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A PROPOSITIONAL LOGIC

OF TEMPORAL CONNECTIVES

Abstract. We investigate how to formalize reasoning that takes account of
time by using connectives like “before” and “after.” We develop semantics
for a formal logic, which we axiomatize. In proving that the axiomatiza-
tion is strongly complete we show how a temporal ordering of propositions
can yield a linear timeline. We formalize examples of ordinary language
sentences to illustrate the scope and limitations of this method. We then
discuss ways to deal with some of those limitations.
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Introduction

In this paper we present a propositional logic that takes account of time
using connectives similar to “before” and “after,” as in “Suzy called Zoe
before Dick came home.” Each atomic sentence is meant as a description
of the world at some particular time and  viewed as either a proposition
or as representing a proposition  is true or false. This distinguishes our
approach from systems built using temporal operators on sentences in
the tradition of Arthur Prior, in which a sentence such as “John loves
Mary” is not treated as a proposition but as a scheme, true at some times
and false at others. In a companion paper (“Reflections on temporal and
modal logic”, [4]) Epstein shows that the methodology of that approach
is incoherent.

Received August 19, 2013. Revised May 7, 2014. Published online September 6, 2014
© 2014 by Nicolaus Copernicus University

http://dx.doi.org/10.12775/LLP.2014.020


156 Richard L. Epstein, Esperanza Buitrago-Díaz

1. Propositions

1.1. Propositions and future tense propositions

In logic we’re concerned with what is true and with what follows from
what. Those things that are true or that follow are what we call “propo-
sitions.”1

Definition. A proposition is a part of speech which we agree to view
as being true or false but not both.

Before we can invoke the methods and analyses of propositional logics
as set out in Epstein’s Propositional Logics [2], we must settle the issue
of whether sentences about the future can be viewed as being true or
false. Can we reason with “Dick will marry Zoe” as a proposition?

There are some future-tense sentences we have good reason to believe.
We, the authors, have good reason to believe “No dog lives more than 30
years” and also “Birta is a dog,” so we can conclude “Birta will be dead
31 years from now.” Every scientific law is meant as true of all times,
including the future. For example, “Electrons have spin” is meant not as
a proposition that is true of just the present or the past, summarizing our
previous experiences, but true for all times, including the future where
it serves as a prediction: any electron in the future will have spin.

On the other hand, as we write this we have no reason to believe
that “Richard L. Epstein will be alive three years from now” is true;
nor do we have reason to believe it is false. When we do not have good
reason to believe that a particular sentence about the future is true or
to believe that it is false, we can treat it as we treat any proposition
whose truth-value we do not know. We consider ways in which it could
be true and ways in which it could be false in order to investigate its
consequences.2 We can do so whether we believe that there are con-
tingent propositions about the future or only that we are factoring into
our reasoning our ignorance of the future. This is how we treat many

1 Linguistic propositions as we define them can be understood to be represen-
tatives or expressions of thoughts or abstract propositions. See Epstein’s [2] for mo-
tivation and a survey of how such different views of propositions enter into analyses
of propositional logics. See Epstein’s [3] for a discussion of this definition and these
issues in the general context of both formal and informal logic.

2 Or in some cases, perhaps, to find that the sentence cannot be true or false, as
with the liar paradox “This sentence is false.”
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propositions about the past: we agree, for whatever reason, to view them
as true or false, perhaps in an attempt to decide which they are. The
definition of “proposition” serves well for this purpose, and with it we
can reason with future-tense sentences as propositions.

1.2. The time of a proposition

We assume that each proposition is a description that is true or false
of some part of the “world,” however we may construe that. Taking
account of time with the use of temporal connectives we need to assume
further that each such description is about some time. We might take
that “Spot is barking” to be about now, while “Spot barked” to be
about yesterday, and “Spot chased Puff” to be about three days ago.3

The time we associate with a proposition need not be indicated in it. All
we require is that we can agree that there is a time  whether imprecise
or quite specific  of which the proposition is meant to be a description.
If we consider numbers to be abstract, outside of time and space, then
“2 + 2 = 4” will be about no time or place, and hence that proposition
will be outside the scope of our methods here.

A proposition such as “Spot barked” is meant as a description of the
world of some time, a description that may be true or may be false. If
true, “Spot barked” is true of the world at that time; if false, it is false of
the world at that time. This is not to say that “Spot barked” becomes
true at some specific time or that it stops being true at a later time. If
“Spot barked” is true of three days ago, it is true then, it is true now,
and it was true whenever it is or was uttered with the intention of talking
about that time. A proposition is true or false of or about a time; it is
not true or false at a time.

1.3. Truth-value ascriptions and time ascriptions

We might not know whether a proposition such as “Socrates was over
1.6 m tall” is true or false. We consider models in which it is true and
models in which it is false even if we believe that given a semi-formal
language there is just one model that corresponds to “reality” where all
the propositions in it are given their “correct” truth-values. We can say
that our use of such models is just a way to consider consequences of
propositions given our ignorance of their actual truth-values.

3 “Spot” refers to a dog.
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Each model has only one collection of truth values: true and false.
But there seems to be no single, canonical collection of times to use for
all models. Even if there were just one correct set of times to ascribe to
propositions, and even supposing that we could know how to use those
in our models, we still might want to use simpler ones. If time to the
closest day is good enough for our purposes, we might want the time
ascriptions in our model to be much smaller than the full “correct” set.

Moreover, with a proposition that carries only a very general indi-
cation of time, such as “Birta barked,” it’s not clear what the “correct”
time assignment would be. The proposition is about some time in the
past, but even given a collection of times that we believe correspond to
our conception of time in the world, we would still have great leeway
in assigning a time to that proposition. We could assign yesterday, or
last year, or all of the decade 2000–2009, or just the interval between 8
and 9 minutes ago. It seems, then, that the ascription of a time to a
proposition is a subjective choice.

But if subjective, that subjectivity is also part of the ascription of a
truth-value to the proposition. If we take “Spot barked” as a proposition,
we must agree that it is about some time whether we are taking time into
account in our reasoning or not. Implicit in our agreement to take that
sentence to be a proposition, to have a truth-value, is an agreement that
it is about some time. The sentence “Spot barked” is not a proposition
independent of our understanding well enough both the words and the
time of which it is meant to be true in order to agree that it has a
truth-value. Now we are making that agreement about time into an
explicit semantic assignment.

2. The basic temporal connectives

2.1. Four basic temporal connectives

We use in our speech and reasoning a number of temporal connectives
such as “before,” “after,” “at the same time as,” “and then,” “while.” As
we commonly use them, however, each has various readings.

Consider, for example, “Spot barked before Dick yelled.” We under-
stand this to mean that Spot started barking before Dick yelled. But do
we also mean that Spot finished barking before Dick started to yell? Or
do we mean only that he finished barking before Dick stopped yelling?
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When we say “Zoe was talking on the phone while Dick washed the
dishes,” do we mean that she was talking the whole time Dick washed
the dishes? Or do we mean only that there was some overlap in the time
when she was talking and the time that Dick was washing dishes?

Just as we regiment our analyses of “and,” “or,” “not,” and “if . . .
then” in classical propositional logic, we need to specify exactly how we
will interpret the temporal connectives we will formalize.

To begin our analysis, we will look at just “before” and try to regi-
ment uses of that. But consider:

(a) Spot began barking before Dick began yelling.
(b) Spot ended barking before Dick began yelling.
(c) Spot began barking before Dick ended yelling.
(d) Spot ended barking before Dick ended yelling.

Where in (a)–(d) are the propositions “Spot barked” and “Dick yelled”?

In English we modify the verb with auxiliaries such as “began” and
“ended,” or “started” and “stopped,” so that we take (a) rather than
“Spot barked beginning before the ending of Dick yelled” or some other
clumsy locution. Moreover, because all sentences in English are tensed,
we modify those auxiliaries to reflect the tense of the propositions that
are meant to be connected. Thus, joining “Spot will bark” and “Dick will
yell” we might say, “Spot will begin barking before Dick will end yelling.”

We will regiment these kinds of constructions by taking as basic the
following four connectives.

A ∧bb B meant to formalize “A beginning before the beginning of B”.

This is true iff both A and B are true and A is about a time that
begins before the beginning of the time of which B is about.

A ∧eb B meant to formalize “A ending before the beginning of B”.

This is true iff both A and B are true and A is about a time that
ends before the beginning of the time of which B is about.

A ∧be B meant to formalize “A beginning before the ending of B”.

This is true iff both A and B are true and A is about a time that
begins before the ending of the time of which B is about.

A ∧ee B meant to formalize “A ending before the ending of B”.

This is true iff both A and B are true and A is about a time that
ends before the ending of the time of which B is about.

These are all temporal versions of “and,” which is why we have chosen
to use the usual symbol for conjunction in them.
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Note that we are talking about the time a proposition is meant to
describe. We are not taking about “events,” or “situations,” or “actions.”
You may, if you wish, add to the metaphysics of what we are doing
and say, for example, that “Spot barked” is a description of an action
and the time we ascribe to it is from the moment that Spot began to
bark until the moment that Spot ended barking. The development here
is compatible with that, but does not depend on it. It’s enough that
for whatever reason we can ascribe a truth-value and a time to each
proposition we are considering.4

2.2. Compound propositions

The only structure of propositions we will be concerned with here is
how they are formed from other propositions using certain connectives.
Those include the four we just looked at as well as formalizations of the
usual ones studied in propositional logics: “and,” “or,” “not,” and “if
. . . then . . . ”. We’ll use the symbols ∧, ∨, ¬, ⊃ for the formalizations of
those, calling them the standard connectives.

The simplest propositions we’ll study are atomic: they have no struc-
ture in terms of any these connectives. All others involve the use of one
or more of the connectives and are called compound. We use the stan-
dard connectives to join not only atomic propositions but also compound
ones, formalizing “If Spot barked and Dick yelled, then Zoe got upset”
as “(Spot barked ∧ Dick yelled) ⊃ Zoe got upset,” where the parentheses
make clear the grouping for the connectives. Do we want or need to use
our temporal connectives to join compound propositions?

Consider:

Spot barked before Dick yelled and Zoe got upset.

If we understand “before” as meaning that the time of when Spot barked
began is before the beginning of when Dick yelled and Zoe got upset,
then we should formalize this as:

Spot barked ∧bb (Dick yelled ∧ Zoe got upset)

To do so we need to use our temporal connectives to join propositions
compounded using the standard connectives. So we’ll have to assign

4 In [5] Epstein discusses issues of metaphysics, beginnings and endings, and more
about how to reason taking account of time, especially with regard to the analyses of
Jean Buridan.
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times to propositions compounded using the standard propositional con-
nectives.

It’s not clear, though, how we could do that for conditionals. “If
Spot barked, then Dick chased Spot” is hypothetical, not clearly meant
as a description of the time of either the antecedent or the consequent
or perhaps any other time. However, if we take classical propositional
logic as our base logic, interpreting our formalizations of “and,” “or,”
“not,” and “if . . . then . . . ” according to the classical tables in which
the only semantic values that are considered are truth and falsity, then a
formalization of a conditional has no hypothetical character: it is equiv-
alent to ¬(A ∧ ¬B). So let’s use classical logic for our interpretation of
the standard connectives. That’s been studied extensively, and what we
need about it can be found in [2]. In order to simplify our work more,
let’s take just ¬ and ∧ as primitive; from those we can define the classical
interpretations of disjunction and the conditional.

Do we also want to allow temporal connectives to join propositions
which themselves are temporal compounds? Consider:

(1) Tom laughed and Dick chortled and Maria guffawed after Zoe stum-
bled.

If we use ∧ to formalize “and” in (1), then the formalization could be
true if Tom laughed on Wednesday, Dick on Thursday, and Maria on
Friday. More naturally we read (1) as asserting that Tom laughed, Dick
chortled, and Maria guffawed at (roughly) the same time. Using the
connectives we have, we’ll see how to formalize “at the same time as”
with a connective ∧≈, and then we can formalize (1) as:

Zoe stumbled ∧eb ((Tom laughed ∧≈ Dick chortled) ∧≈ Maria
guffawed)

To do so we need to allow for temporal connectives to join propositions
that also involve temporal connectives. That means we assume that a
temporal compound such as “Tom laughed ∧≈ Dick chortled” is meant
as a description of the world at some time. So we’ll need to assign times
to temporal compounds, too.

2.3. The semantic values of atomic propositions

and of compound propositions

We take each atomic proposition to be true or to be false. We also
take each atomic proposition to be about some particular time. What
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is meant by this will depend on the way we construe the nature of time.
Many choices are available: time as linear, circular, or branching; time
as continuous or discrete; time as infinite or finite; . . . . To develop a
logic we must make a choice. Let’s assume that time is linear, composed
of instants, without assuming anything about the divisibility or indivis-
ibility of those instants. This is how we will start, hoping that others
will use these methods to analyze reasoning based on other conceptions
of time.

We could assign to each atomic proposition a single instant of time.
But what counts as an instant might vary from one model to another,
so that 9:22 pm Mountain Standard Time, March 24, 2012 could be an
instant in one model and an interval one minute long in another. For
generality, let’s assign to each atomic proposition an interval of time,
though the interval might be just a single instant.

How should the time of a compound proposition be related to the
times of its parts? We understand “Spot didn’t bark” as the contra-
dictory of “Spot barked,” so those two propositions can’t be meant as
descriptions of different times. If they were, they could have the same
truth-value: Spot didn’t bark yesterday but did bark the day before
yesterday. If we take ¬A to be the contradictory of A, the time assigned
to ¬A must be the same as the time assigned to A.

When we use both “Spot barked” and “Dick was chasing Spot” to-
gether as a description of the world, the description is meant to cover
the world at both those times. The time assigned to A ∧ B should be
the sum of the times assigned to A and to B, which needn’t be an inter-
val. This doesn’t mean that in the compound “Spot barked ∧ Dick was
chasing Spot,” the part “Spot barked” is now meant to be true or false
of an expanded time which includes the time of which “Dick was chasing
Spot” is meant to be true. The time fixed for “Spot barked” does not
change. The time of the compound is all the times which it is meant, at
least in part, to describe.

Similarly, “Spot began barking before Dick stopped opening the
door,” which we’ll formalize as “Spot barked ∧eb Dick opened the door,”
is meant as a description of the world at the times when Spot barked
and when Dick opened the door. So the time assigned to A ∧eb B should
be the sum of the times assigned to A and the times assigned to B.
Likewise, the time assigned to A∧be B, to A∧bb B, and to A∧ee B should
be the sum of the times assigned to A and to B. Thus we’ll take the time
of any compound proposition to be the sum of the times of its parts.
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To extend the truth-value assignment to all propositions of the semi-
formal language we need to agree on how to evaluate the propositional
connectives. We’ve agreed to evaluate ¬ and ∧ by the classical truth-
tables.

To evaluate compounds whose main connective is a temporal connec-
tive, we first note that each of those connectives is meant as a temporal
version of “and.” Hence, for the compound to be true both parts must
be true. Further, the times associated with the parts must be correctly
related. It is the beginning and ending of the time assigned to its parts
that determine that relation. It is essential, then, that we describe the
time assigned to a proposition in terms of a beginning point and an
ending point, whether those are included in the interval or not. This
is not to say that we can point to a particular instant at which Spot’s
barking began. It is only to say that we will describe the time which we
consider that proposition to be about to be bounded at the beginning
and at the end.

For a proposition such as “Electrons have spin,” though, we’ll want to
assign all times. We can accommodate such an assignment by requiring
that whatever collection of times we are considering for a model has
a beginning point and an ending point. Doing so need not commit us
to the view that that there is a beginning and ending of all time, no
more than talking of points at infinity need commit us to any reality
of a beginning and an ending of the real numbers. We can treat the
beginning and ending points of the entire collection as just labels that
simplify our discussions. They are not “instants” and will not appear in
any interval.

Letting p and q stand for atomic propositions, and t(p), t(q) the
intervals of time assigned to those, and bp, bq, ep, eq as the beginning
and ending points of those intervals, respectively, we can picture the
relations that govern the evaluation of a temporal compound of p and q:

p ∧bb q
bp bq

t(p) t(q)

p ∧ee q
ep eq

t(p) t(q)

p ∧be q
bp eq

t(p) t(q)
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p ∧eb q
ep bq

t(p) t(q)

(We’ve drawn the intervals as containing neither the beginning nor end-
ing points, though we also allow for the possibility that one or both are
included in the interval.)

There will also be a beginning and ending point for the time assigned
to a compound proposition, since that time is just the union of the times
assigned to its parts, each of which has a beginning point and an ending
point. So we can use the same relations to govern the evaluation of the
temporal connectives when those join compound propositions.5

A ∧bb B
bA bB

t(A) t(B)

A ∧ee B
eA eB

t(A) t(B)

A ∧be B
bA eB

t(A) t(B)

A ∧eb B
eA bB

t(A) t(B)

Now we can present a formal logic.

3. Classical Propositional Logic with Temporal Connectives

3.1. The formal language and realizations

The formal language. Using the usual methods as in [2], we can define
the formal language:

L(¬, ∧, ∧bb, ∧ee, ∧be, ∧eb, p0, p1, . . .)

5 It is crucial that we can extend the relations governing the truth-tables from
ones for atomic propositions to ones for compound ones. That’s the point where
using simply “before” and “after” as primitives becomes intractable. The relation
governing the evaluation of “before” would be that the interval assigned to the one
part comes entirely before the interval assigned to the other, or perhaps entirely before
or overlapping. But then there doesn’t seem to be any way to extend the relation to
compound propositions in accord with how we would want to evaluate that connective.
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Call this language L. In it we define:

A ⊃ B ≡df ¬(A ∧ ¬B)
A ∨ B ≡df ¬(¬A ∧ ¬B)

We write
∨∨

p in A B(p) for the disjunction of the formulas B(p) such that
p is a propositional variable appearing in A associating to the left. We
write

∧∧

p in A B(p) for the conjunction of those formulas associating to
the left.

Realizations and semi-formal languages. A realization is an assignment
of propositions to the propositional variables. These are the atomic
propositions, ones whose internal structure we will not consider in our
reasoning. Each is meant to be a description of the world of some time.
No word or phrase we could formalize with one or a combination of the
formal connectives of L should appear in any atomic proposition. The
collection of all wffs of L whose variables are replaced by their realizations
is called the semi-formal language L.

We’ll use:
• q, r, s, and indexed versions of these as well as the letter p as

metavariables ranging over propositional variables or atomic propo-
sitions;

• A, B, C, D, and indexed versions of these to range over wffs of L or
of the semi-formal language;

• Γ, ∆, Σ and indexed versions of these to stand for collection of wffs
of the formal language or of the semi-formal language.

We’ll trust to context to make clear whether we intend a formal or semi-
formal item. We use ] and [ to stand informally for parentheses.

Consider now:

(2) Spot barked. Then Dick yelled. And then Spot barked.

We all recognize that the use of “and then” indicates that the first and
second occurrence of “Spot barked” are meant to refer to different times
even though the words “Spot” and “barked” do not change in meaning.
In taking sentences to be propositions, we normally treat both words and
propositions to be types (see [2, Chapter I] or [3]). If we wish to reason
with (1), even informally, we must distinguish the two occurrences of
“Spot barked.” We can do so by indexing them, writing (2) as:

(Spot barked)1. Then Dick yelled at Spot. Then (Spot barked)2.
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This is not to give the propositions time indices, for neither “1” nor
“2” indicates any time. The indices only show that the propositions are
distinct, and hence may differ in their semantic values.

We continue to treat words as types, unchanging in their meaning
in any particular discussion or model. So given two equiform sentences
that we take to be propositions meant to describe the world at the same
time, they have the same truth-value. There’s no point in distinguishing
them. We use indexed versions of a single sentence to stand for distinct
atomic propositions only if their time assignments differ, in which case
one could be true and the other false. Because they can have distinct
semantic values, they are distinct propositions. We codify this with the
following condition on realizations and models.

Assumption (The same words used for different propositions). If the
same words in the same order are meant as two distinct atomic proposi-
tions, we index them with distinct subscripts and require them to realize
distinct propositional variables. In that case they must be assigned dif-
ferent times in a model.

If we interpret “then” to mean that the first begins before the second
begins, we can formalize (2) as:

((Spot barked)1 ∧bb Dick yelled) ∧bb (Spot barked)2.

3.2. Linear orderings

Before we define the models of our logic we need to examine linear or-
derings.

Definition (Strict orderings). A pair 〈T, <〉 is a (strictly) ordered set, if
the relation < on the non-empty set T is an ordering, that is, < satisfies
for all a, b, c in T:

not a < a < is anti-reflexive
if a < b and b < c, then a < c < is transitive

Note that from these two conditions for all a, b in T we have:

if a < b, then not b < a < is asymmetric

It is a linear ordering, if satisfies in addition for all a and b in T:

a < b or b < a or b = a trichotomy
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We define

a ≤ b ≡df a < b or a = b.

The ordering T = 〈T, <〉 has endpoints, if there are b, e ∈ T such that
b 6= e and for all c ∈ T, b ≤ c ≤ e. In that case b is a left or beginning
point, and e is a right or ending point.

Lemma 1. In a linearly ordered set T : if c and d are beginning (ending)
points of T , then c = d.

Hence, in a linearly ordered set T with endpoints, we denote the
beginning point of T as bT and the ending point as eT .

In some linear orderings a point may have an immediate successor or
an immediate predecessor as defined here.

Definition (Immediate successors and predecessors). Given a, an im-
mediate successor of a is some b such that a < b and there is no c such
that a < c < b. An immediate predecessor of a is some b such that b < a
and there is no c such that b < c < a.

Lemma 2. In a linearly ordered set: if b and c are immediate successors

(predecessors) of a, then b = c.

Definition (Intervals). Given a linearly ordered set T = 〈T, <〉 with
endpoints, an interval (with beginning and ending points) is a non-empty
set I ( T such that there are c,d in T and at least one of the following
holds:

(a) I = {x : c < x < d},
(b) I = {x : c ≤ x < d and x ≠ bT },
(c) I = {x : c < x ≤ d and x ≠ eT },
(d) I = {x : c ≤ x ≤ d and bT ≠ x ≠ eT }.

We call c a left or beginning point and d a right or ending point of the
interval. An interval of type (a) is open. An interval of type (b) is closed
on the left and open on the right. An interval of type (c) is open on the
left and closed on the right. An interval of type (d) is closed.

Remark. A singleton set I = {a} can be an interval. Every closed interval
with c = d is a singleton set. Note also that if I is an interval, then I 6= T

since neither bT nor eT can be in I.
It is possible for an interval to be of more than one type. For example,

if T = {c1, c2, c3, c4} and c1 < c2 < c3 < c4, then the following are the
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same: {x : c1 < x < c4}, {x : c2 ≤ x < c4}, {x : c1 < x ≤ c3}, and
{x : c2 ≤ x ≤ c3}. However, the only case when this occurs is when
a beginning point of an interval closed on the left has an immediate
predecessor or an ending point of an interval closed on the right has an
immediate successor. In order to be able to say that each interval has a
unique beginning point and ending point, we need to choose a standard
for how we will describe intervals.

Definition (Canonical descriptions of intervals). If I is an interval,
a canonical description of I has the form:

I = {x : c ≤ x ≤ d} if that is possible.

If that is not possible, then a canonical description has the form:

I = {x : c < x ≤ d} if that is possible.

If that is not possible, then a canonical description has the form:

I = {x : c ≤ x < d} if that is possible.

Otherwise, a canonical description has the form:

I = {x : c < x < d}.

Remark. Every interval has one and only one canonical description.

Definition (Beginning points and ending points of an interval). If I is
an interval, the beginning point of I, denoted by bI, is the beginning
point of its canonical description. The ending point of I, denoted by eI,
is the ending point of its canonical description.

We now define some relations on intervals. Our pictures are of open
intervals, though the definitions apply to all kinds of intervals.

Definition (The four basic relations on intervals).

bI bJ

I J
I <bb J means bI < bJ

eI eJ

I J
I <ee J means eI < eJ

eI bJ

I J
I <eb J means eI < bJ
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bI
eJ

I J
I <be J means bI < eJ

I =bb J ≡df not (I <bb J) and not (J <bb I) ,

I =ee J ≡df not (I <ee J) and not (J <ee I) ,

I =be J ≡df not (I <be J) and not (J <eb I) .

Definition (Beginning points and ending points of finite unions of in-
tervals). A subset A of a linearly ordered set is a finite union of intervals,
if there are I1, . . . , In (for some n > 0) such that A = I1 ∪ · · · ∪ In. In
that case we define:

bA ≡df min{bIi
: 1 ¬ i ¬ n}, the beginning point of A,

eA ≡df max{eIi
: 1 ¬ i ¬ n}, the ending point of A.

We use A, B, C, and subscripted versions of these as variables ranging
over intervals or finite unions of intervals.

Lemma 3. If A = I1 ∪ · · · ∪ In, then:

(a) If there is some k such that bA = bIk
, where Ik is closed on the left,

then (i) for all a in A, bA ≤ a, and (ii) for any d, if for all a in A,

d ≤ a, then d ≤ bA.

(b) If there is no k such that bA = bIk
, where Ik is closed on the left,

then (i) for all a in A, bA < a, and (ii) for any d, if for all a in A,

d < a, then d ≤ bA.

(c) If there is some k such that eA = eIk
and Ik is closed on the right,

then (i) for all a in A, a ≤ eA, and (ii) for any d, if for all a in A,

a ≤ d, then eA ≤ d.

(d) If there is no k such eA = eIk
, where Ik is closed on the right, then

(i) for all a in A, a < eA, and (ii) for any d, if for all a in A, a < d

then eA ≤ d.

We now extend the definitions of the relations on intervals to finite
unions of intervals.

Definition (Relations on finite unions of intervals). A <bb B means
bA < bB

A <ee B means eA < eB
A <eb B means eA < bB

A <be B means bA < eB
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A =bb B ≡df not (A <bb B) and not (B <bb A)
A =ee B ≡df not (A <ee B) and not (B <ee A)
A =be B ≡df not (A <be B) and not (B <eb A).

Lemma 4. If each of A and B is an interval or a finite union of intervals,

then:

(a) A =bb B iff bA = bB,

(b) A =ee B iff eA = eB,

(c) =ee and =bb are equivalence relations,

(d) A =be B iff bA = eB iff B =eb A,

(e) =be is not an equivalence relation,

(f) A =be A iff bA = eA,

(g) A =be B and B =be A iff for some c, A = B = {c}.

Lemma 5 (Trichotomies for relations on intervals and unions of inter-
vals). If each of A and B is an interval or a finite union of intervals,

then:

(a) One and only one of the following holds:

A <bb B or B <bb A or A =bb B.

(b) One and only one of the following hold:

A <ee B or B <ee A or A =ee B.

(c) One and only one of the following hold:

A <be B or B <eb A or A =be B.

Lemma 6 (Characterizing relations on unions of intervals in terms of
relations on their parts).

(a) A <bb B iff for some I in A, for all J in B, I <bb J.

(b) A <ee B iff for some J in B, for all I in A, I <ee J.

(c) A <eb B iff for some I in A, for all I′ in A, I′
<ee I or I =ee I′, and

for some J in B, for all J’ in B, J <bb J′ or J =bb J′, and

I <eb J.

(d) A <be B iff for some I in A, for all I′ in A, I <bb I′ or I =ee I′, and

for some J in B, for all J′ in B, J′
<ee J or J =bb J′, and

I <be J.
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3.3. Models

Definition (Models). A model M for the language L is a realization of
L along with:

• a valuation v that assigns to each atomic proposition either the value
true or the value false, notated respectively as v(p) = T or v(p) = F;

• a linearly ordered set T = 〈T, <〉 with endpoints; T is called the col-
lection of instants with bT the beginning point and eT the ending
point;

• a time assignment t that assigns to each atomic proposition an interval
of 〈T, <〉, notated as t(p); the beginning point of t(p) is denoted bp

and the ending point as ep.

The time assignment t is extended to all wffs of the realization by:

t(A) =
⋃

{t(p) : p is an atomic proposition that appears in A}.

The beginning and ending points of t(A) are notated respectively as bA

and eA.
The valuation is extended to all wffs of the realization by

v(¬A) = T iff v(A) = F,

v(A ∧ B) = T iff v(A) = T and v(B) = T,

v(A ∧bb B) = T iff v(A) = T and v(B) = T and t(A) <bb t(B),

v(A ∧ee B) = T iff v(A) = T and v(B) = T and t(A) <ee t(B),

v(A ∧be B) = T iff v(A) = T and v(B) = T and t(A) <be t(B),

v(A ∧eb B) = T iff v(A) = T and v(B) = T and t(A) <eb t(B).

A model is designated M = 〈v, 〈T, <〉, t〉.6

A wff A is true in M means that v(A) = T, notated as M |= A. A wff
A is false in M means that v(A) = F, notated as M 6|= A. A wff A is
valid or a tautology means that for every model M, M |= A. A wff B is
a semantic consequence of a collection of wffs Γ, written Γ |= B, means
that for every model M, if for every A in Γ, M |= A, then M |= B.

Two models M and M
′ are elementarily equivalent iff for every wff A,

M |= A iff M
′ |= A.

6 The only formal systems that we have seen where times are taken to be intervals
either use time-makers (names of times, variables for times) in predicate logic or
are temporal operators in the tradition of Arthur Prior. Such work is not directly
applicable here.



172 Richard L. Epstein, Esperanza Buitrago-Díaz

Definition. The propositional logic of linear time based on classical
logic, TLPC, is the collection of these models and the semantic conse-
quence relation.

Definition (Fully General Abstraction). Any function v from the set
of propositional variables to {T, F} plus any linearly ordered set 〈T, <〉
and any function t from the set of propositional variables to intervals of
T comprises a model.

4. Finite, Infinite, Dense, and Discrete Models

In a model the only instants that enter into evaluations of wffs are the be-
ginning and ending points of the intervals assigned to the atomic propo-
sitions. To show this we’ll construct reduced models that include only
those points. However, since the beginning and ending points of the
entire time line can’t be in an interval, we have to add two new points.

Definition (Reduced models). Given any model M = 〈v, 〈T, <〉, t〉, the
associated reduced model is Mr = 〈vr, 〈Tr, <r〉, tr〉, where:

Tr =
⋃

{{bp, ep} : p is a propositional variable} ∪ {x,y},

where x and y are letters that do not appear in T,

vr(p) = v(p),

z <r w iff z,w /∈ {x,y} and z < w, or z = x, or w = y,

tr(p) = {bq : bp ≤ bq ≤ ep} ∪ {eq : bp ≤ eq ≤ ep}.

Given a wff A, the associated reduced model for A is

MA = 〈vA, 〈TA, <A〉, tA〉,

where:

TA =
⋃

{{bp, ep} : p is a propositional variable appearing in A}

∪ {x,y},

vA(p) = v(p),

z <A w iff z,w /∈ {x,y} and z < w, or z = x, or w = y,

tA(p) =

{

{bq : bp ≤ bq ≤ ep} ∪ {eq : bp ≤ eq ≤ ep} if p appears in A

Tr \ {x,y} otherwise



A propositional logic of temporal connectives 173

Theorem 7 (Models and reduced models).

(a) Given any model M, for all A, Mr |= A iff M |= A.

(b) Given any model M and wff A, MA |= A iff M |= A.

Proof. We’ll let you show that for every p, tr(p) is an interval and in
Mr the beginning point of tr(p) is bp and the ending point is ep.

The proof is by induction. We’ll do just one case as an example and
leave the rest, including part (b), to you.

v(p ∧bb q) = T iff v(p) = v(q) = T and t(p) <bb t(q)

iff v(p) = v(q) = T and ep < eq

iff vr(p) = vr(q) = T and ep <r eq

iff vr(p) = vr(q) = T and t(p) <rbb t(q)

iff vr(p ∧bb q) = T. ⊣

We say that a model is finite if T is finite; otherwise it is infinite.
Note that for every wff A and for every M, MA is finite.

Corollary 8. For every A, if for some model M, M 6|= A, then there

is a finite model M′ such that M
′ 6|= A.

Corollary 9. |= A iff for every finite model M, M |= A

Corollary 10. TLPC is decidable.

Proof. Suppose A has exactly n propositional variables. If |= A, then
A is true in every finite model. If 6|= A, then A fails in some model in
which there are at most 2n + 2 instants. There are only a finite number
such models, and in each the truth-value of A can be calculated.7 So A
is valid iff it is true in each one of those. ⊣

The tautologies of our logic are the wffs true in every finite model.
But equally, as we’ll show, they are the wffs true in every infinite model.
Actually, we’ll show something stronger after we make two definitions.

Definition (Dense models). A model M = 〈T, <〉 is dense iff the order-
ing < on T is dense, i.e., for every a, b in T such that a < b there is a c

in T such that a < c < b.

7 If someone could provide a formula for the number of different ordered sets of
2n + 2 instants that can serve for a model for n propositional variables we could say
exactly many distinct models must be checked.
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Note that every dense linear ordering is infinite.

Definition (Discrete models). A model M = 〈T, <〉 is discrete iff the
ordering < on T is discrete, i.e., for every a, if there is a b such that
a < b, then there is an immediate successor of a in T and if there is a b

such that b < a, then there is an immediate predecessor of a in T.

Theorem 11. For every wff A,

(a) |= A iff for every discrete model M, M |= A.

(b) |= A iff for every dense model M, M |= A.

Proof. Part (a) comes from Corollary 9, since every finite model is
discrete.

For part (b), if |= A, then A is true in every dense model. So suppose
that 6|= A. Then by Corollary 8, there is a finite model M with T =
〈T, <〉 such that M 6|= A. Let the linear ordering for that model be
bT < c1 < · · · < cn < eT . Since every time-assignment is not empty and
since bT 6= eT and neither bT nor eT is in any time assignment, we have
that n ­ 1. Define a model M′ with the same valuation on propositional
variables and T

′ = {q : q is a rational number and 0 ¬ q ¬ 1}, and:

t′(p) = {q : i
n

¬ q ¬ j

n
where bp = ci and ep = cj}

We’ll let you show that for any wff B, M
′ |= B iff M |= B. Hence,

M
′ 6|= A. ⊣

Corollary 12. |= A iff for every infinite model M, M |= A.

Valid wffs cannot distinguish between finite and infinite models, nor
between dense and discrete models. However, we do have the following.

Theorem 13. There is a computable collection of wffs Γ such that if

M |= Γ then Mr is dense and hence infinite.

Proof. Let f be a computable function that enumerates the rational
numbers between 0 and 1 without repetitions (see [6]. That is, for each
n, f(n) = s, where s is a rational number such that 0 ¬ s ¬ 1, and for
every rational number s there is one and only one n such that f(n) = s.
Set:

Γ = {¬(pn ∧ ¬pn) ∧bb ¬(pm ∧ ¬pm) : f(n) < f(m)}

∪ {¬(pn <be pn) ∧ ¬(pn <eb pn) : n ­ 0}.

Note that ¬(pn ∧ ¬pn) ∧bb ¬(pm ∧ ¬pm) is true in a model iff t(pn) <bb

t(pm), and ¬(pn <be pn) ∧ ¬(pn <eb pn) is true in a model iff bp = ep.
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We’ll let you show that if M |= Γ then 〈Tr, <r〉 is order isomorphic to
the rational numbers between 0 and 1, and hence is dense. ⊣

We can’t claim that every model of Γ is dense because we can al-
ways add “irrelevant” points to the ordered set of a model to get an
elementarily equivalent model that is not dense.

5. An Axiom System for the Logic of Linear

Time Based on Classical Logic

Our goal is to define a notion of theorem and syntactic consequence,
which we’ll denote as ⊢, that is strongly complete for this logic: For any
wff A and collection Γ of wffs of the language L, Γ ⊢ A iff Γ |= A.

We first make the following abbreviations:

A <bb B ≡df ¬(A ∧ ¬A) ∧bb ¬(B ∧ ¬B)

A <ee B ≡df ¬(A ∧ ¬A) ∧ee ¬(B ∧ ¬B)

A <be B ≡df ¬(A ∧ ¬A) ∧be ¬(B ∧ ¬B)

A <eb B ≡df ¬(A ∧ ¬A) ∧eb ¬(B ∧ ¬B)

A ≈bb B ≡df ¬(A <bb B) ∧ ¬(B <bb A)

A ≈ee B ≡df ¬(A <ee B) ∧ ¬(B <ee A)

A ≈be B ≡df ¬(A <be B) ∧ ¬(B <eb A)

Lemma 14. In any model:

v(A <bb B) = T iff t(A) <bb t(B),

v(A <ee B) = T iff t(A) <ee t(B),

v(A <be B) = T iff t(A) <be t(B),

v(A <eb B) = T iff t(A) <eb t(B),

v(A ≈bb B) = T iff bA = bB,

v(A ≈ee B) = T iff eA = eB,

v(A ≈be B) = T iff bA = eB.

Our base logic will be classical propositional logic, PC, using the
primitives ¬ and ∧. We take the strongly complete axiom system for
that from [2, Chapter II.7], where the schema of that axiom system now
range over wffs of L(¬, ∧, ∧bb, ∧ee, ∧be, ∧eb, p0, p1, . . .):
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B ⊃ (A ⊃ B)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

(A ∧ B) ⊃ A

(A ∧ B) ⊃ B

A ⊃ (B ⊃ (A ∧ B))

¬A ⊃ (A ⊃ B)

(A ⊃ B) ⊃ ((¬A ⊃ B) ⊃ B)

rule
A, A ⊃ B

B
material detachment

Now we present an axiom system for TLPC using the defined con-
nectives. It is long and likely to be unclear until you read the proof of
strong completeness below, after which we hope it will seem natural. In
that proof we mark in boldface the first use of each axiom so you can
see why the axiom is adopted.

TLPC in L(¬, ∧, ∧bb, ∧ee, ∧be, ∧eb, p0, p1, . . .). The axiom schema of PC

in this language plus the following schema:

1. ¬(A <bb A)

2. ¬(A <ee A)

3. (A ≈bb B) ∧ (B ≈bb C) ⊃ (A ≈bb C)

4. (A ≈ee B) ∧ (B ≈ee C) ⊃ (A ≈ee C)

5. (A ≈bb B) ∧ (B ≈be C) ⊃ (A ≈be C)

6. (A ≈be B) ∧ (C ≈be B) ⊃ (A ≈bb C)

7. (A ≈be B) ∧ (B ≈ee C) ⊃ (A ≈be C)

8. (A ≈ee B) ∧ (C ≈be B) ⊃ (C ≈be A)

9. (B ≈be A) ∧ (B ≈be C) ⊃ (A ≈ee C)

10. (B ≈be A) ∧ (B ≈bb C) ⊃ (C ≈be A)

11. [(A <bb B) ∧ (A ≈bb C) ∧ (B ≈bb D)] ⊃ (C <bb D)

12. [(A <bb B) ∧ (A ≈bb C) ∧ (B ≈be D)] ⊃ (C <be D)

13. [(A <bb B) ∧ (A ≈be C) ∧ (B ≈bb D)] ⊃ (C <bb D)

14. [(A <bb B) ∧ (A ≈be C) ∧ (B ≈be D)] ⊃ (C <ee D)

15. [(A <be B) ∧ (A ≈bb C) ∧ (B ≈be D)] ⊃ (C <be D)

16. [(A <be B) ∧ (A ≈be C) ∧ (D ≈be C)] ⊃ (C <eb D)

17. [(A <be B) ∧ (A ≈bb C) ∧ (B ≈ee D)] ⊃ (C <be D)
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18. [(A <be B) ∧ (A ≈be C) ∧ (B ≈bb D)] ⊃ (C <bb D)

19. [(A <eb B) ∧ (A ≈be C) ∧ (B ≈bb D)] ⊃ (C <bb D)

20. [(A <eb B) ∧ (A ≈ee C) ∧ (B ≈bb D)] ⊃ (C <eb D)

21. [(A <eb B) ∧ (C ≈be C) ∧ (B ≈be D)] ⊃ (C <be D)

22. [(A <eb B) ∧ (A ≈ee C) ∧ (B ≈be D)] ⊃ (C <ee D)

23. [(A <ee B) ∧ (C ≈be A) ∧ (D ≈be B)] ⊃ (C <bb D)

24. [(A <ee B) ∧ (A ≈ee C) ∧ (D ≈be C)] ⊃ (C <eb D)

25. [(A <ee B) ∧ (C ≈be A) ∧ (B ≈ee D)] ⊃ (C <be D)

26. [(A <ee B) ∧ (A ≈ee C) ∧ (B ≈ee D)] ⊃ (C <ee D)

27. (A <bb B) ⊃ ¬(B <bb A)

28. (A <ee B) ⊃ ¬(B <ee A)

29. (A <be B) ⊃ ¬(B <eb A)

30. (A <eb B) ⊃ ¬(B <be A)

31. (A <bb B) ∧ (B <bb C) ⊃ (A <bb C)

32. (A <bb B) ∧ (B <be C) ⊃ (A <be C)

33. (A <be B) ∧ (B <eb C) ⊃ (A <bb C)

34. (A <be B) ∧ (B <ee C) ⊃ (A <be C)

35. (A <ee B) ∧ (B <ee C) ⊃ (A <ee C)

36. (A <ee B) ∧ (B <eb C) ⊃ (A <eb C)

37. (A <eb B) ∧ (B <be C) ⊃ (A <ee C)

38. (A <eb B) ∧ (B <bb C) ⊃ (A <eb C)

39. A ∧bb B ≡ (A ∧ B) ∧ (A <bb B)

40. A ∧ee B ≡ (A ∧ B) ∧ (A <ee B)

41. A ∧be B ≡ (A ∧ B) ∧ (A <be B)

42. A ∧eb B ≡ (A ∧ B) ∧ (A <eb B)

43. (A <bb B) ≡
∨∨

p in A(
∧∧

q in B(p <bb q))

44. (A <ee B) ≡
∨∨

q in B(
∧∧

p in A(p <ee q))

45. (A <eb B) ≡
∨∨

p in A

∨∨

q in B[
∧∧

p′ in A(p′
<ee p ∨ [¬(p <ee p′) ∧

¬(p′
<ee p)]) ∧

∧∧

q′ in B(q <bb q′ ∨ [¬(q <bb q′) ∧ ¬(q′
<bb q)])

∧ p <eb q]

46. (A <be B) ≡
∨∨

p in A

∨∨

q in B[
∧∧

p′ in A(p <bb p′ ∨ [¬(p <bb p′) ∧
¬(p′

<bb p)]∧
∧∧

q′ in B(q′
<ee q∨ [¬(q <ee q′)∧¬(q′

<ee q)])∧p <be q]

rule
A, A ⊃ B

B
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We adopt the usual definitions of completeness, consistency, and the-
ory as for PC:

Γ is consistent iff for no A does Γ ⊢ A and Γ ⊢ ¬A.
Γ is complete iff for every A, Γ ⊢ A or Γ ⊢ ¬A.
Γ is a theory iff for every A, if Γ ⊢ A then A is in Γ.

Using the methods of [2, Chapter II] it is routine to prove the following.

Lemma 15. (a) (The Deduction Theorem) Γ ∪ {A} ⊢ B iff Γ ⊢ A ⊃ B.

(b) If Γ is complete and consistent, then Γ is a theory.

(c) If Γ 0 A, then there is some complete and consistent Σ ⊇ Γ such

that A /∈ Σ.

(d) If A has the form of a valid wff in PC, then ⊢ A.

In the proofs in this section we write “by PC” to mean that the wff
under consideration is PC-valid and so by Lemma 15 is a theorem of this
system.

The proof of strong completeness now reduces to proving the follow-
ing theorem. We include all the details in the proof because, though
after reading the proof many steps may seem routine and easy, we have
found that it is difficult to formulate them correctly.

Theorem 16. If Γ is a complete and consistent collection of wffs of L,

then Γ has a model.

Proof. Given Γ we will construct a model 〈v, 〈T, <〉, t〉 such that v(A)
= T iff A ∈ Γ.

First note that by Lemma 15, Γ is a theory, and Γ ⊇ PC.
In order to construct a linearly ordered set, we first define:

S = {xp,yp : p is a propositional variable} ∪ {b, e}.

The letters xp0
, yp0

, xp1
, yp1

, . . . , b, e do not stand for anything; they
are not symbols but simply letters.

We define a relation < on S. For all propositional variables p, q,

b < xp

b < yp xp < xq iff (p <bb q) ∈ Γ

xp < e yp < yq iff (p <ee q) ∈ Γ

yp < e xp < yq iff (p <be q) ∈ Γ

b < e yp < xq iff (p <eb q) ∈ Γ
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The points xp, yp are meant to be the beginning and ending points
of the interval assigned to the propositional variable p. But for distinct
p, q we may have that (p ≈bb q) ∈ Γ, yet xp 6= yp since those are
different letters. So we define an equivalence relation on S and take the
equivalence classes as the instants of our models.

b ∼ b

e ∼ e

xp ∼ xq iff (p ≈bb q) ∈ Γ

yp ∼ yq iff (p ≈ee q) ∈ Γ

xp ∼ yq iff (p ≈be q) ∈ Γ

yq ∼ xp iff (p ≈be q) ∈ Γ

Note that the defining condition for the last two equivalences are the
same. Below we will note the use of an axiom that justifies a step.

Lemma A. The relation ∼ is an equivalence relation.

Proof. We must show that ∼ is reflexive, symmetric, and transitive.
Reflexive For all z, z ∼ z.

xp ∼ xp ¬(A <bb A)

yp ∼ yp ¬(A <ee A)

b ∼ b and e ∼ e by definition

Symmetric For all z, w, if z ∼ w, then w ∼ z.
If z = w, this follows by reflexivity.
If z is b, then w = b, and we are done by reflexivity.
If z is e, then w = e, and we are done by reflexivity.

xp ∼ xq iff (p ≈bb q) ∈ Γ by definition

iff ¬(p <bb q) ∧ ¬(q <bb p) ∈ Γ by PC

iff ¬(q <bb p) ∧ ¬(p <bb q) ∈ Γ by PC

iff (q ≈bb p) ∈ Γ

iff xq ∼ xp

If yp ∼ yq, then yp ∼ yq follows similarly.

yp ∼ xq iff (p ≈be q) ∈ Γ

iff xp ∼ yq
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Transitive For all z, w, u, if z ∼ w and w ∼ u, then z ∼ u.
If z = w or w = u, we are done.
If z, w, or u is b, then all three are, and we are done.
If z, w, or u is e, then all three are, and we are done.

1. If xp ∼ xq and xq ∼ xr then xp ∼ xr

(A ≈bb B) ∧ (B ≈bb C) ⊃ (A ≈bb C).

2. If xp ∼ xq and xq ∼ yr then xp ∼ yr

(A ≈bb B) ∧ (B ≈be C) ⊃ (A ≈be C).

3. If xp ∼ yq and yq ∼ xr then xp ∼ xr

(A ≈be B) ∧ (C ≈be B) ⊃ (A ≈bb C).

4. If xp ∼ yq and yq ∼ yr then xp ∼ yr

(A ≈be B) ∧ (B ≈ee C) ⊃ (A ≈be C).

5. If yp ∼ yq and yq ∼ yr then yp ∼ yr

(A ≈ee B) ∧ (B ≈ee C) ⊃ (A ≈ee C).

6. If yp ∼ yq and yq ∼ xr then yp ∼ xr

(A ≈ee B) ∧ (C ≈be B) ⊃ (C ≈be A).

7. If yp ∼ xq and xq ∼ yr then yp ∼ yr

(B ≈be A) ∧ (B ≈be C) ⊃ (A ≈ee C).

8. If yp ∼ xq and xq ∼ xr then yp ∼ xr

(B ≈be A) ∧ (B ≈bb C) ⊃ (C ≈be A).

This completes the proof of Lemma A. ⊣

Lemma B. The relation ∼ respects <. That is,

if z < w and z ∼ u and w ∼ v, then u < v.

Proof. If b < w and b ∼ u and w ∼ v, then u is b, and w 6= b. Hence
v 6= b, so b ∼ v. We’ll leave to you the other cases when any of z, w, u,
or v is either b or e.

1. If xp < xq and xp ∼ xr and xq ∼ xs, then xr < xs

[(A <bb B) ∧ (A ≈bb C) ∧ (B ≈bb D)] ⊃ (C <bb D).

2. If xp < xq and xp ∼ xr and xq ∼ ys, then xr < ys

[(A <bb B) ∧ (A ≈bb C) ∧ (B ≈be D)] ⊃ (C <be D).

3. If xp < xq and xp ∼ yr and xq ∼ xs, then yr < xs

[(A <bb B) ∧ (A ≈be C) ∧ (B ≈bb D)] ⊃ (C <eb D).

4. If xp < xq and xp ∼ yr and xq ∼ ys, then yr < ys

[(A <bb B) ∧ (A ≈be C) ∧ (B ≈be D)] ⊃ (C <ee D).
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5. If xp < yq and xp ∼ xr and yq ∼ xs, then xr < xs

[(A <be B) ∧ (A ≈bb C) ∧ (D ≈be B)] ⊃ (C <bb D).

6. If xp < yq and xp ∼ yr and yq ∼ xs, then yr < xs

[(A <be B) ∧ (A ≈be C) ∧ (D ≈be B)] ⊃ (C <eb D).

7. If xp < yq and xp ∼ yr and yq ∼ ys, then xr < ys

[(A <be B) ∧ (A ≈bb C) ∧ (B ≈ee D)] ⊃ (C <be D).

8. If xp < yq and xp ∼ xr and yq ∼ ys, then xr < ys

[(A <be B) ∧ (A ≈bb C) ∧ (B ≈ee D)] ⊃ (C <be D).

9. If yp < xq and yp ∼ xr and xq ∼ xs, then xr < xs

[(A <eb B) ∧ (C ≈be A) ∧ (B ≈bb D)] ⊃ (C <bb D).

10. If yp < xq and yp ∼ yr and xq ∼ xs, then yr < xs

[(A <eb B) ∧ (A ≈ee C) ∧ (B ≈bb D)] ⊃ (C <eb D).

11. If yp < xq and yp ∼ xr and xq ∼ ys, then xr < ys

[(A <eb B) ∧ (C ≈be C) ∧ (D ≈be B)] ⊃ (C <be D).

12. If yp < xq and yp ∼ yr and xq ∼ ys, then yr < ys

[(A <eb B) ∧ (A ≈ee C) ∧ (B ≈be D)] ⊃ (C <ee D).

13. If yp < yq and yp ∼ xr and yq ∼ xs, then xr < xs

[(A <ee B) ∧ (C ≈be A) ∧ (D ≈be B)] ⊃ (C <bb D).

14. If yp < yq and yp ∼ xr and yq ∼ ys, then xr < ys

[(A <ee B) ∧ (C ≈be A) ∧ (B ≈ee D)] ⊃ (C <be D).

15. If yp < yq and yp ∼ yr and yq ∼ xs, then yr < xs

[(A <ee B) ∧ (A ≈ee C) ∧ (D ≈be C)] ⊃ (C <eb D).

16. If yp < yq and yp ∼ yr and yq ∼ ys, then yr < ys

[(A <ee B) ∧ (A ≈ee C) ∧ (B ≈ee D)] ⊃ (C <ee D).

This completes the proof of Lemma B. ⊣

For z ∈ S, denote the equivalence class of z by [z]. Note that the
[b] = {b} and [e] = {e}.

Define T = {[z] : z ∈ S} and [z] < [w] iff z < w. By Lemma B this is
well-defined.

Lemma C. 〈T, <〉 is a linearly ordered set with endpoints.

Proof. We first show that it has endpoints.
For every z 6= b, b < z and not b < b. Hence, for every [z] 6= [b],

[b] < [z], and also not [b] < [b]. And similarly, for every [z] 6= [e], [z] < [e],
while not [e] < [e].

We now show that < is anti-reflexive and transitive.
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Anti-reflexive For any [z], not [z] < [z].
If [z] = [b] or [z] = [e] we are done by what we have just noted above.

Otherwise, for some p, [z] = [xp] or [z] = [yp]. We have not xp < xp by
Axiom (schema) 1, and we have not yp < yp by Axiom 2.

Transitive If [z] < [w] and [w] < [v], then [z] < [v].
We’ll leave to you the cases when any one of [z], [w], or [v] is [b] or

[e]. We’ll abbreviate [z] < [w] and [w] < [v] as [z] < [w] < [v].

1. If [xp] < [xq] < [xr] then [xp] < [xr]
(A <bb B) ∧ (B <bb C) ⊃ (A <bb C).

2. If [xp] < [xq] < [yr] then [xp] < [yr]
(A <bb B) ∧ (B <be C) ⊃ (A <be C).

3. If [xp] < [yq] < [xr] then [xp] < [xr]
(A <be B) ∧ (B <eb C) ⊃ (A <bb C).

4. If [xp] < [yq] < [yr] then [xp] < [yr]
(A <be B) ∧ (B <ee C) ⊃ (A <be C).

5. If [yp] < [yq] < [yr] then [yp] < [yr]
(A <ee B) ∧ (B <ee C) ⊃ (A <ee C).

6. If [yp] < [yq] < [xr] then [yp] < [xr]
(A <ee B) ∧ (B <eb C) ⊃ (A <eb C).

7. If [yp] < [xq] < [yr] then [yp] < [yr]
(A <eb B) ∧ (B <be C) ⊃ (A <ee C).

8. If [yp] < [xq] < [xr] then [yp] < [xr]
(A <eb B) ∧ (B <bb C) ⊃ (A <eb C).

This completes the proof of Lemma C. ⊣

Now we define the valuation v and time-assignment t for our model.

v(p) = T iff p ∈ Γ,

t(p) = {[z] : [xp] ≤ [z] ≤ [yp]}.

Then t is extended to all wffs by the standard condition for models:

t(A) =
⋃

{t(p) : p appears in A}.

And v is extended to all wffs by the tables for the connectives.
In this ordering, bp is [xp], ep is [yp], and for all p, b /∈ t(p) and

e /∈ t(p).

Lemma D. v(A) = T iff A ∈ Γ.
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Proof. If A has length 1, A is p and the lemma follows by definition.
If A has length 2 and A is p ∧ q or ¬p, then the proof follows as for

PC (see [2]). Otherwise, we have:

v(p ∧bb q) = T iff v(p) = v(q) = T and t(p) <bb t(q)

iff p ∈ Γ and q ∈ Γ and [xp] < [xq]

iff (p ∧ q) ∈ Γ and [xp] < [xq] by PC

iff (p ∧ q) ∈ Γ and xp < xq

iff (p ∧ q) ∈ Γ and (p <bb q) ∈ Γ by construction

iff (p ∧bb q) A ∧bb B ≡ (A ∧ B) ∧ (A <bb B)

v(p ∧ee q) = T iff v(p) = v(q) = T and t(p) <ee t(q)

iff (p ∧ q) ∈ Γ and [yp] < [yq]

iff (p ∧ q) ∈ Γ and yp < yq

iff (p ∧ q) ∈ Γ and (p <ee q) ∈ Γ by construction

iff (p ∧bb q) A ∧ee B ≡ (A ∧ B) ∧ (A <ee B)

v(p ∧be q) = T iff v(p) = v(q) = T and t(p) <be t(q)

iff (p ∧ q) ∈ Γ and [xp] < [yq]

iff (p ∧ q) ∈ Γ and xp < yq

iff (p ∧ q) ∈ Γ and (p <be q) ∈ Γ by construction

iff (p ∧bb q) A ∧be B ≡ (A ∧ B) ∧ (A <be B)

v(p ∧eb q) = T iff v(p) = v(q) = T and t(p) <eb t(q)

iff (p ∧ q) ∈ Γ and [yp] < [xq]

iff (p ∧ q) ∈ Γ and yp < xq

iff (p ∧ q) ∈ Γ and (p <eb q) ∈ Γ by construction

iff (p ∧bb q) A ∧eb B ≡ (A ∧ B) ∧ (A <eb B)

Now suppose that A has length 3 or greater and the lemma is true
for all shorter wffs. If A is of the form A ∧ B or ¬A, then the proof
follows as for PC. Otherwise, we have:

v(A ∧bb B) = T iff v(A) = v(B) = T and t(A) <bb t(B)

iff A ∈ Γ and B ∈ Γ and t(A) <bb t(B)

iff (A ∧ B) ∈ Γ and for some p in A, all q in B,

t(p) <bb t(q) by Lemma 7
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iff (A ∧ B) ∈ Γ and for some p in A, all q in B,

(p <bb q) ∈ Γ by construction

iff (A ∧ B) ∈ Γ and (A <bb B) ∈ Γ

(A <bb B) ≡
∨∨

p in A(
∧∧

q in B(p <bb q))

and Axiom 39 as in the evaluation of v(p ∧bb q)

The other cases are done similarly using Lemma 5 and the following
axioms:

(A <ee B) ≡
∨∨

q in B(
∧∧

p in A(p <ee q))

(A <eb B) ≡
∨∨

p in A

∨∨

q in B[
∧∧

p′ in A(p′
<ee p ∨

[¬(p <ee p′) ∧ ¬(p′
<ee p)])

∧
∧∧

q′ in B(q <bb q′ ∨ [¬(q <bb q′) ∧ ¬(q′
<bb q)]) ∧ p <eb q]

(A <be B) ≡
∨∨

p in A

∨∨

q in B[
∧∧

p′ in A(p <bb p′ ∨

[¬(p <bb p′) ∧ ¬(p′
<bb p)])

∧
∧∧

q′ in B(q′
<ee q ∨ [¬(q <ee q′) ∧ ¬(q′

<ee q)]) ∧ p <be q]

This completes the proof of Lemma D. ⊣

Lemma D concludes the proof of Theorem 16. ⊣

Theorem 17 (Strong Completeness). For any set Γ∪{A} of wffs: Γ ⊢ A
iff Γ |= A.

Proof. We’ll leave to you to check that each of the axioms is true in
every model and that the rule preserves truth in a model. Hence, if
Γ ⊢ A then Γ |= A.

In the other direction, suppose Γ 0 A. Then by Lemma 15(c) there is
a complete and consistent Σ such that Σ ⊇ Γ and A /∈ Σ. By Theorem 16
there is a model M such that for all wffs B, M |= B iff B ∈ Σ. Hence,
M 6|= A, and so Σ 6|= A, and hence Γ 6|= A. ⊣

Corollary 18. (a) If Γ 0 A, then there is a model M in which every

time assignment is a closed interval and M 6|= A.

(b) If Γ 0 A, then there is a model M in which every time assignment

is an open interval and M 6|= A.
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Proof. (a) Every time assignment in the model constructed in Theo-
rem 16 is closed.

(b) We can modify the construction of the model in Theorem 16 to
have only open intervals as time assignments. We just have to ensure
that the time assignments are not empty since we may have that for no
z is xp < z < yp. For the construction of S we add the following step:

For any p such that for no z, xp < z < yp add a point mp to S with
the conditions:

z < mp iff z ≤ xp

mp < z iff yp ≤ z

Then in the construction of the model set t(p) = {[z] : [xp] < [z] <
[yp]}. ⊣

Corollary 19. (a) Γ ⊢ A iff for every model M that validates Γ and

in which every time-assignment is a closed interval, M |= A.

(b) Γ ⊢ A iff for every model M that validates Γ and in which every

time-assignment is an open interval, M |= A.

It might be possible to simplify the axiom system for TLPC by using
the definitions of the defined connectives and noting that the following
are valid:

A <eb B ⊃ A <ee B A <eb B ⊃ A <be B

A <eb B ⊃ A <bb B A <bb B ⊃ A <be B

6. Time as a Subjective Ordering of Experience

We set out to formalize how to take time into account in our reasoning.
That sounds as if we’re assuming that time has a reality in the world
distinct from us. Viewing time as a linear ordering seemed to confirm
that we were viewing time as objective.

But nothing we’ve done depends on our taking time to be real beyond
our experience of before and after. Our experiences, at least those we
can communicate and investigate together, are expressed in linguistic
propositions. The import of the proof of Theorem 16 is that we can
construct “time” from a complete and consistent ordering of propositions
in terms of when we say their descriptions are meant to begin and to
end. In reasoning about time in this logic we need not assume that time
is anything more than our ordering of experiences, and to use this logic
together we need only agree on that ordering.



186 Richard L. Epstein, Esperanza Buitrago-Díaz

The intersubjectivity of our ordering of experiences may be due to
the reality of time external to us which we perceive or are forced to
acknowledge. But equally this conception allows for that intersubjective
ordering to be based solely on our sharing subjective evaluations. For
example, Zoe may “know” that “Dick yelled at Spot” is a true description
of a time after “Spot was barking” because that’s how it seems to her.
If Dick agrees that “Dick yelled at Spot” is a true description of a time
after “Spot was barking,” then their orderings are the same for that part
of their experience. If lots of people agree that “Dick yelled at Spot” is
a true description of a time after “Spot was barking,” then they have
an intersubjective ordering of time for those experiences. On the other
hand, that Zoe knows that “Zoe forgot her keys” came after “Zoe decided
to go to Suzy’s house” is a subjective ordering that others can only infer,
though, again, it could be that her memory is grounded in a reality of
time external to her that is shared by us all.8

7. Examples of Formalization

1. Spot barked and then Dick yelled.

Spot barked ∧eb Dick yelled

Analysis Unless context suggests otherwise, let’s formalize “and then”
to mean that the first proposition describes a time completely before the
second.

8 A subjective conception of time could also allow for a metric. An experience
may be the recording of an oscillation of an atom. Then the recording of a successive
oscillation is another experience, which could give us a standard minimal difference
in times. Accumulating those, projecting those backwards and forwards, we have not
only a linear ordering but a metric. One trillion trillion of those “experiences” would
be equal  if we were to have them  to the time between when Spot barked and Dick
yelled. Time, when we put a metric on it, is then not only our actual experiences
but what we take to be our possible experiences. To say that time is dense in this
subjective conception of time is to say that given any two experiences, it is possible
to have another experience that comes between them. Compare J. F. Allen in [1]:

There seems to be a strong intuition that, given an event, we can always “turn up
the magnification” and look at its structure. This has certainly been the experience
so far in physics. Since the only times we consider will be times of events, it appears
that we can always decompose times into subparts. Thus the formal notion of a time
point, which would not be decomposable, is not useful. [1, p. 834]
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2. Spot barked. Then Dick yelled.

Same as for Example 1

Analysis The word “then” is used to relate two propositions as with
“and then.”

3. Dick yelled after Spot barked.

Same as for Example 1.

Analysis The order of the propositions is reversed in the formalization,
understanding “after” to be the reverse of “and then.”

4. Suzy took off her clothes and went to bed.

Suzy took off her clothes ∧eb Suzy went to bed

Analysis We understand “and” here to mean “and then.”

5. If Suzy went to bed, then she off her clothes.

¬(Suzy went to bed ∧ ¬(Suzy took off her clothes))

Analysis The “then” here is not meant temporally but only as part of
the conditional. Indeed, in normal circumstances if this is true, then
“Suzy took off her clothes” would be about a time before that of “Suzy
went to bed.” But that understanding is not part of what is asserted
here.

6. Spot barked before Dick yelled.

Analysis As noted in Section 2.1, the use of “before” as a connective in
English is ambiguous. We have at least two choices:

Spot started barking before Dick began to yell.
Spot barked ∧bb Dick yelled.
Spot finished barking before Dick began to yell.
Spot barked ∧eb Dick yelled.

In the latter case, we do not need to add that Spot started barking
before Dick began to yell, since (A ∧eb B) ⊃ (A ∧bb B) is valid. Nor
do we need to add that Spot started barking before Dick ended yelling,
since (A ∧eb B) ⊃ (A ∧be B) is valid.

7. Spot barked at 7:12 am May 5th, 2005.
Spot barked around 7:12 am May 5th, 2005.
Spot barked at exactly 7:12 am May 5th, 2005.
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Analysis We can distinguish these only by what time-assignment we
give to “Spot barked.” To distinguish them syntactically we would have
to be able to refer to specific times in the formal language.

8. Sometime after Dick finished eating, Spot began to bark.

Dick ate ∧eb Spot barked

Analysis Despite the apparent quantification over times in the exam-
ple, we can formalize it without quantifying. Note that we modify the
sentences in the original to eliminate “finished” and “began.”

9. Dick yelled at the same time as Spot barked.

(Spot barked ∧ Dick yelled) ∧ (Spot barked ≈bb Dick yelled)
∧ (Spot barked ≈ee Dick yelled)

Analysis We need no quantification or reference to a time in the for-
malization.

We can define a connective to formalize at the same time as:

A ∧≈ B ≡df (A ∧ B) ∧ (A ≈bb B) ∧ (A ≈ee B)

10. Dick yelled within the time that Spot was barking.

(Spot barked ∧ Dick yelled) ∧ ¬(Dick yelled ∧bb Spot barked)
∧ ¬(Spot barked ∧ee Dick yelled)

Analysis We have four possibilities for the times assigned to “Spot
barked” and “Dick yelled” that can make this true:

Spot barked

Dick yelled

Spot barked

Dick yelled

Spot barked

Dick yelled

Spot barked

Dick yelled

All are covered by the formalization here. We can define a connective to
formalize within the time that:

A ∧in B ≡df (A ∧ B) ∧ ¬(A ∧bb B) ∧ ¬(B ∧ee A)
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11. Dick yelled during the time that Spot barked.

Analysis This is ambiguous. We have (at least) two choices:

Dick yelled within the time that Spot barked.

Formalization as for Example 10.

Dick yelled through all the time that Spot yelled, beginning before
and ending after.

(Spot barked ∧ Dick yelled) ∧ (Dick yelled ∧bb Spot barked)
∧ (Spot barked ∧ee Dick yelled)

12. There was a time when both Dick yelled and Spot barked.

(Spot barked ∧ Dick yelled) ∧ [(Dick yelled <bb Spot barked)
∧ (Spot barked <be Dick yelled)] ∨ [(Spot barked <bb Dick
yelled) ∧ (Dick yelled <be Spot barked)] ∨ (Spot barked ∧in

Dick yelled) ∨ (Dick yelled ∧in Spot barked)

Analysis Though the ordinary English involves a quantification over
time, we need no quantification in the formalization to formalize over-
lapping times.

13. Dick yelled, then Spot began barking, and then Spot finished barking
before Dick stopped yelling.

(Dick yelled ∧bb Spot barked) ∧ (Spot barked ∧ee Dick yelled)

Analysis It seems that we have four propositions here:

Dick yelled.
Spot began barking.
Spot finished barking.
Dick stopped yelling.

But we’re treating “began,” “finished,” “stopped,” and other words like
those as modifiers of verbs, incorporated into the connectives rather than
within the propositions since their role is to relate times of propositions.
Moreover, we understand the second and third to be modifications, in
this context, of the same proposition, “Spot barked.”

14. Dick yelled while Spot was barking.

Analysis The use of “while” as a connective in English is ambiguous.
We have (at least) the following choices:
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There was a time when both Dick yelled and Spot barked.

Formalized as in Example 12.

Dick yelled at the same time that Spot barked.

Formalized as in Example 9.

Dick yelled within the time that Spot barked.

Formalized as in Example 10.

Dick yelled through all the time that Spot barked.

(Dick yelled ∧ Spot barked) ∧ ¬(Spot barked ∧bb Dick yelled)
∧ ¬(Spot ∧ee Dick yelled)

15. Dick will cook dinner when Zoe arrives.

Zoe will arrive ∧eb Dick will cook dinner

Analysis We use the present tense in “Zoe arrives” to talk about some
future time, formalizing the example to mean that Dick will start cooking
only after Zoe arrives.

16. Dick will start cooking dinner the moment when Zoe arrives.

(Dick will cook dinner ∧ Zoe will arrive) ∧
(Zoe will arrive ≈eb Dick will cook dinner)

Analysis This works regardless of whether the times assigned to the
propositions are open or closed intervals.

17. Dick will begin cooking as soon as Zoe arrives home.

Formalization the same as for Example 16.

Analysis Even in ordinary speech we need not talk of quantification
over times.

18. Sometime between when Zoe arrived and Dick started cooking, Spot
ran away.

((Zoe arrived) ∧eb (Spot ran away)) ∧ (Spot ran away ∧eb

Dick cooked)

Analysis We can formalize the time of a proposition being strictly be-
tween the times of two other propositions by defining a new connective:

SB(A, B, C) ≡df (A <eb B) ∧ (B <eb C)
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Alternatively, we can formalize that the time of a proposition comes be-
tween the times of two other propositions though not strictly by defining
a new connective:

B(A, B, C) ≡df ¬(B <eb A) ∧ ¬(C <eb B)

19. There was some time between when Zoe arrived and Dick started
cooking.

Not formalizable?

Analysis Unless we know a proposition that is true whose time is be-
tween that of the time assigned to “Zoe arrived” and the time assigned to
“Dick cooked” we can’t point to any time that comes between those. We
can only say that the first is true of a time ending before than the start
of the second with “(Zoe arrived) ∧eb (Dick cooked)”. Whether there
are any “times” between those  not just in our model but in “reality” 
is connected to the question of whether we can point to such a time
with a proposition that describes a (possible) experience, as discussed in
Section 6.

20. Spot barked and then Dick yelled. But before that, Zoe shouted.
This was all after Suzy arrived and before Tom arrived.

((Suzy arrived) ∧eb ((Zoe shouted) ∧eb (Spot barked
∧eb Dick yelled))) ∧eb (Tom arrived)

Analysis We can take account of the relative times of any number of
propositions.

21. If Dick studied, then Zoe will cook.

Analysis We can read “if . . . then . . . ” classically to formalize the
example as:

Dick studied ⊃ Zoe will cook

Alternatively, we can read “then” in “if . . . then . . . ” as indicating later
in time. In that case we can formalize the example:

(Dick studies ⊃ Zoe cooks) ∧ (Dick studies <eb Zoe cooks)

We can formalize “if . . . then (later) . . . ” by introducing a new connec-
tive:

A ⊃eb B ≡df (A ⊃ B) ∧ (A <eb B)
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22. The temperatures in New Mexico in 2012 were the highest they have
been since the last ice age.

Not formalizable.

Analysis To formalize comparisons of times (“the last”) as well as tem-
peratures we need a more ample language, such as that of predicate
logic.

23. When Zoe cooks, Dick washes up.

Not formalizable.

Analysis The example is meant to be true of all times. That is, “Zoe
cooks ⊃ Dick washes up” is always true. But we don’t want all of time
to be assigned to the union of the times assigned to “Zoe cooks” and
“Dick washes up.” It seems that to formalize this example we need to
quantify over times, which we can do in predicate logic. We can make the
implicit quantification explicit by rewriting the example as “Whenever
Zoe cooks, Dick washes up.”

24. Tom shot, skinned, and butchered a deer.

Not formalizable.

Analysis The first comma and the word “and” here are meant as “and
then.” But we can’t formalize this as “(Tom shot a deer ∧eb Tom skinned
a deer) ∧eb Tom butchered a deer” because the example clearly means
that it’s the same deer that Tom shot, skinned, and butchered. We need
a way to formalize cross-referencing for this example, which is possible
in predicate logic even though no quantification is involved.

25. Dick talked only when Spot wasn’t barking.

Not formalizable.

Analysis We can take “Spot barked” as an atomic proposition and
assign a time to it. Then “¬(Spot barked)” is meant as its contradictory
and hence is about the same time. We can talk of times when Spot
wasn’t barking by considering propositions that are true of times before
and times after the time when Spot barked. But “Dick talked” is an
atomic proposition, and hence we can only assert either “Dick talked
∧eb Spot barked,” in which case we’re asserting that Dick talked before
Spot barked, or “Spot barked ∧be Dick talked,” in which case we’re
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asserting that Dick talked after Spot barked. Or we could take “(Dick
talked)1” and “(Dick talked)2” to be distinct propositions and assert:

((Dick talked)1 ∧eb Spot barked) ∨ Spot barked ∧be (Dick talked)2

But that doesn’t formalize that we intend “Dick talked” to be about lots
of times, perhaps some before Spot barked and some after Spot barked.

The problem is that the complement of the time assigned to “Spot
barked” or of “Spot barked ∧ Dick talked” need not be an interval or a
union of intervals. In Section 9 we’ll look at how we might extend our
logic to allow for a temporal negation.

26. Spot will bark and then Dick yelled.

Spot will bark ∧eb Dick yelled

Analysis This can be true in a model since we can assign an interval of
time to “Spot will bark” that comes before the time assigned to “Dick
yelled.” Yet the example can’t be true, since the tenses indicate that
“Dick yelled” is about a time in the past and “Spot will bark” is about a
time in the future. To ensure that this is formalized as an anti-tautology
we should take account of tenses directly in the language.9

Alternatively, we can stipulate an informal convention that if A is in
the past or present tense and B is in the future tense, then we use A∧ebB
as part of a formalization involving A and B, with similar conditions for
other tenses. Let’s look at how we might do that.

8. Past, Present, and Future

Part of our conception of time is of the past, present, and future. The
present is right now. As you are reading this perhaps you’ll understand
that to mean the present is exactly as we were writing this. Or perhaps
you’ll understand it to mean that the present is exactly as you are reading
this, which would have been in the future as we were writing. In any
case, both those “times” are past now.

We have a subjective sense of the present or right now. But in our
reasoning we talk of the present as any time that’s used to split proposi-
tions into those meant to be about a time before and those meant to be
about a time after. The present when we are writing this, the present

9 A way to do that is sketched in [4] and is developed in [5].
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of an essay written in 1774, the present of a science-fiction novel set in
2095, the present since the last ice age, all can be understood by us as
“the present” in a conversation.

Given some collection of atomic propositions with which we want to
reason and the semi-formal language of those, there are various ways we
can talk about the world at a particular time, whether that’s what we
want to call the present or simply some other time we want to distinguish.
We do so by giving a description that is meant to be about that time, say
“Spot barked ∧ Dick yelled.” Then the fullest description we can give of
that time would be the collection of atomic propositions that are true
of that time: {p : p is atomic, and v(p) = T, and t(p) ⊆ t(Spot barked
∧ Dick yelled)}. If we can choose one particular proposition, whether
compound or atomic, as a description of the world at “the present,” then
we can divide all propositions into those that are meant to be about times
before that and those that are meant to be about times after that.

Explicitly, given a realization let N be a wff of the semi-formal lan-
guage that we choose to be a description of the “the whole” present.
Then we can define:

Past(A) ≡df A <eb N
In a model, v(Past(A)) = T iff v(A) = T and t(A) <eb t(N)

Present(A) ≡df ¬(A <bb N) ∧ ¬(N <ee A)
In a model, v(Pres(A)) = T iff t(A) ⊆ t(N)

Future(A) ≡df N <eb A
In a model, v(Future(A)) = T iff t(N) <eb t(A)

Note that Past(A) means A is about some time in the past. Past(A)
does not mean A is about all of the past. When we say “the past” or
“the future” we needn’t be construed as talking about all of the past or
all of the future as if those were some things. Similarly, when we say
“the present” we needn’t be talking of all of the time we consider to be
the present.

27. Tom had a dog.

Tom had a dog ∧ Past(Tom had a dog)

Analysis Because of the tensed form of “to have” we know that this
is meant to be about some time in the past. In a narrative we can
usually identify one or several propositions as being about the “now” of
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it. Suppose, in this case, we know that “Spot is Dick and Zoe’s dog,” and
“Suzy loves Tom,” and “Ralph is a dog” are all about the present and
are ample enough together to cover the entire present of the narrative.
Then we can take:

N≡df Spot is Dick and Zoe’s dog ∧ Suzy loves Tom ∧ Ralph is a dog

We needn’t agree that N is true. Then we can formalize the example as an
assertion not only that the proposition is true but is also about the past.

28. Tom will have a dog.

Tom will have a dog ∧ Future(Tom will have a dog)

Analysis Taking N to be as in the previous example, we have the for-
malization.

29. Tom has a dog.

Tom has a dog ∧ Present(Tom has a dog)

Analysis We formalize with the same assumption about the time of the
present as in the previous two examples.

30. Spot will bark and then Dick yelled.

(Spot will bark ∧eb Dick yelled) ∧ Future(Spot will bark)
∧ Past(Dick yelled)

Analysis Using the same conventions about the time of the present, the
formalization here is an anti-tautology. In a model, we can’t have t(N) <
t(Spot will bark), and t(Dick yelled) < t(N), and t(Spot will bark) <
t(Dick yelled), since < is transitive and linear.

We can take account of tenses in our formalizations by first agreeing
that the times of a particular (small) collection of atomic propositions
cover the present. Then relative to the conjunction of those we can define
Past(A), Present(A), and Future(A).10 We could, perhaps, be more
subtle in devising ways to distinguish, say, the past perfect from the past.
But all these conventions are about how to formalize certain kinds of
ordinary language propositions. They are not directly formalizations of

10 These bear a superficial resemblance to operators used in the tradition of
Arthur Prior, but they are quite different, as explained in [4].
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tenses. In English tenses are modifiers of verbs, and to deal directly with
them we need to look at the internal structure of atomic propositions.11

9. Timeless Propositions

Some say that there are propositions about no time at all. They say
that numbers, for example, are abstract objects existing outside space
and time. Hence, “2+2 = 4” is not true of any time at all. It is not true
of all times. It is timelessly true.

We can extend our temporal propositional logic to accomodate rea-
soning based on the assumption that there are such propositions. We
add a unary connective Ø to the language of our logic, where Ø A is
meant to be an assertion that A is true and A is about no time. We
modify our models to allow that the empty set is also an interval, so that
t(A) = ∅ is allowed. We take the valuation:

v(Ø A) = T iff v(A) = T and t(A) = ∅

We can define a further connective:

Ø A ≡df Ø(¬(A ∧ ¬A))
v(Ø A) = T iff t(A) = ∅

Call this system TLPC+ Ø. With it we can formalize some talk of ab-
stract things, such as numbers and beauty, along with talk about dogs
and cats. We’ll leave to those who have developed a greater intuition
than we have for the nature of abstract things to provide examples and
analyses.

It might seem simple to axiomatize this logic. We can modify each
scheme A of the axiomatization of TLPC other than those for PC itself
to read:

(
∧∧

p in A ¬ Ø p) ⊃ A

We can also add an axiom scheme:

Ø A ⊃ [¬(A <bb B) ∧ ¬(B <bb A) ∧ ¬(A <ee B) ∧ ¬(B <ee A)
∧ ¬(A <be B) ∧ ¬(B <be A) ∧ ¬(A <eb B) ∧ ¬(B <eb A)
∧ ¬(A ≈bb B) ∧ ¬(A ≈ee B) ∧ ¬(A ≈be B) ∧ ¬(B ≈be A)]

However, the axiomatization of TLPC uses in an essential way that ≈bb,
≈be, ≈ee are defined connectives.

11 See the discussion in [4].
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10. Omnitemporal Propositions and Temporal Negation

10.1. Omnitemporal propositions

A proposition such as “Electrons have spin” is meant to be a true de-
scription of all times. At any time whatsoever, every electron has spin.
We call propositions meant to be true of all times omnitemporal.

Suppose we have a realization where A is meant to be a true de-
scription of every time. Then we can assign t(A) = {z : bT < z < eT },
which is the collection of all times in our model, since the endpoints of
the entire time line are meant as markers only. We then have for every
p in the model:

not: t(p) <bb t(A)
not: t(A) <ee t(p)

We would like to pick out such propositions in our reasoning. We could
do so if we introduce the following connective:

omnitemporal om

v(om A) = T iff v(A) = T and t(A) = {z : bT < z < eT }

This cannot be defined in TLPC because given any scheme S(A), even
with parameters, t(S(A)) will be the union of only a finite number of
intervals, those assigned to the propositional variables in S(A), yet an-
other propositional variable could be assigned an interval that lies outside
those.

10.2. Temporal negation

We take ¬A to be the contradictory of A and hence to be about the
same time as A. So “Spot barked” and “¬(Spot barked)” are about the
same time. But then how can we formalize the following?

Dick talked only during the time that Spot didn’t bark.

We need a way to talk about all times other than those in the interval of
the time assigned to “Spot barked.” We could do so if we introduce the
following connective, where “−” indicates the set-theoretic complement
of the given set:

temporal negation n

t(n(A)) = −t(A)
v(n(A)) = T iff v(A) = F
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This can’t be defined in TLPC because given any scheme S(A) with pa-
rameters q1, . . . , qn,

t(S(A)) =
⋃

{t(p) : p appears in A} ∪ {t(qi) : i ­ 1} ⊇ t(A).

10.3. Temporal intersection

Consider:

Dick talked only during the time that both Zoe was talking
and Spot was sleeping.

For this to be true we need that each of “Dick talked,” “Zoe was talking,”
and “Spot was sleeping” are true and the time assigned to “Dick talked”
is contained in both the time assigned to “Zoe was talking” and “Spot
was sleeping.” We could formalize this if we introduce in addition to the
temporal negation connective the following connective:

temporal intersection X

t(A X B) = t(A) ∩ t(B)
v(A X B) = T iff v(A) = v(B) = T

Just as for the connective n, this cannot be defined in TLPC.

10.4. Extending TLPC?

We have seen limitations on what we can formalize with TLPC. It might
seem that we could simply add the connectives om, on, and X to the
language and then use the evaluations given above. Then we could define
any connective whose evaluation or time assignment is given in terms of
the truth-values of the atomic propositions in it and any combination
using union, intersection, and complement of the times assigned to the
atomic propositions in it. But if we do, then the time assigned to a
compound wff need no longer be a union of intervals, so that comparing
the times of compound propositions will not be straightforward.

Summary

We set out to formalize how to reason taking account of time when
the only structure of propositions we would pay attention to is how
they are built from other propositions using sentential connectives. We
take a proposition to be a sentence that is a description of the world at
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some particular time. Thus, a proposition has two semantic values: a
truth-value and a time it is meant to be about. We saw how to extend
those semantic values to compound propositions that use the standard
propositional connectives as well as connectives that formalize the “be-
fore” relation in terms of the beginning point and ending point of the
intervals of times assigned to their compounds. This allowed us to give
an axiomatization for which any complete and consistent collection of
propositions has a model. From that we have that our logic can be under-
stood as formalizing a subjective conception of time in which the timeline
can be derived from an ordering of propositions describing our experi-
ences. A series of examples of formalizing ordinary language sentences
showed how the logic can be applied. Those also showed limitations on
what we can formalize using this logic. We saw that we could formalize
some reasoning with tenses by taking a particular proposition as being
about the present and comparing others to it. We saw how we could
extend our logic to allow for reasoning about timeless propositions. We
considered also connectives that formalize omnitemporal propositions,
temporal negation, and temporal intersection, but it was not clear how
to modify our formal system to incorporate those.

This is a work in progress, a beginning only.
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