given in [2, Section 2.3, Definition 5], where the dual of $\vdash p$ is $\mathcal{H} \neg p$. The solution in Section 5 is close to the one suggested

Errata corrige to: "Pragmatic ... Part I"

$$\begin{array}{rcl} (\)^* &:= & \mathcal{L}^A \to \mathcal{L}^{H_*} \colon & (\)^* &:= & \mathcal{L}^H \to \mathcal{L}^{A_*} \colon \\ (\ \vdash p)^* &= & \mathcal{H} \neg p & (\mathcal{H}p)^* &= & \vdash \neg p \\ (\Upsilon)^* &= & \lambda & (\lambda)^* &= & \Upsilon \\ (A \cap B)^* &= & A^* \Upsilon B^* & (C \Upsilon D)^* &= & C^* \cap D^* \\ (\sim A)^* &= & \neg (A^*) & (\neg C)^* &= & \sim C^* \end{array}$$

PROPOSITION 1. The maps $()^* : \mathcal{L}^A \to \mathcal{L}^{H_*}$ and $()^* : \mathcal{L}^H \to \mathcal{L}^{A_*}$ are invertible.

Then the internal duality connectives A^{\perp} and C^{\perp} of can be interpreted by the duality maps of \mathcal{L}^{AH_*} and of \mathcal{L}^{A_*H} . Namely, for A and C in \mathcal{L}^{AH_*}

 $A^{\perp} = A^* \qquad C^{\perp} = C^*$

and similarly for A and C in \mathcal{L}^{A_*H} .

The sequent calculus **AH-G1** on the language \mathcal{L}^{AH_*} allows us to extend the duality maps ()* on formulas to maps on proofs

$$A; \Rightarrow B; \quad \mapsto \quad ; B^* \Rightarrow ; A^*$$

Therefore we can define the following data:

- 1. A functor ()*: $\mathcal{A} \to \mathcal{H}_*$ sending $\vdash p$ to $\mathcal{H} \neg p \in \mathcal{L}^{H_*}$; it has an inverse functor ()*: $\mathcal{H}_* \to \mathcal{A}$ sending $\mathcal{H} \neg p$ to $\vdash p$.
- 2. A functor $()^* : \mathcal{H} \to \mathcal{A}_*$ sending $\mathcal{H}p$ to $\neg p \in \mathcal{L}^{\mathcal{A}_*}$ with inverse $()^* : \mathcal{A}_* \to \mathcal{H}.$
- 3. A covariant functor $L = \otimes : \mathcal{A} \to \mathcal{H}_*$, left adjoint of the functor $R = \Box : \mathcal{H}_* \to \mathcal{A}$.
- 4. There is another pair of covariant adjoint functors $R' = \boxdot : \mathcal{H} \to \mathcal{A}_*$ and $L' = \diamondsuit : \mathcal{A}_* \to \mathcal{H}$.

Question. From our data can we define two chirality-like structures in the logics \mathbf{AH}_* and $\mathbf{A}_*\mathbf{H}$ over the languages \mathcal{L}^{AH_*} and \mathcal{L}^{A_*H} ?

To answer the question one should show how the sequent calculus **AH-G1** over the new languages could be used to define the categorical structures. Further questions on the present formulation of biintuitionism and duality are asked in the conclusion.

229

here: elementary formulas with non-atomic radical are admitted. Also in [1, Section 2.3 definition 3] the correct definition of duality is considered. A loose usage of the expression "duality between assertions and hypotheses" within a system of biintuitionistic logic can be found in those papers and also in [4].

Notice that since the actions of ()^{\perp} and ()^{*} coincide, we can use the duality ()^{*} to eliminate the ()^{\perp} connectives, as shown in the following example.

Example 1. Consider the expression

$$; L(\mathbf{a}) \Rightarrow; \mathbf{m}^* \lor L(\mathbf{m} \land \mathbf{a}), \tag{3}$$

where both $\mathbf{a} = \mathbf{a}$ and $\mathbf{m} = \mathbf{m}$ belong to \mathcal{L}^A . After expanding the definitions the sequent (3) is provable in **AH-G1** as follows:

$$\begin{array}{c|c} \displaystyle \frac{\underline{\mathsf{m}}; \Rightarrow \underline{\mathsf{m}}; \quad \underline{\mathsf{a}}; \Rightarrow \underline{\mathsf{a}};}{\underline{\mathsf{m}}, \underline{\mathsf{a}}; \Rightarrow \underline{\mathsf{m}} \cap \underline{\mathsf{a}};} & \cap \mathrm{R} \\ \hline \\ \displaystyle \frac{\underline{\mathsf{m}}, \underline{\mathsf{a}}; \Rightarrow \underline{\mathsf{m}} \cap \underline{\mathsf{a}};}{; (\underline{\mathsf{m}} \cap \underline{\mathsf{a}})^{\bot} \Rightarrow; \underline{\mathsf{m}}^{\bot}, \underline{\mathsf{a}}^{\bot}} & \bot \mathrm{R}, \bot \mathrm{R}, \bot \mathrm{L} \\ \hline \\ \displaystyle \frac{; (\underline{\mathsf{m}} \cap \underline{\mathsf{a}})^{\bot} \Rightarrow; \underline{\mathsf{m}}^{\bot}, (\underline{\mathsf{m}} \cap \underline{\mathsf{a}})^{\bot}}{(\underline{\mathsf{n}}, \underline{\mathsf{a}})^{\bot}} & \cap \mathrm{R}, \cap \mathrm{L} \\ \hline \\ \displaystyle \frac{; (\underline{\mathsf{a}}^{\bot}) \Rightarrow; \underline{\mathsf{m}}^{\bot}, (\underline{\mathsf{m}} \cap \underline{\mathsf{a}})^{\bot}}{(\underline{\mathsf{m}} \cap \underline{\mathsf{a}})^{\bot}} & \Upsilon \mathrm{R} \end{array}$$

Applying the map $()^* : \mathcal{L}^A \to \mathcal{L}^{H_*}$, only to eliminate the $()^{\perp}$ connectives, the sequent (3) is transformed as follows:

$$; \frown (\mathcal{H} \neg a) \Rightarrow ; (\mathcal{H} \neg m) \curlyvee \frown (\mathcal{H} \neg m \lor \mathcal{H} \neg a) .$$

Thus, the proof of (3) is in the language \mathcal{L}^{AH_*} , but can be transformed into a proof in \mathbf{H}_* . On the other hand, applying ()* to the sequent (3), one obtains a proof in \mathbf{A} of

$$\vdash m \cap \sim (\vdash m \cap \vdash a); \Rightarrow \sim \vdash a$$
.

However, other cases are not covered by the above definitions.

Example 2. Consider the formal expression

$$\mathbf{m} \wedge R(\mathbf{m}^* \vee \mathbf{b}); \Rightarrow R(\mathbf{b}); \tag{4}$$

where $\mathbf{m} = \mathbf{h} m \in \mathcal{L}^A$ and $\mathbf{b} = \mathcal{H} b \in \mathcal{L}^H$. After expanding the definitions the sequent (4) becomes

$$\mathtt{m} \cap {\sim} (\mathtt{m}^{\perp} \curlyvee \mathtt{b})^{\perp}; \Rightarrow {\sim} (\mathtt{b}^{\perp});$$

But applying the map ()*: $\mathcal{L}^A \to \mathcal{L}^{H_*}$ we obtain $\mathbf{m}^{\perp} = \mathcal{H} \neg m$ and now $\mathcal{H} \neg m \Upsilon \mathcal{H} b$ does not belong to \mathcal{L}^H .

Conclusions and further questions

In conclusion, it seems that a grammar for a language formally expressing our notions of duality should be as follows:

$$\mathcal{L}^{AA_*HH_*}: \begin{array}{ccc} \mathcal{L}^{AA_*}: & A, B := & \vdash p & \mid \vdash \neg p \mid \curlyvee \mid A \cap B \mid \sim A \mid [C^{\perp}] \\ \mathcal{L}^{H_*H}: & C, D := & \mathcal{H}p^* \mid \mathcal{H}p \mid \land \mid C \curlyvee D \mid \neg C \mid [A^{\perp}] \end{array}$$

One can define maps ()^{*}: $\mathcal{L}^{AA_*} \to \mathcal{L}^{HH_*}$ and ()^{*}: $\mathcal{L}^{HH_*} \to \mathcal{L}^{AA_*}$ so that the sequent (4) becomes

$$\vdash m \cap \sim (\vdash m \cap \vdash \neg b); \Rightarrow \sim \vdash \neg b;$$

However, the sequent calculus AH-G1 over the language $\mathcal{L}^{AA_*HH_*}$ is no longer complete for the S4 semantics.

Perhaps one can say that a pragmatic interpretation of bi-intuitionistic logic suitable for representing bi-intuitionistic dualities is the logic AA_*HH_* of assertions, objections, hypotheses and denials, where an objection to the assertion $\vdash p$ is the hypothesis $\mathcal{H}\neg p$ that p is not true and a denial of a hypothesis $\mathcal{H}p$ is the assertion $\vdash \neg p$ that p is false. Thus all elementary formulas of the forms $\vdash p$, $\vdash \neg p$, $\mathcal{H}p$ and $\mathcal{H}\neg p$ must belong to the language of AA_*HH_* . We expect that an axiomatization of AA_*HH_* can be obtained by the sequent calculus AH-G1 together with the following proper axioms that express logical relations between the elementary formulas according to their intended meaning. We conjecture that such a sequent calculus is sound and complete for the S4 semantics and enjoys the cut-elimination property.

Proper axioms of AA _* HH _*	$\vdash p; \ \mathcal{H} \neg p \Rightarrow;$	$; \Rightarrow \vdash p; \mathcal{H} \neg p$
	$\vdash \neg p; \ \mathcal{H}p \Rightarrow;$	$; \Rightarrow \vdash \neg p; \mathcal{H}p$
	${}^{\scriptscriptstyle \vdash} p, {}^{\scriptscriptstyle \vdash} \neg p; \Rightarrow \mathbf{u};$	$;\mathbf{j}\Rightarrow;\mathcal{H}p,\mathcal{H}\neg p$
	$\vdash p, \vdash \neg p; \mathbf{j} \Rightarrow;$	$;\Rightarrow \mathbf{u}; \mathcal{H}p, \mathcal{H}\neg p$

Remark 3. In the modal translation we have $(\mathcal{H}\neg p)^M = ((\vdash p)^{\perp})^M$ and $(\vdash \neg p)^M = ((\mathcal{H}p)^{\perp})^M$. Notice that if we replace $\mathcal{H}\neg p$ and $\vdash \neg p$ with their counterparts $(\vdash p)^{\perp}$ and $(\mathcal{H}p)^{\perp}$, respectively, then the *Proper Axioms of* **AA**_{*}**HH**_{*} become provable in **AH-G1**. The first four are proved trivially; the last four require the proper axioms of assertions and hypotheses

231

The axioms (5) break the symmetry between assertions and hypotheses: here logic prevails over symmetry. But they are needed here to guarantee the coherence of *two systems of duality*.

There are more general questions about the proof-theory of our logics and of the sequent calculus **AH-G1** which we can only mention briefly here.

Remark 4. (i) The expressions ' $\vdash \neg p$ ' for denial that p and ' $\mathcal{H}\neg p$ ' for objection to p appear to formalize classical notions, given that ' \neg ' is classical negation. Indeed the assertion of a classical negation can be regarded as an intuitionistic statement only under special conditions such as the decidability of p. Is the logic $\mathbf{AA}_*\mathbf{HH}_*$ an intermediate logic between intuitionistic and classical logic?⁵

(ii) The connectives $(A)^{\perp}$ and $(C)^{\perp}$ have the meaning of negations. Their main property

$$(A)^{\perp\perp} \equiv A \quad \text{and} \quad (C)^{\perp\perp} \equiv C$$
 (6)

makes it possible to represent the functors $()^*$ within the calculus **AH-G1**. But are these *intuitionistically acceptable connectives*? This is presupposed in our interpretation of bi-intuitionism, but it has not been argued for explicitly.

The form of the *implication right* rule

$$\frac{\Theta, A_1 ; \Rightarrow A_2 ; \Upsilon}{\Theta ; \Rightarrow A_1 \supset A_2 ; \Upsilon}$$

allowing extra formulas Υ in the sequent premise without restrictions, and similarly of the subtraction left

$$\frac{\Theta \; ; \; C_1 \; \Rightarrow \; ; C_2, \Upsilon}{\Theta \; ; \; A_1 \supset A_2 \; ; \Upsilon}$$

allowing extra formulas Θ in the sequent premise, is equivalent to allowing the connectives ()^{\perp} with the properties (6) in a calculus with cutelimination (see [1, Section 2.4]). This feature is characteristic of the calculus **AH-G1** in opposition to the tradition of Rauszer's bi-intuitionism. However, the interaction between intuitionistic and co-intuitionistic logic may take different forms and be formalized in different ways than through the connectives ()^{\perp}. A definition of intuitionistic dualities that would be less dependent on duality in the **S4** translation is certainly desirable.

 $^{^{5}}$ On the issue of adding modalities for necessity, possibility, unnecessity and impossibility to intuitionistic logic (see [6]).

References

- Bellin, G., "Assertions, hypotheses, conjectures, expectations: Rough-sets semantics and proof-theory", pp. 193-241 in Advances in Natural Deduction. A Celebration of Dag Prawitz's Work, L. C. Pereira, E. H. Haeusler, and V. de Paiva (eds.), series "Trends in Logic", vol. 39, Springer Science + Business Media Dordrecht 2014. DOI: 10.1007/978-94-007-7548-0_10
- Bellin, G., and C. Biasi, "Towards a logic for pragmatics. Assertions and conjectures", *Journal of Logic and Computation*, 14, 4 (2004): 473–506.
 DOI:10.1093/logcom/14.4.473
- [3] Bellin, G., M. Carrara, D. Chiffi, and A. Menti, "Pragmatic and dialogic interpretations of bi-intuitionism. Part I", *Logic and Logical Philosophy*, 23, 4 (2014), 449–480. DOI:10.12775/LLP.2014.011
- Biasi, C., and F. Aschieri, "A term assignment for polarized bi-intuitionistic logic and its strong normalization", *Fundamenta Informaticae*, 84, 2 (2008): 185–205.
- [5] Crolard, T., "Subtractive logic", Theoretical Computer Science, 254, 1–2 (2001): 151–185. DOI:10.1016/S0304-3975(99)00124-3
- [6] Drobyshevich, S., "On classical behavior of intuitionistic modalities", Logic and Logical Philosophy, 24 (2015): 79–106. DOI:10.12775/LLP.2014.019
- [7] Melliès, P.-A., "Dialogue categories and chiralities", manuscript (available at the author's web page: http://www.pps.univ-parisdiderot.fr/~mellies/tensorial-logic/2-dialogue-categoriesand-chiralities.pdf).
- [8] Melliès, P.-A., "A micrological study of negation", manuscript (available at the author's web page: http://www.pps.univ-paris-diderot.fr/ ~mellies/tensorial-logic/4-micrological-study-of-negation. pdf).

GIANLUIGI BELLIN and ALESSANDRO MENTI Dipartimento di Informatica Università di Verona Strada Le Grazie 37134 Verona, Italy gianluigi.bellin@univr.it alessandro.menti@alessandromenti.it

MASSIMILIANO CARRARA FISPPA Department University of Padua Padova, Italy massimiliano.carrara@unipd.it DANIELE CHIFFI LEMBS University of Padua Padua, Italy daniele.chiffi@unipd.it