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Abstract. The purpose of this paper is to describe a set of quantified tem-
poral alethic-deontic systems, i.e., systems that combine temporal alethic-
deontic logic with predicate logic. We consider three basic kinds of systems:
constant, variable and constant and variable domain systems. These sys-
tems can be augmented by either necessary or contingent identity, and every
system that includes identity can be combined with descriptors. All logics
are described both semantically and proof theoretically. We use a kind of
possible world semantics, inspired by the so-called T × W semantics, to
characterize them semantically and semantic tableaux to characterize them
proof theoretically. We also show that all systems are sound and complete
with respect to their semantics.
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1. Introduction

The purpose of this paper is to describe a set of quantified temporal
alethic-deontic systems, i.e., systems that combine temporal alethic-
deontic logic with predicate logic. We consider three basic kinds of
systems: constant, variable and constant and variable domain systems.
These systems can be augmented by either necessary or contingent iden-
tity, and every system that includes identity can be combined with de-
scriptors. All logics are described both semantically and proof theoret-
ically. We use a kind of possible world semantics, inspired by the so-
called T × W semantics, to characterize them semantically and semantic
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tableaux to characterize them proof theoretically. We also show that all
systems are sound and complete with respect to their semantics.

Many philosophers and logicians have developed temporal alethic-
deontic logics (e.g. Chellas [13], Bailhache [1, 2], van Eck [15], Thoma-
son [39, 40], Åqvist and Hoepelman [46], Åqvist [45], Bartha [5], Horty
[25], Belnap, Perloff and Xu [6], Brown [9, 10]). The systems we de-
scribe in this essay are extensions of the systems introduced in Rönnedal
[37], which includes information about non-quantified temporal alethic-
deontic logic and some further relevant references to the literature (see
also [38], [41] and [44]).

Some brief remarks about quantified modal logic can be found in
Lewis [32] and Lewis and Langford [33]. The first systematic discussions
were presented by Barcan (Barcan-Marcus) [3, 4], and Carnap [11, 12].
Since the 50s, several philosophers and logicians have been interested in
modal predicate logic, e.g. Kanger [27], Kripke [28, 29, 30, 31] and Hin-
tikka [21, 22, 23, 24]. Other early contributions are [8, 17, 26, 34, 35, 42].1

However, the literature contains surprisingly few attempts to combine
predicate logic with systems including both temporal and alethic con-
cepts and even fewer attempts to combine predicate logic with systems
that contain temporal, alethic and deontic concepts (but see e.g. [15, 43]).
As far as I know, all systems of this kind are axiomatic. No one seems
to have developed tableau systems that combine predicate logic with
temporal alethic-deontic logic. The systems discussed in this paper are
therefore entirely new, as far as I know. So, I think that the present
study is technically well motivated.

I also think that the paper is philosophically well motivated. Unfor-
tunately we cannot consider all the philosophical reasons why. But I will
briefly mention three.

(i) The systems can be used to analyze many interesting sentences
or principles in natural languages, for instance some normative propo-
sitions. And we can use them to make important distinctions. E.g.
consider the following claims: (1) “Everyone ought always to be honest”
(“Everyone ought always to act rationally”, “Everyone ought always to
do the action that will bring about the most good”), (2) “Everyone
always ought to be honest” (“Everyone always ought to act rationally”,
“Everyone always ought to do the action that will bring about the most
good”). What does “everyone”, “always” and “ought” mean in these

1 Introductions to quantified modal logic can be found in e.g. [16, 18, 19, 26, 36].
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principles? Does “everyone” mean everyone that exists now, everyone
that exists or has existed, everyone that exists, has existed or will exist,
or every possible person? Are there any semantic differences between the
expressions “everyone ought always”, “everyone always ought”, “always
everyone ought” etc.? Is “Everyone ought always to be honest” logically
equivalent with “Everyone always ought to be honest”. In our systems
we can investigate such questions and give very precise answers.

If “everyone” is interpreted as every possible person (and we suppose
our quantifiers are restricted to persons), we can symbolize (1) as (1′)
ΠxOAHx (or as (1′′) ΠxOGHx if “always” means always in the future),
and (2) as (2′) ΠxAOHx (or as (2′′) ΠxGOHx if “always” means always
in the future). In fact, (1′) is not equivalent with (2′) (and (1′′) is not
equivalent with (2′′)) (see Theorem 7). So, it turns out to be important
exactly how we formulate our normative principles.

(ii) The systems can be used to shed some light on some philosophical
problems and debates, for instance the discussion between possibilists
and actualists, and between presentists and eternalists, even though the
systems in themselves don’t solve the problems. According to actualists
(at least according to one interpretation) everything exists. Possibilists
deny this, according to them there are things that do not exist. Is actual-
ism true or not? This seems to depend on what “everything” and “exists”
mean? Given some interpretations this thesis is true; given some it is
false. Presentism is the view that only the present is real, while eternal-
ism is the view that past and future times are just as real as the present
time. More precisely, presentism (at least according to one interpreta-
tion) is the doctrine that everything (presently) exists; while according
to eternalism past or future individuals are just as real as present in-
dividuals: they just happen to exist prior to the present, or after the
present (non-present objects are like spatially distant objects; they ex-
ist, but not where we are). According to growing block theorists the
spatio-temporal world is a growing four-dimensional block, where past
and present (but no future) objects exist. As time goes by, new entities
come into existence and the universe grows by accretion. Is presentism
true or not? Is eternalism or the growing block theory true? That seems
to depend on what we mean by “everything” and “(presently) exists”.
Given some interpretations presentism is true, given some it is false.

We will, in fact, distinguish between 27 different interpretations of
the concept “everything” and between 27 different interpretations of the
concept “exists” in this paper (see below definitions). Some of these
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seem more plausible than others, but no one is obviously “the correct
one”. If “everything” means everything that exists now, has existed or
will exist and “exists” means exists now, then presentism isn’t true. But
if “everything” means everything that exists now and “exists” means
everything that exists now, or if “everything” means everything that
exists now, has existed or will exist, and “exists” means everything that
exists now, has existed or will exist, then presentism is true.

(iii) The systems can be used to analyze and evaluate many argu-
ments that cannot be adequately analyzed in other systems. Consider,
for instance, the following argument. Everyone ought always (in the
future) to be honest. Hence, no one is permitted ever (in the future)
to be dishonest. This argument seems clearly valid, given some natural
interpretations of the concepts in the premise and conclusion. But to
prove this, it seems that we must have a system that includes deontic
and temporal operators, as well as quantifiers that can be used to sym-
bolize the expression “everyone”. And we can in fact prove that it is
valid in our systems. ¬ΣxPF¬Hx is derivable from ΠxOGHx in all our
constant and constant and variable domain systems.

The paper is divided into 6 main sections. Section 2 deals with the
syntax and Section 3 with the semantics of our systems. In Section 4
I describe the proof theory of our logics and Section 5 includes some
examples of theorems. Finally, Section 6 contains soundness and com-
pleteness proofs for every system.

2. Syntax

Our languages will be constructed from the following alphabet:
(i) a set of variables x0, x1, x2, x3, . . . ;

(ii) a set of (non-temporal, rigid) constants c0, c1, c2, c3, . . . ;
(iii) a set of (non-temporal, non-rigid) constants (descriptors) α0, α1,

α2, α3, . . . ;
(iv) a set NT of names of times (temporal constants) t0, t1, t2, t3 . . .;
(v) for every natural number n > 0, n-place predicate symbols P 0

n ,
P 1

n , P 2
n , P 3

n , . . . ;
(vi) the monadic existence predicate E;
(vii) the dyadic identity predicate =;

(viii) the primitive truth-functional connectives ¬ (negation), ∧ (con-
junction), ∨ (disjunction), → (material implication), and ↔ (ma-
terial equivalence);
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(ix) the alethic operators U, M, �, and ♦;
(x) the temporal operators R (followed by a name in NT), A, S, G, H,

F, and P;
(xi) the deontic operators O and P;
(xii) the “possibilist” quantifiers Π and Σ;

(xiii) the “actualist” quantifiers ∀ and ∃;
(xiv) the brackets ( and ).

I will use x, y and z for arbitrary variables, a, b, c for arbitrary (non-
temporal) rigid constants, α, β, γ for arbitrary descriptors, and t for
an arbitrary temporal constant (name in NT) (possibly with primes or
subscripts). Note that I also use s and t (with or without primes or
subscripts) for arbitrary terms. I will use Fn, Gn, Hn for arbitrary n-
place predicates and I will omit the subscript if it can be read off from
the context.

The symbols Π and Σ (resp. ∀ and ∃) are called “possibilist” (resp.
“actualist”) quantifiers, because it is most natural to take them to vary
over the class of every possible (resp. existing) object.2

Languages. We will consider several languages in this essay. They are
all constructed from the following clauses.

Terms:

(i) Any (non-temporal, rigid) constant or variable is a term.
(ii) Any (non-temporal, non-rigid) constant (descriptor) is a term.
(iii) Nothing else is a term.

Formulas:

(i) If t1, . . . , tn are any terms and P is any n-place predicate, Pt1 . . . tn

is an atomic formula.
(ii) If t is a term, Et (“t exists”) is an atomic formula.
(iii) If s and t are terms, then s = t (“s is identical with t”) is an

atomic formula.
(iv) If A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B), (A → B)

and (A ↔ B).
(v) If A is a formula, then UA (“it is universally (or absolutely) neces-

sary that A”), MA (“it is universally (or absolutely) possible that

2 Although most natural, I do believe that there are interpretations of the quan-
tifiers on which Π and Σ do vary over existing things, and ∀ and ∃ over a subset of
the existing things. However, I will not say anything more about this in the present
paper.
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A”), �A (“it is (historically) necessary (or settled) that A”), and
♦A (“it is (historically) possible (or open) that A”) are formulas.

(vi) If A is a formula, so are AA (“It is always the case that A”), SA
(“It is sometimes the case that A”), GA (“it is always going to be
the case that A”), HA (“it has always been the case that A”), FA
(“it will some time in the future be the case that A”), and PA (“it
was some time in the past the case that A”).

(vii) If A is a formula, then OA (“it ought to be the case that A”) and
PA (“it is permitted that A”) are formulas.

(viii) if A is a formula and t is in NT, then RtA (“it is realized at time
t that A”) is a formula.

(ix) If A is any formula and x is any variable, then ΠxA (“For ev-
ery (possible) x: A”) and ΣxA (“For some (possible) x: A”) are
formulas.

(x) If A is any formula and x is any variable, then ∀xA (“For ev-
ery (existing) x: A”) and ∃xA (“For some (existing) x: A”) are
formulas.

(xi) Nothing else is a formula.

The letters A, B, C stand for arbitrary formulas, and Γ, Φ for sets
of formulas. The concepts of bound and free variable, open and closed
formula, are defined in the usual way. (A)[t/x] is the formula obtained
by substituting t for every free occurrence of x in A. The definition is
standard. Brackets around formulas are usually dropped if the result is
not ambiguous. In some languages it is possible to define E, or ∀xA and
∃xA (see below). In [37] A and S were introduced by definitions. For our
purposes in this essay it is more natural to take them to be primitive.

All constant domain systems include the possibilist quantifiers as
primitive, but not the actualist quantifiers. All variable domain systems
include the actualist quantifiers as primitive, but not the possibilist quan-
tifiers. All systems that combine constant and variable domains include
both the possibilist and actualist quantifiers.

Definitions. (i) Alethic operators ♦–A (“it is (historically) impossible that
A”) := ¬♦A, ⊟A (“It is (historically) unnecessary (non-necessary) that
A”) := ¬�A, ▽A (“it is (historically) contingent that A”) := ♦A∧♦¬A,
△ A (“it is (historically) non-contingent that A”) := ¬▽A (or �A∨�¬A),
A ⇒ B := �(A → B), A ⇔ B := �(A ↔ B).

(ii) The deontic operator FA (“it is forbidden that A”) := ¬PA.
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(iii) The temporal operators [G]A := A ∧ GA, 〈F〉A := ¬[G]¬A (or
A ∨ FA), [H]A := A ∧ HA, 〈P〉A := ¬[H]¬A (or A ∨ PA). Let ⊙ be [H],
H, P, 〈P〉, [G], G, F, or 〈F〉. Then t⊙A := Rt ⊙ A.

We shall say that the following operators are positive modal operators:
U, M, A, S, [H], 〈P〉, H, P, [G], 〈F〉, G, F, �, ♦, O, P, Rt, t[H], t〈P〉, tH,
tP, t[G], t〈F〉, tG, tF. So, there are 25 different positive modal operators.
U, A, [H], H, [G], G, �, O, Rt, t[H], tH, t[G], and tG are necessity-like
operators. Rt and all other positive modal operators are possibility-like.
So, Rt is both necessity- and possibility-like.

(iv) Let ⊙ be a positive modal operator (or empty). Then E⊙t :=
⊙Et for every t, ∀⊙xA := Πx(E⊙x → A) = Πx(⊙Ex → A), and
∃⊙xA := Σx(E⊙x ∧ A) = Σx(⊙Ex ∧ A). Note that when ⊙ is empty,
∀⊙xA = ∀xA and ∃⊙xA = ∃xA. So, ∀xA = Πx(Ex → A) and
∃xA = Σx(Ex ∧ A). Consequently, ∀ is definable in terms of Π and
E, and ∃ is definable in terms of Σ and E.

(v) Ex := ∃yy = x, for all x. So, E is definable in terms of ∃ and =.

(vi) Ex := Σyy = x, for all x.

The symbols E, E and all of the form E⊙ are called existence predi-
cates; Π, ∀ and all symbols of the form ∀⊙ are called (universal) quan-
tifiers; Σ, ∃ and all symbols of the form ∃⊙  (particular) quantifiers.
Accordingly, since there are 25 positive modal operators, there are 27 ex-
istence predicates, 27 universal quantifiers, and 27 particular quantifiers.
The existence predicates can be used to obtain 27 possible interpreta-
tions of what we mean by “exists”, the universal quantifiers 27 possible
interpretations of what we mean by “everything”, and the particular
quantifiers 27 possible interpretations of what we mean by “something”.
Σ is the dual of Π, ∃ is the dual of ∀, and ∃⊙ is the dual of ∀⊙ (i.e., ∃M is
the dual of ∀M, ∃[H] is the dual of ∀[H] etc.). If Π and Σ are taken to vary
over all possible objects and ∀ and ∃ over all existing objects, Ex is most
naturally read “x exists” and Ex as “x is a possible object” (not as “x ex-
ists”). A presentist might want to use E to symbolize the English word
“exists”, an eternalist the symbol ES, a growing block theorist E〈P〉 etc.

Let X and Y be two positive modal operators. Then if X is the dual
of Y , then Y is the dual of X . M is the dual of U, S is the dual of A,
etc. Hence, Rt is the dual of Rt.
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3. Semantics

We will consider several different kinds of quantified temporal alethic-
deontic systems in this paper (see Section 4). Every system is either
constant, variable or constant and variable. Every system can be com-
bined with either necessary or contingent identity; and all systems that
include identity can also be augmented by descriptors. In this section
we describe the semantics of these various systems.

3.1. Constant domain semantics

All our constant domain systems include the “possibilist” quantifiers as
the only quantifiers. A (quantified temporal alethic-deontic) constant
domain model M is a relational structure 〈D, W, T, <, R, S, v〉, where D
is a non-empty set of objects, W is a non-empty set of possible worlds,
T is a non-empty set of times, < is a binary relation on T (< ⊆ T × T ),
R and S are two ternary accessibility relations (R ⊆ W × W × T and
S ⊆ W × W × T ) and v is an interpretation function.

The relation R “corresponds” to the alethic operators � and ♦, the
relation < to the temporal operators G, F, H and P, and the relation S
to the deontic operators O and P. Informally, τ < τ ′ says that the time
τ is before the time τ ′ (or that τ ′ is later than τ), Rωω′τ says that the
possible world ω′ is alethically accessible from the possible world ω at
time τ , and Sωω′τ says that ω′ is deontically accessible from ω at τ .

The function v assigns each temporal name, t, in NT a time, v(t),
in T , each (non-temporal, rigid) constant, c, an element, v(c), of D,
and each pair comprising a world-moment pair, 〈ω, τ〉, and an n-place
predicate, P , a subset, vωτ (P ) (the extension of P in ω at τ), of Dn.
In other words, vωτ (P ) is the set of n-tuples that satisfy P in the world
ω at time τ (in the world-moment pair 〈ω, τ〉). So, the extension of a
predicate may change from world-moment pair to world-moment pair
and it may be empty at a world-moment pair.

The language of a model M, L(M), is obtained by adding a constant
kd, such that v(kd) = d, to the language for every member d ∈ D.

Every closed formula, A, is assigned exactly one truth value (1 =
True or 0 = False), vωτ (A), in each world ω at every time τ (in each
world-moment pair 〈ω, τ〉). For closed atomic formulas, for A and S, and
for the “possibilist” quantifiers the truth conditions are as follows:

vωτ (Pa1 . . . an) = 1 iff 〈v(a1), . . . , v(an)〉 ∈ vωτ (P ),
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vωτ (AA) = 1 iff for all τ ′ ∈ T, vωτ ′(A) = 1,

vωτ (SA) = 1 iff for some τ ′ ∈ T, vωτ ′(A) = 1,

vωτ (ΠxA) = 1 iff for all d ∈ D, vωτ (A[kd/x]) = 1,

vωτ (ΣxA) = 1 iff for some d ∈ D, vωτ (A[kd/x]) = 1.

The truth conditions for all other sentences are as in [37].

3.2. Variable domain semantics

All our variable domain systems include the existence predicate E and
the “actualist” quantifiers as the only quantifiers. A (quantified tempo-
ral alethic-deontic) variable domain model M is a relational structure
〈D, W, T, <, R, S, v〉, where D, W , <, R, S and v are the same as in the
constant domain case, except that for every world-moment pair 〈ω, τ〉,
where ω ∈ W and τ ∈ T , v maps 〈ω, τ〉 to a subset, v(ωτ), of D. The
domain of a world-moment pair, v(ωτ) or Dωτ , is the set of all things
we quantify over in this world at this time. It is natural to take this to
be the class of all things that exist in this world at this time. For any
n-place predicate, P , vωτ (P ) ⊆ Dn (not Dn

ωτ ), and vωτ (E) is Dωτ . So,
the extension of a predicate at a world-moment pair may change from
world-moment pair to world-moment pair, it may include things that
are not in the domain of this world-moment pair, and it may be empty
at some world-moment pair. Also note that D still is non-empty, but
that Dωτ may be empty, and that the constants in our language may
denote something in a world-moment pair that is not in the domain of
this world-moment pair.

The truth conditions for the “actualist” quantifiers are as follows:

vωτ (∃xA) = 1 iff for some d ∈ Dωτ , vωτ (A[kd/x]) = 1,

vωτ (∀xA) = 1 iff for all d ∈ Dωτ , vωτ (A[kd/x]) = 1.

The truth conditions for other sentences in our language are as in
the constant domain case (Section 3.1).

3.3. Constant and variable domain semantics

The constant and variable domain semantics is the same as the variable
domain semantics, with the exception that the truth conditions for the
possibilist quantifiers are added. In particular, a constant and variable
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domain model is exactly the same as a variable domain model. The
difference between variable domain and constant and variable domain
systems lies at the syntactic level: our constant and variable domain
systems include both the possibilist and the actualist quantifiers. In a
variable domain system we cannot define the possibilist quantifiers. But
if we add the existence predicate, E, to a constant domain system, we
can define the actualist quantifiers in this system (see definitions).

3.4. Necessary identity semantics

Up until now we have assumed that the identity predicate is not part
of our language. We will now see what happens when we add this.
We will consider two kinds of semantics for the predicate: necessary and
contingent. We can combine constant, variable and constant and variable
systems with necessary identity or with contingent identity. According to
the necessary identity semantics the denotation of the identity predicate
is the same at every world-moment pair in a model, i.e., vωτ (=) :=
{〈d, d〉 : d ∈ D}.

We will only add descriptors to systems that contain the identity
predicate. Rigid constants have a denotation that is world-moment-
invariant. That is why we call them “rigid” and write v(c) and not vωτ (c).
Non-rigid constants or descriptors, however, may refer to different things
at different world-moment pairs. In a necessary identity system with
descriptors, v assigns each descriptor α an object d ∈ D at each world-
moment pair: vωτ (α) is the denotation of α in the world ω at the time τ .
For all rigid constants, a, let vωτ (a) be v(a). Then the truth conditions
for closed atomic sentences are as follows:

vωτ (Pt1 . . . tn) iff 〈vωτ (t1), . . . , vωτ (tn)〉 ∈ vωτ (P ).

For all other sentences, the truth conditions are the usual.

3.5. Contingent identity semantics

We now turn to the semantics for our contingent identity systems. A
(quantified temporal alethic-deontic, constant, variable or constant and
variable domain) model M is now a relational structure 〈D, H, W, T, <,
R, S, v〉, where W , <, R, and S are the same as in the constant, variable
or constant and variable domain cases. The elements of D are now
functions from W ×T to H. Note that D is still non-empty, but does not
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have to comprise all such functions. H is a set of objects, which we will
call substrata or manifestations. If d ∈ D, ω ∈ W and τ ∈ T , we shall
say that d(〈ω, τ〉), or |d|ωτ as we shall also write, is the manifestation
or substratum of d at the world-moment pair 〈ω, τ〉. For every (non-
temporal, rigid) constant, c, v(c) ∈ D, and for every world-moment pair,
〈ω, τ〉, and n-place predicate, P , vωτ (P ) is a subset of Hn, not Dn. The
interpretation of the identity predicate, vωτ (=), is the world-moment-
invariant set {〈h, h〉 : h ∈ H}. Let M be a variable domain model. Then
v(ωτ) := Dωτ := {d ∈ D : |d|ωτ ∈ vωτ (E)}.

The truth conditions for closed atomic formulas are as follows:

vωτ (Pa1 . . . an) = 1 iff 〈|v(a1)|ωτ , . . . , |v(an)|ωτ〉 ∈ vωτ (P ).

For all the other sentences, the truth conditions remain the same.
We can add descriptors to a contingent identity system. Every de-

scriptor then denotes a member of D at each world-moment pair, possibly
different members at different pairs. Let vωτ (t) be v(t), if t is a (non-
temporal) rigid constant Then the truth conditions for closed atomic
sentences are as follows:

vωτ (Pt1 . . . tn) = 1 iff 〈|vωτ (t1)|ωτ , . . . , |vωτ(tn)|ωτ〉 ∈ vωτ (P ).

The concepts of validity, satisfiability, logical consequence etc. are es-
sentially defined as in [37]. The definitions are the same for all our
semantics.

3.6. Conditions on models

In [37] various frame- and modelconditions were mentioned. All of these
conditions may also be imposed on our quantified temporal alethic-
deontic models, with the exception that the conditions on the valuation
function have to be modified slightly (see Table 2).

In this section we will also consider some further conditions. We
mention three new conditions on <: C-C, as in comparability; C-UB, as
in upper bounds; and C-LB, as in lower bounds (see Table 1); and some
domain-inclusion (or Barcan) conditions, which say something about
the relations between the different domains of different world-moment
pairs (see Table 3). C-ACBF, for instance, says that if the world ωj is
alethically accessible from ωi at τ , then the domain of ωi at τ is a subset
of the domain of ωj at τ . The other rules are interpreted similarly.
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Condition Formalization of condition
C-C For all τi, τj : τi < τj or τi = τj or τj < τi.
C-UB For all τi, τj , τk : if τi < τj and τi < τk,

then for some τl : τj < τl and τk < τl.
C-LB For all τi, τj , τk : if τj < τi and τk < τi,

then for some τl : τl < τj and τl < τk.

Table 1. Conditions on the relation <

Condition Formalization of condition
C-FT If Rω1ω2τ and A is an atomic sentence true in ω1 at τ ,

then A is true in ω2 at τ .
C-BT If Rω1ω2τ and A is an atomic sentence true in ω2 at τ ,

then A is true in ω1 at τ .

Table 2. Conditions on the valuation function v in a model

Condition Formalization of condition
C-TBF If τi < τj , then Dωτj

⊆ Dωτi
.

C-TCBF If τi < τj , then Dωτi
⊆ Dωτj

.
C-ABF If Rωiωjτ , then Dωj τ ⊆ Dωiτ .
C-ACBF If Rωiωjτ , then Dωiτ ⊆ Dωj τ .
C-DBF If Sωiωjτ , then Dωj τ ⊆ Dωiτ .
C-DCBF If Sωiωjτ , then Dωiτ ⊆ Dωj τ .

Table 3. Domain-inclusion (Barcan) conditions

3.7. Model classes and the logic of a class of models

In [37] 31 modelconditions were mentioned, and in this paper we have
introduced 9 new (2 conditions are modifications of the conditions on
the valuation function). So, all in all we have 40 different conditions.
These can be used to obtain a categorization of the set of all models into
various kinds. There are 240 different combinations of these conditions.
In general, we shall say that CM(C1, . . . , Cn) is the class of all constant
domain models that satisfy the conditions C1, . . . , Cn. VM(C1, . . . , Cn)
is the class of all variable domain models that satisfy the conditions C1,
. . . , Cn. Moreover, CVM(C1, . . . , Cn) is the class of all constant and
variable domain models that satisfy the conditions C1, . . . , Cn. If we are
considering necessary or contingent identity semantics, we add NI or CI,
respectively. And if the underlying language includes descriptors, we add
a D. For example, CVM(C-FT, C-BT)NID is the class of all constant
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Π Σ ¬Π ¬Σ
ΠxA, witj ΣxA, witj ¬ΠxA, witj ¬ΣxA, witj

↓ ↓ ↓ ↓
A[a/x], witj A[c/x], witj Σx¬A, witj Πx¬A, witj

for every constant a where c is new
on the branch, to the branch

a new if there are no
constants on the branch

Table 4. Possibilist quantifiers

∀ ∃ ¬∀ ¬∃
∀xA, witj ∃xA, witj ¬∀xA, witj ¬∃xA, witj

ւց ↓ ↓ ↓
¬Ea, witj A[a/x], witj Ec, witj ∃x¬A, witj ∀x¬A, witj

for every constant a A[c/x], witj

on the branch, where c is new
a new if there are no to the branch

constants on the branch

Table 5. Actualist quantifiers

and variable domain models with necessary identity and descriptors that
satisfy the conditions C-FT and C-BT. The concept of the logical system
of a class of models is defined as in [37].

4. Proof theory

4.1. Semantic tableaux. Tableau rules

The kind of semantic tableau system we use is mainly inspired by Gra-
ham Priest [36]. For more information about tableau methods, see e.g.
Fitting and Mendelsohn [16], and D’Agostino et al. [14]. The concepts
of semantic tableau, branch, open and closed branch etc. are essentially
defined as in [37]. Also in [37] a large set of tableau rules were introduced:
propositional rules, basic temporal, alethic and deontic rules, temporal,
alethic, deontic accessibility rules, alethic-deontic accessibility rules etc.
We use these and some new rules discussed in this section to construct
our tableau systems (see Tables 4 and 5).

The derived rules in Table 6 hold in every constant and variable
domain system that includes the definitions.
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∀⊙ ∃⊙ ¬∀⊙ ¬∃⊙

∀⊙xA, witj ∃⊙xA, witj ¬∀⊙xA, witj ¬∃⊙xA, witj

E⊙a, witj ↓ ↓ ↓
↓ E⊙c, witj ∃⊙x¬A, witj ∀⊙x¬A, witj

A[a/x], witj A[c/x], witj

where c is new
to the branch

Table 6. Derived rules

Note that in Table 6 the symbols a and c in the quantifier rules are
rigid constants; we never instantiate with descriptors. a is any constant
on the branch and c is a constant new to the branch.

A ¬A S ¬S
AA, witj ¬AA, witj SA, witj ¬SA, witj

↓ ↓ ↓ ↓
A, witk S¬A, witj A, witk A¬A, witj

for every tk where tk is new
on the branch to the branch

Table 7. Temporal rules

T-C T-UB T-LB
ti, tj ti < tj tj < ti

ւ ↓ ց ti < tk tk < ti

ti < tj ti = tj tj < ti ↓ ↓
tj < tl tl < tj

tk < tl tl < tk

where tl is new where tl is new
to the branch to the branch

Table 8.

Note that in Table 9 T-ACBF is derivable from T-ABF and T-aB,
and T-ABF from T-ACBF and T-aB. Furthermore, T-ABF is derivable
from T-BT and T-ACBF from T-FT. T-DBF follows from T-ABF and
T-MO and T-DCBF from T-ACBF and T-MO.3

3 In the domain-inclusion rules, the second “T” stands for “temporal”, “A” for
“alethic”, “D” for “deontic”, “C” for “converse”, and “BF” for “Barcan formula”.
T-aB, T-FT, T-BT and T-MO are introduced in [37].
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T-ABF T-DBF T-TBF
Ea, wjtk Ea, wjtk Ea, witk

rwiwjtk swiwjtk tj < tk

↓ ↓ ↓
Ea, witk Ea, witk Ea, witj

T-ACBF T-DCBF T-TCBF
Ea, witk Ea, witk Ea, witj

rwiwjtk swiwjtk tj < tk

↓ ↓ ↓
Ea, wjtk Ea, wjtk Ea, witk

Table 9. Domain-inclusion (Barcan) rules

T-R= T-S= T-N= T-D=
∗ s = t, witj a = b, witj ∗
↓ A[s/x], witj ↓ ↓

t = t, witj ↓ a = b, wktl c = α, witj

for every t A[t/x], witj for any where c is new
on the branch where A wk and tl to the branch

is atomic for every α, wi and tj

on the branch

Table 10. Identity rules and the descriptor rule

Moreover, in Table 10 (T-R=) and (T-S=) can be applied to both
rigid constants and descriptors. (T-N=) is applied only if both terms,
a and b, are rigid constants. In (T-D=) c is a rigid constant and α is
a descriptor. (T-S=) is applied only within “world-moment pairs”, and
we only apply the rule when A is atomic. However, in systems with
necessary identity, it is in general true that A[b/x] follows from a = b
and A[a/x]. And in systems with contingent identity this is true when
x is not in the scope of a modal operator.4

4.2. Tableau systems

The concepts of tableau system, temporal alethic-deontic tableau system
etc. are essentially defined as in [37], with the exception that every
temporal alethic-deontic tableau system now also includes the rules A,
¬A, S, and ¬S.

4 In the identity rules and the descriptor rule “R” stands for “reflexive”, “S” for
“substitution (of identities)”, “N” for “necessary identity” and “D” for “descriptor”.
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Let S be a temporal alethic-deontic tableau system. Then CS , a
constant domain quantified temporal alethic-deontic tableau system, is
S augmented by the rules for the possibilist quantifiers; VS , a vari-
able domain quantified temporal alethic-deontic tableau system, is S aug-
mented by the rules for the actualist quantifiers; and CVS , a constant
and variable domain quantified temporal alethic-deontic tableau system,
is S augmented by the rules for the possibilist and actualist quantifiers.

Any tableau system that includes T-C also includes Id(I) and Id(II)
(see [37]). Any subset of the domain-inclusion (Barcan) rules may also
be added to our systems.

Let S be a quantified temporal alethic-deontic tableau system with-
out identity. Then SNI is S augmented by the rules for necessary iden-
tity, i.e., (T-R=), (T-S=) and (T-N=); SCI is S augmented by the
rules for contingent identity, i.e., (T-R=) and (T-S=); SNID is SNI
augmented by the rule for descriptors, i.e., (T-D=); and SCID is SCI
augmented by (T-D=).

For example, CVaTdDadMOOCt4CadtSPABFACBFNID is the con-
stant and variable domain quantified temporal alethic-deontic tableau
system with necessary identity and descriptors that includes (T-aT), (T-
dD), (T-MO), (T-OC), (T-t4), (T-SP), Id(I), Id(II) (introduced in [37]),
(T-C), (T-ABF), (T-ACBF), the rules for the possibilist and actualist
quantifiers, (T-R=), (T-S=), (T-N=) and (T-D=).

4.3. Some proof-theoretical concepts

The concepts of proof, theorem, derivation, consistency, inconsistency in
a system, the logic of a tableau system etc. are defined as in [37]. An
arbitrary formula A (a schema) is a theorem in the system S just in case
every (closed) instance of A is a theorem in S. We also speak about
theorems, derivations etc. with assumptions. These concepts were used
in [37] but never explicitly defined. Here are the definitions.

Let ⊳ be < or =. Then A is a theorem in S with the assumptions
v(t1) ⊳ v(t2), v(t3) ⊳ v(t4), . . . iff there is a closed S-tableau whose initial
list comprises t1 ⊳ t2, t3 ⊳ t4, . . . and ¬A, w0t0.

A derivation in the system S of B from the (finite) set of formulas Γ
with the assumptions v(t1)⊳v(t2), v(t3)⊳v(t4), . . . , is a closed S-tableau
whose initial list comprises t1 ⊳ t2, t3 ⊳ t4, . . . , A, w0t0 for every A ∈ Γ
and ¬B, w0t0. Etc.

Obviously, we can also speak about validity of sentences and argu-
ments with assumptions in models in a similar sense. Our soundness
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and completeness theorems can then be extended so that they include
theorems and derivations with assumptions in a straightforward way.

Some theorems with assumptions were mentioned in [37]. For exam-
ple, Rt′�RtA → Rt�RtA is a theorem in the system adtSP given that
v(t′) < v(t) (for a proof, see [38, p. 299]). Since this system is sound with
respect to the class of all models that satisfy C-SP, Rt′�RtA → Rt�RtA
is valid on this class given that v(t′) < v(t). We can in fact prove
something slightly stronger, namely that Rt′�Rt′′A → Rt�Rt′′A is a
theorem in the system adtSP given that v(t′) < v(t). According to this
theorem, if it is necessary that at time v(t′′) it is the case that A, then
at every later time it is also necessary that at v(t′′) A. E.g. if it is now
(today) (historically) necessary that I was in Stockholm yesterday, then
at any time after today, it will be (historically) necessary that I was in
Stockholm on that day (see [15]).

5. Examples of theorems

In this section we will consider some theorems in some systems. If not
otherwise stated S will denote a constant and variable domain system
that includes all definitions of all non-primitive concepts. All proofs are
omitted; in most cases they are straightforward.

UA
ւ ց
AA ↓ AA AA
↓ ↓ ւ ց

[H]A �A [G]A �A t[H]A ↓ t[G]A
↓ ց ↓ ւ ↓ ↓ ↓ ց ւ ↓
HA GA OA tHA tGA
↓ A ↓ ↓ ↓ RtA ↓
PA ւ ↓ ց FA PA tPA ւ ↓ ց tFA
↓ ↓ ↓ ↓ ↓

〈P〉A ♦A 〈F〉A ♦A t〈P〉A t〈P〉A
↓ ↓ ց ւ
SA ↓ SA SA
ց ւ

MA

Figure 1.
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EU a
ւ ց

EAa ↓ EAa E�a EAa
↓ ↓ ↓ ւ ց

E[H]a E�a E[G]a EOa Et[H]
a ↓ Et[G]

a

↓ ց ↓ ւ ↓ ↓ ↓ ց ւ ↓
EHa EGa EP a EtHa EtGa

↓ Ea ↓ ↓ ↓ ERta ↓
EPa ւ ↓ ց EFa E♦a EtPa ւ ↓ ց EtFa

↓ ↓ ↓ ↓ ↓
E〈P〉a E♦a E〈F〉a EM a Et〈P〉

a Et〈F〉
a

↓ ↓ ↓ ց ւ
ESa ↓ ESa Ea ESa
ց ւ

EM a

Figure 2.

Theorem 1. (i) HA implies PA and tHA implies tPA in every S that
includes T-PD. GA implies FA and tGA implies tFA in every S that in-
cludes T-FD. �A implies A and A implies ♦A in every S that includes
T-aT. �A implies OA and PA implies ♦A in every S that includes
T-MO. OA implies PA in every S that includes T-dD. All other impli-
cations in Figure 1 hold in every S.

(ii) All implications in Figure 2 hold in S with similar provisos as in
the part (i).

(iii) ∀xA implies ∀�xA, ∀♦xA implies ∀xA, ∃�xA implies ∃xA, and
∃xA implies ∃♦xA in every S that includes T-aT. If S includes T-
FD, then all of the following implications hold in S: ∀FxA → ∀GxA,
∃GxA → ∃FxA, ∀tFxA → ∀tGxA, ∃tGxA → ∃tFxA. If S includes T-
PD, then all of the following implications hold in S: ∀PxA → ∀HxA,
∃HxA → ∃PxA, ∀tPxA → ∀tHxA, ∃tHxA → ∃tPxA. If S includes T-
MO, then all of the following implications hold in S: ∃�xA → ∃OxA,
∃P xA → ∃♦xA, ∀♦xA → ∀P xA and ∀OxA → ∀�xA. If S includes
T-dD, then the following implications hold in S: ∃OxA → ∃P xA and
∀P xA → ∀OxA. All other implications in Figures 3 and 4 hold in every S.

Theorem 2. (i) Let ⊙ be a positive modal operator or empty. (When
⊙ is empty, ∀⊙xFx = ∀xFx and ∃⊙xFx = ∃xFx.) Then all formulas
in Table 11 are theorems in S.
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∃U xA ΠxA
ւ ց ↓

∃AxA ↓ ∃AxA ∀M xA
↓ ↓ ւ ց

∃[H]xA ∃�xA ∃[G]xA ∃�xA ∀SxA ↓ ∀SxA
↓ ց ↓ ւ ↓ ↓ ↓ ↓

∃HxA ∃GxA ∃OxA ∀♦xA ∀〈P〉xA ∀♦xA ∀〈F〉xA
↓ ∃xA ↓ ↓ ↓ ↓ ց ↓ ւ ↓

∃PxA ւ ↓ ց ∃FxA ∃P xA ∀P xA ∀PxA ∀FxA
↓ ↓ ↓ ↓ ↓ ∀xA ↓

∃〈P〉xA ∃♦xA ∃〈F〉xA ∃♦xA ∀OxA ∀HxA ւ ↓ ց ∀GxA
↓ ↓ ↓ ↓ ↓

∃SA ↓ ∃SxA ∀�xA ∀[H]xA ∀�xA ∀[G]xA
ց ւ ↓ ↓

∃M xA ∀AA ↓ ∀AxA
↓ ց ւ

ΣxA ∀U xA

Figure 3.

∃AA ∀SA
ւ ց ւ ց

∃t[H]
A ↓ ∃t[G]

A ∀t〈P〉
A ↓ ∀t〈F〉

A

↓ ց ւ ↓ ↓ ց ւ ↓
∃tHA ∃tGA ∀tPA ∀tFA

↓ ∃RtA ↓ ↓ ∀RtA ↓
∃tPA ւ ↓ ց ∃tFA ∀tHA ւ ↓ ց ∀tGA

↓ ↓ ↓ ↓
∃t〈P〉

A ∃t〈F〉
A ∀t[H]

A ∀t[G]
A

ց ւ ց ւ
∃SA ∀AA

Figure 4.

(ii) Not all instances of the schemas in Table 12 are theorems in
every S.

(iii) Replace every occurrence of ∀⊙ with Π and every occurrence of
∃⊙ with Σ in the schemas in Tables 11 and 12. Then the resulting for-
mulas are theorems in every S. (Π and Σ behave as classical quantifiers,
and ∀⊙ and ∃⊙ as quantifiers in positive free logic.)

Theorem 3. Let ∀S and ∀W be two universal quantifiers such that ∀S is
stronger than ∀W in S (i.e., ∀SA implies ∀W A in S), and let ∃S and ∃W
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∀⊙xFx ↔ ¬∃⊙x¬Fx ∃⊙xFx ↔ ¬∀⊙x¬Fx

∀⊙x¬Fx ↔ ¬∃⊙xFx ∃⊙x¬Fx ↔ ¬∀⊙xFx

(∀⊙xFx ∧ E⊙a) → Fa (Fa ∧ E⊙a) → ∃⊙xFx

∀⊙x(Fx → Gx) ↔ ¬∃⊙x(Fx ∧ ¬Gx) ∀⊙x(Fx → ¬Gx) ↔ ¬∃⊙x(Fx ∧ Gx)
∃⊙x(Fx ∧ Gx) ↔ ¬∀⊙x(Fx → ¬Gx) ∃⊙x(Fx ∧ ¬Gx) ↔ ¬∀⊙x(Fx → Gx)
∀⊙x(Fx ↔ Fx) ∀⊙x(Fx ∨ ¬Fx)
¬∃⊙x(Fx ∧ ¬Fx) ∀⊙x¬(Fx ∧ ¬Fx)
¬∃⊙xFx → ∀⊙x(Fx → Gx) ∃⊙x(Fx → Gx) → (∀⊙xFx → ∃⊙xGx)
∀⊙xFx ↔ ∀⊙yFy ∃⊙xFx ↔ ∃⊙yFy

∀⊙x∀⊙yFxy ↔ ∀⊙y∀⊙xFxy ∃⊙x∃⊙yFxy ↔ ∃⊙y∃⊙xFxy

∀⊙x(Fx ∧ Gx) ↔ (∀⊙xFx ∧ ∀⊙xGx) ∃⊙x(Fx ∧ Gx) → (∃⊙xFx ∧ ∃⊙xGx)
∃⊙x(Fx ∨ Gx) ↔ (∃⊙xFx ∨ ∃⊙xGx) (∀⊙xFx ∨ ∀⊙xGx) → ∀⊙x(Fx ∨ Gx)
∀⊙x(Fx → Gx) → (∀⊙xFx → ∀⊙xGx) ∀⊙x(Fx → Gx) → (∃⊙xFx → ∃⊙xGx)
∀⊙x(Fx ↔ Gx) → (∀⊙xFx ↔ ∀⊙xGx) ∀⊙x(Fx ↔ Gx) → (∃⊙xFx ↔ ∃⊙xGx)

Table 11.

∀⊙xFx → Fa Fa → ∃⊙xFx

∀⊙xFx → ∃⊙xFx ∃⊙xFx ∨ ∃⊙x¬Fx

¬(∀⊙xFx ∧ ∀⊙x¬Fx) ∀⊙x¬Fx → ¬∀⊙xFx

(∀⊙xFx ∧ ∀⊙xGx) → ∃⊙x(Fx ∧ Gx) ∀⊙x(Fx ∧ Gx) → (∃⊙xFx ∧ ∃⊙xGx)
(∀⊙xFx ∨ ∀⊙xGx) → ∃⊙x(Fx ∨ Gx) ∀⊙x(Fx ∨ Gx) → (∃⊙xFx ∨ ∃⊙xGx)
(∃⊙xFx → ∃⊙xGx) → ∃⊙x(Fx → Gx) (∀⊙xFx → ∀⊙xGx) → ∃⊙x(Fx → Gx)

Table 12.

∀Sx(A ∧ B) → (∀W A ∧ ∀W B) ∀Sx(A ↔ B) → (∀W A ↔ ∀W B)
(∀SxA ∨ ∀SxB) → ∀W (A ∨ B) ∀Sx(A ↔ B) → (∃W xA ↔ ∃W xB)
(∀SxA ∧ ∀SxB) → ∀W (A ∧ B) ∀Sx(A ↔ B) → (¬∃W xA ↔ ¬∃W xB)
∃W x(A ∧ B) → (∃SxA ∧ ∃SxB) (∀W xA ∧ ∀Sx(A → B)) → ∀W xB

∃W x(A ∨ B) → (∃SxA ∨ ∃SxB) ∀Sx(A → B) → (∀W xA → ∀W xB)
(∃W xA ∨ ∃W xB) → ∃Sx(A ∨ B) (∃W xA ∧ ∀Sx(A → B)) → ∃W xB

¬∃Sx(A ∨ B) → (¬∃W xA ∧ ¬∃W xB) ∀Sx(A → B) → (∃W xA → ∃W xB)
(¬∃SxA ∨ ¬∃SxB) → ¬∃W x(A ∧ B) (¬∃W xB ∧ ∀Sx(A → B)) → ¬∃W xA

(¬∃SxA ∧ ¬∃SxB) → ¬∃W x(A ∨ B) ∀Sx(A → B) → (¬∃W xB → ¬∃W xA)
∀Sx(A → B) → (∀SxA → ∀W xB) ∀Sx(A → B) → (∃W xA → ∃SxB)
∀Sx(A → B) → (¬∃SxB → ¬∃W xA) (∀W x(A ∨ B) ∧ ¬∃SxB) → ∀W xA

Table 13.

be the duals of ∀S and ∀W , respectively. Then all formulas in Tables 13
and 14 are theorems in S.

Theorem 4. (i) All formulas in Tables 15, 16 and 17 are theorems in S.
(ii) Let A be a formula in Table 15, 16 or 17. Let B be the result

of replacing every occurrence of ∀ in A by any universal quantifier, Q,
every occurrence of ∃ with the dual of Q, every occurrence of � by any
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∀Sx((A ∨ B) → C) → ((∀W xA ∨ ∀W xB) → ∀W xC)
∀Sx((A ∨ B) → C) → ((∃W xA ∨ ∃W xB) → ∃W xC)
∀Sx((A ∨ B) → C) → (¬∃W xC → (¬∃W xA ∧ ¬∃W xB))
∀Sx(A → (B ∨ C)) → (∃W xA → (∃W xB ∨ ∃W xC))
∀Sx(A → (B ∨ C)) → ((¬∃W xB ∧ ¬∃W xC) → ¬∃W xA)
∀Sx((A ∧ B) → C) → ((∀W xA ∧ ∀W xB) → ∀W xC)
∀Sx(A → (B ∧ C)) → (∀W xA → (∀W xB ∧ ∀W xC))
∀Sx(A → (B ∧ C)) → (∃W xA → (∃W xB ∧ ∃W xC))
∀Sx(A → (B ∧ C)) → ((¬∃W xB ∨ ¬∃W xC) → ¬∃W xA)
(∀W x(A ∨ B) ∧ (∀Sx(A → C) ∧ ∀Sx(B → C))) → ∀W xC

(∀W x(A ∨ B) ∧ (∀Sx(A → C) ∧ ∀Sx(B → D))) → ∀W x(C ∨ D)
(∀W xA ∧ (∀Sx(A → B) ∧ ∀Sx(A → C))) → (∀W xB ∧ ∀W xC)
(∀W x(A ∧ B) ∧ (∀Sx(A → C) ∨ ∀Sx(B → D))) → ∀W x(C ∨ D)
(∀W xA ∧ (∀Sx(A → B) ∨ ∀Sx(A → C))) → ∀W x(B ∨ C)
(∀W x(A ∧ B) ∧ (∀Sx(A → C) ∧ ∀Sx(B → D))) → (∀W xC ∧ ∀W xD)

Table 14.

�∀x(A → B) ↔ ♦–∃x(A ∧ ¬B) �∀x(A → ¬B) ↔ ♦–∃x(A ∧ B)
�∃x(A ∧ B) ↔ ♦–∀x(A → ¬B) �∃x(A ∧ ¬B) ↔ ♦–∀x(A → B)
∀x�(A ∧ B) ↔ ∀x(�A ∧ �B) ∃x♦(A ∨ B) ↔ ∃x(♦A ∨ ♦B)
∀x♦(A ∨ B) ↔ ∀x(♦A ∨ ♦B) ∃x�(A ∧ B) ↔ ∃x(�A ∧ �B)
∀x♦(A ∧ B) → ∀x(♦A ∧ ♦B) ∃x(�A ∨ �B) → ∃x�(A ∨ B)
∃x♦(A ∧ B) → ∃x(♦A ∧ ♦B) ∀x(�A ∨ �B) → ∀x�(A ∨ B)
∀x♦–(A ∨ B) ↔ ∀x(♦–A ∧ ♦–B) ∃x♦–(A ∨ B) ↔ ∃x(♦–A ∧ ♦–B)
∀x(♦–A ∨ ♦–B) → ∀x♦–(A ∧ B) ∃x(♦–A ∨ ♦–B) → ∃x♦–(A ∧ B)
∀x�(A → B) → ∀x(�A → �B) ∀x�(A → B) → ∀x(♦A → ♦B)
∀x�(A ↔ B) → ∀x(�A ↔ �B) ∀x�(A ↔ B) → ∀x(♦A ↔ ♦B)
∀x�(A → B) → ∀x(♦–B → ♦–A) ∀x�(A ↔ B) → ∀x(♦–A ↔ ♦–B)

Table 15.

positive necessity-like modal operator, L, every occurrence of ♦ by the
dual, M , of L, ⊟ by ¬L and ♦– by ¬M . Then B is a theorem in S.

Theorem 5. Let � and O be two (positive) necessity-like modal oper-
ators such that � is stronger than O in S (i.e., �A → OA is a theorem
in S), let ♦ and P be the duals of � and O, respectively, and let ∀ be
any universal quantifier, and ∃ the dual of ∀. Then all of the formulas
in Tables 18 and 19 hold in S.

Theorem 6. (i) If S includes T-ABF, then ∀x�A → �∀xA and ♦∃xA
→ ∃x♦A are theorems in S. If it includes T-ACBF, then �∀xA → ∀x�A,
∃x♦A → ♦∃xA, ♦∀xA → ∀x♦A, and ∃x�A → �∃xA are theorems in S.
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�∀x(A ∧ B) ↔ (�∀xA ∧ �∀xB) ♦∃x(A ∨ B) ↔ (♦∃xA ∨ ♦∃xB)
♦∀x(A ∧ B) → (♦∀xA ∧ ♦∀xB) (�∃xA ∨ �∃xB) → �∃x(A ∨ B)
∀x�(A ∧ B) ↔ (∀x�A ∧ ∀x�B) ∃x♦(A ∨ B) ↔ (∃x♦A ∨ ∃x♦B)
∀x♦(A ∧ B) → (∀x♦A ∧ ∀x♦B) (∃x�A ∨ ∃x�B) → ∃x�(A ∨ B)
(�∀xA ∨ �∀xB) → �∀x(A ∨ B) ♦∃x(A ∧ B) → (♦∃xA ∧ ♦∃xB)
(♦∀xA ∨ ♦∀xB) → ♦∀x(A ∨ B) �∃x(A ∧ B) → (�∃xA ∧ �∃xB)
(∀x�A ∨ ∀x�B) → ∀x�(A ∨ B) ∃x♦(A ∧ B) → (∃x♦A ∧ ∃x♦B)
(∀x♦A ∨ ∀x♦B) → ∀x♦(A ∨ B) ∃x�(A ∧ B) → (∃x�A ∧ ∃x�B)
∀x♦–(A ∨ B) ↔ (∀x♦–A ∧ ∀x♦–B) (∃x ⊟ A ∨ ∃x ⊟ B) ↔ ∃x ⊟ (A ∧ B)
∃x♦–(A ∨ B) → (∃x♦–A ∧ ∃x♦–B) (∀x ⊟ A ∨ ∀x ⊟ B) → ∀x ⊟ (A ∧ B)
(∃x♦–A ∨ ∃x♦–B) → ∃x♦–(A ∧ B) ∀x ⊟ (A ∨ B) → (∀x ⊟ A ∧ ∀x ⊟ B)
(∀x♦–A ∨ ∀x♦–B) → ∀x♦–(A ∧ B) ∃x ⊟ (A ∨ B) → (∃x ⊟ A ∧ ∃x ⊟ B)

Table 16.

�∀x(A → B) → (�∀xA → �∀xB) �∀x(A → B) → (♦∀xA → ♦∀xB)
�∀x(A → B) → (�∃xA → �∃xB) �∀x(A → B) → (♦∃xA → ♦∃xB)
∀x�(A → B) → (∀x�A → ∀x�B) ∀x�(A → B) → (∀x♦A → ∀x♦B)
∀x�(A → B) → (∃x�A → ∃x�B) ∀x�(A → B) → (∃x♦A → ∃x♦B)
�∀x(A → B) → (♦–∀xB → ♦–∀xA) �∀x(A → B) → (♦–∃xB → ♦–∃xA)
∀x�(A → B) → (∀x♦–B → ∀x♦–A) ∀x�(A → B) → (∃x♦–B → ∃x♦–A)
�∀x(A ↔ B) → (�∀xA ↔ �∀xB) �∀x(A ↔ B) → (♦∀xA ↔ ♦∀xB)
�∀x(A ↔ B) → (�∃xA ↔ �∃xB) �∀x(A ↔ B) → (♦∃xA ↔ ♦∃xB)
∀x�(A ↔ B) → (∀x�A ↔ ∀x�B) ∀x�(A ↔ B) → (∀x♦A ↔ ∀x♦B)
∀x�(A ↔ B) → (∃x�A ↔ ∃x�B) ∀x�(A ↔ B) → (∃x♦A ↔ ∃x♦B)
�∀x(A ↔ B) → (♦–∀xA ↔ ♦–∀xB) �∀x(A ↔ B) → (♦–∃xA ↔ ♦–∃xB)
∀x�(A ↔ B) → (∀x♦–A ↔ ∀x♦–B) ∀x�(A ↔ B) → (∃x♦–A ↔ ∃x♦–B)

Table 17.

∀x�(A ∧ B) → (∀xOA ∧ ∀xOB) ∀x�(A ↔ B) → (∀xOA ↔ ∀xOB)
(∀x�A ∨ ∀x�B) → ∀xO(A ∨ B) ∀x�(A ↔ B) → (∀xPA ↔ ∀xPB)
(∀x�A ∧ ∀x�B) → ∀xO(A ∧ B) ∀x�(A ↔ B) → (∀x¬PA ↔ ∀x¬PB)
∀xP(A ∧ B) → (∀x♦A ∧ ∀x♦B) (∀xOA ∧ ∀x�(A → B)) → ∀xOB

∃xP(A ∨ B) → (∃x♦A ∨ ∃x♦B) ∀x�(A → B) → (∀xOA → ∀xOB)
(∃xPA ∨ ∃xPB) → ∃x♦(A ∨ B) (∀xPA ∧ ∀x�(A → B)) → ∀xPB

∀x¬♦(A ∨ B) → (∀x¬PA ∧ ∀x¬PB) ∀x�(A → B) → (∀xPA → ∀xPB)
(∃x¬♦A ∨ ∃x¬♦B) → ∃x¬P(A ∧ B) (∀x¬PB ∧ ∀x�(A → B)) → ∀x¬PA

(∀x¬♦A ∧ ∀x¬♦B) → ∀x¬P(A ∨ B) ∀x�(A → B) → (∀x¬PB → ∀x¬PA)
∀x�(A → B) → (∀x�A → ∀xOB) ∀x�(A → B) → (∀xPA → ∀x♦B)
∀x�(A → B) → (∀x¬♦B → ∀x¬PA) (∀xO(A ∨ B) ∧ ∀x¬♦B) → ∀xOA

Table 18.

(ii) If S includes T-DBF, then ∀xOA → O∀xA and P∃xA → ∃xPA
are theorems in S. If it includes T-DCBF, then O∀xA → ∀xOA,
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∀x�((A ∨ B) → C) → ((∃xOA ∨ ∃xOB) → ∃xOC)
∀x�((A ∨ B) → C) → ((∃xPA ∨ ∃xPB) → ∃xPC)
∀x�((A ∨ B) → C) → (∀x¬PC → (∀x¬PA ∧ ∀x¬PB))
∀x�(A → (B ∨ C)) → (∃xPA → (∃xPB ∨ ∃xPC))
∀x�(A → (B ∨ C)) → ((∀x¬PB ∧ ∀x¬PC) → ∀x¬PA)
∀x�((A ∧ B) → C) → ((∀xOA ∧ ∀xOB) → ∀xOC)
∀x�(A → (B ∧ C)) → (∀xOA → (∀xOB ∧ ∀xOC))
∀x�(A → (B ∧ C)) → (∀xPA → (∀xPB ∧ ∀xPC))
∀x�(A → (B ∧ C)) → ((∃x¬PB ∨ ∃x¬PC) → ∃x¬PA)
(∀xO(A ∨ B) ∧ (∀x�(A → C) ∧ ∀x�(B → C))) → ∀xOC

(∀xO(A ∨ B) ∧ (∀x�(A → C) ∧ ∀x�(B → D))) → ∀xO(C ∨ D)
(∀xOA ∧ (∀x�(A → B) ∧ ∀x�(A → C))) → (∀xOB ∧ ∀xOC)
(∀xO(A ∧ B) ∧ ∀x(�(A → C) ∨ �(B → D))) → ∀xO(C ∨ D)
(∀xOA ∧ ∀x(�(A → B) ∨ �(A → C))) → ∀xO(B ∨ C)
(∀xO(A ∧ B) ∧ (∀x�(A → C) ∧ ∀x�(B → D))) → (∀xOC ∧ ∀xOD)

Table 19.

∃xPA → P∃xA, P∀xA → ∀xPA, and ∃xOA → O∃xA are theorems
in S.

(iii) If S includes T-TBF, then the following sentences are theorems
in S: ∀xGA → G∀xA, F∃xA → ∃xFA, H∀xA → ∀xHA, ∃xPA → P∃xA,
∀x[G]A → [G]∀xA, 〈F〉∃xA → ∃x〈F〉A, [H]∀xA → ∀x[H]A, ∃x〈P〉A →
〈P〉∃xA, P∀xA → ∀xPA, ∃xHA → H∃xA, 〈P〉∀xA → ∀x〈P〉A, ∃x[H]A →
[H]∃xA.

(iv) If S includes T-TCBF, then the following sentences are theorems
in S: G∀xA → ∀xGA, ∃xFA → F∃xA, ∀xHA → H∀xA, P∃xA → ∃xPA,
[G]∀xA → ∀x[G]A, ∃x〈F〉A → 〈F〉∃xA, ∀x[H]A → [H]∀xA, 〈P〉∃xA →
∃x〈P〉A, F∀xA → ∀xFA, ∃xGA → G∃xA, 〈F〉∀xA → ∀x〈F〉A, ∃x[G]A →
[G]∃xA.

(v) If S doesn’t contain any domain-inclusion rules, then the actualist
quantifiers do not “commute” with any modal operators.

Theorem 7. The following equivalences hold in every S.

(i) ΠxOAB ↔ OΠxAB ↔ OAΠxB ↔ ¬ΣxPS¬B ↔ ¬PΣxS¬B ↔
¬PSΣx¬B.

(ii) ΠxAOB ↔ AΠxOB ↔ AOΠxB ↔ ¬ΣxSP¬B ↔ ¬SΣxP¬B ↔
¬SPΣx¬B.

(iii) ΠxOGB ↔ OΠxGB ↔ OGΠxB ↔ ¬ΣxPF¬B ↔ ¬PΣxF¬B ↔
¬PFΣx¬B.

(iv) ΠxGOB ↔ GΠxOB ↔ GOΠxB ↔ ¬ΣxFP¬B ↔ ¬FΣxP¬B ↔
¬FPΣx¬B.
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(v) The formulas in (i) are not logically equivalent with the formulas
in (ii), and the formulas in (iii) are not logically equivalent with the
formulas in (iv).

Let A be atomic. Then OAA ↔ (HA ∧ A ∧ OGA), O[G]A ↔
(A ∧ OGA), O〈F〉A ↔ (A ∨ OFA), OSA ↔ (PA ∨ A ∨ OFA) hold in
aTB4dD5adMOtCadtSPBTFT .

So, it is problematic to symbolize a sentence such as “Everyone ought
always to be honest” as ΠxOAHx in some logics, since this is false if
someone in the past wasn’t honest or someone now isn’t honest. In these
systems, which are plausible if we assume that the past and present are
settled, a norm is “reasonable” only when it is future oriented (see [37]).
But we can get a similar result by using G instead of A. “Everyone
ought always (in the future) to be honest” can then be symbolized as
ΠxOGHx. The interesting norms in these systems often have one of
the following forms: OGA, OFA, ORtA, OtPA, OtFA, Ot〈P〉A, Ot〈F〉A,
where v(t) lies in the future.

Theorem 8. (i) Let � = U, A, [G], G, �, O, [H], H, Rt, t[H], tH, t[G]

or tH. Let � = M, S, 〈F〉, F, ♦, P , 〈P〉, P, Rt, t〈P〉, tP, t〈F〉 or tF. Then
every formula in Table 20 is a theorem in S.

(ii) Let � = A, [G], G, [H], H, Rt, t[H], tH, t[G] or tH. Let � = S,
〈F〉, F, 〈P〉, P, Rt, t〈P〉, tP, t〈F〉 or tF. Then every formula in Table 21 is
a theorem in S.

Πx�A ↔ �ΠxA Σx�A ↔ �ΣxA

Σx�A → �ΣxA �ΠxA → Πx�A

∀M x�A ↔ �∀M xA ∃M x�A ↔ �∃M xA

∃M x�A → �∃M xA �∀M xA → ∀M x�A

∀U x�A ↔ �∀U xA ∃U x�A ↔ �∃U xA

∃U x�A → �∃U xA �∀U xA → ∀U x�A

Table 20.

∀Sx�A ↔ �∀SxA ∃Sx�A ↔ �∃SxA

∃Sx�A → �∃SxA �∀SxA → ∀Sx�A

∀Ax�A ↔ �∀AxA ∃Ax�A ↔ �∃AxA

∃Ax�A → �∃AxA �∀AxA → ∀Ax�A

∀Rtx�A ↔ �∀RtxA ∃Rtx�A ↔ �∃RtxA

∃Rtx�A → �∃RtxA �∀RtxA → ∀Rtx�A

Table 21.
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Theorem 9. Let S be any system with necessary identity and let ⊙ be
any necessity-like positive modal operator. Then ∀x∀y(x = y → ⊙(x =
y)) and ∀x∀y(¬x = y → ⊙¬(x = y)) are theorems in S.

Theorem 10. Let � = Rt, A, H, G, [H] or [G], let � be the dual of �,
and let ⊙ = tP, tH, t〈P〉, t[H], tF, tG, t〈F〉 or t[G]. Then the following hold
in every S: ∀⊙x�A ↔ �∀⊙xA, ∃⊙x�A ↔ �∃⊙xA, ∃⊙x�A → �∃⊙xA,
�∀⊙xA → ∀⊙x�A.

6. Soundness and completeness theorems

We are now in a position to prove that every system in this essay is sound
and complete with respect to its semantics. The concepts of soundness
and completeness are defined as usual (see e.g. [37]).5

6.1. Constant domain logics

Let us first consider all systems with a constant domain. We start with
the weakest logic, CS , and then take a look at modifications required
for stronger systems. At this stage we assume that our language doesn’t
contain the identity predicate or any descriptors.

Lemma 11 (Locality). Let M1 = 〈D, W, T, <, R, S, v1〉, M2 = 〈D, W, T,
<, R, S, v2〉 be two (constant domain) models. The language of the two,
which we call L, is the same, for they have the same domain. Let A be
any closed formula of L such that v1 and v2 agree on the denotations of
all the predicates and constants in it. Then for all ω ∈ W and τ ∈ T :
v1ωτ (A) = v2ωτ (A).

Proof. The proof is by recursion on the sentences in our language.
“IH” refers to the induction hypothesis.

Atomic formulas. v1ωτ (Pa1 . . . an) = 1 iff 〈v1(a1), . . . , v1(an)〉 ∈
v1ωτ (P ) iff 〈v2(a1), . . . , v2(an)〉 ∈ v2ωτ (P ) iff v2ωτ (Pa1 . . . an) = 1.

Truth-functional connectives. Straightforward.
(�) v1ωτ (�B) = 1 iff for all ω′ such that Rωω′τ , v1ω′τ (B) = 1 iff for

all ω′ such that Rωω′τ , v2ω′τ (B) = 1 (IH) iff v2ωτ (�B) = 1.

5 The proofs in this section combine techniques from [36] and [37]. In all the
soundness and completeness theorems, the new steps for our new temporal rules are
straightforward and omitted.
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(G) v1ωτ (GB) = 1 iff for all τ ′ such that τ < τ ′, v1ωτ ′(B) = 1 iff for
all τ ′ such that τ < τ ′, v2ωτ ′ (B) = 1 (IH) iff v2ωτ (GB) = 1.

The cases for the other primitive positive modal operators are similar.
(Π) v1ωτ (ΠxB) = 1 iff for all d ∈ D, v1ωτ (B[kd/x]) = 1 iff for all d ∈

D, v2ωτ (B[kd/x]) = 1 ((IH), and the fact that v1ωτ (kd) = v2ωτ (kd) = d)
iff v2ωτ (ΠxB) = 1.

The case for the particular quantifier is similar. ⊣

Lemma 12 (Denotation). Let M = 〈D, W, T, <, R, S, v〉 be any (con-
stant domain) model. Let A be any formula of L(M) with at most one
free variable, x, and a and b be any two (non-temporal) constants such
that v(a) = v(b). Then for any ω ∈ W and τ ∈ T : vωτ (A[a/x]) =
vωτ (A[b/x]).

Proof. The proof is by induction on the complexity of A.
Atomic formulas. (To illustrate, we assume that the formula has

one occurrence of “a”, distinct from each ai.) vωτ (Pa1...a...an) = 1 iff
〈v(a1), ..., v(a), ..., v(an)〉 ∈ vωτ (P ) iff 〈v(a1), ..., v(b), ..., v(an)〉 ∈ vωτ (P )
iff vωτ (Pa1...b...an) = 1.

Truth-functional connectives. Straightforward.
(�) vωτ (�B[a/x]) = 1 iff for all ω′ such that Rωω′τ , vω′τ (B[a/x])=1

iff for all ω′ such that Rωω′τ , vω′τ (B[b/x]) = 1 (IH) iff vωτ (�B[b/x]) = 1.
(G) vωτ (GB[a/x]) = 1 iff for all τ ′ such that τ < τ ′, vωτ ′(B[a/x]) = 1

iff for all τ ′ such that τ < τ ′, vωτ ′(B[b/x]) = 1 (IH) iff vωτ (GB[b/x]) = 1.
Note that (�B)[a/x] = �(B[a/x]). So, the ambiguity in �B[a/x] is

harmless. The same goes for the ambiguity in GB[a/x]. The arguments
for the other primitive positive modal operators are similar.

(Π) Let A be of the form ΠyB. If x = y, then A[a/x] = A[b/x] = A,
so the result is trivial. Accordingly, suppose that x and y are distinct.
Then, (ΠyB)[b/x] = Πy(B[b/x]) and (B[b/x])[a/y] = (B[a/y])[b/x].
vωτ ((ΠyB)[a/x]) = 1 iff vωτ (Πy(B[a/x])) = 1 iff for all d ∈ D,
vωτ ((B[a/x])[kd/y]) = 1 iff for all d ∈ D, vωτ ((B[kd/y])[a/x]) = 1 iff for
all d ∈ D, vωτ ((B[kd/y])[b/x]) = 1 (IH) iff for all d ∈ D, vωτ ((B[b/x])
[kd/y]) = 1 iff vωτ (Πy(B[b/x])) = 1 iff vωτ ((ΠyB)[b/x]) = 1.

The case for the particular quantifier is similar. ⊣

6.1.1. Soundness theorem

Let M be any (constant domain) model and B any branch of a tableau.
Then B is satisfiable in M iff there is a function f from w0, w1, w2, . . . to
W , and a function g from t0, t1, t2, . . . to T such that (i) A is true in f(wi)
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at g(tj) in M, for every node A, witj on B, (ii) if rwiwjtk is on B, then
Rf(wi)f(wj)g(tk) in M, (iii) if swiwjtk is on B, then Sf(wi)f(wj)g(tk)
in M, (iv) if ti < tj is on B, then g(ti) < g(tj) in M, (v) if ti = tj is on
B, then g(ti) = g(tj) in M. If these conditions are fulfilled, we say that
f and g show that B is satisfiable in M.

Lemma 13 (Soundness Lemma). Let B be any branch of a tableau and
M be any (constant domain) model. If B is satisfiable in M and a
tableau rule is applied to it, then there is a (constant domain) model
M′ and an extension of B, B′, such that B′ is satisfiable in M′.

Proof. As usual the proof is an induction. Let f and g be functions
that show that the branch B is satisfiable in M.

Connectives and the modal operators. See [37].
(¬Π) Since B is satisfiable in M, ¬ΠxA is true in f(wi) at g(tj) in

M. Thus, ΠxA(x) is false in f(wi) at g(tj) in M. Accordingly, there
is some d ∈ D such that A[kd/x] is false in f(wi) at g(tj) in M, i.e.,
¬A[kd/x] is true in f(wi) at g(tj) in M. Consequently, Σx¬A is true in
f(wi) at g(tj) in M. We can therefore take M′ to be M. The argument
for (¬Σ) is similar.

(Π) M makes ΠxA true in f(wi) at g(tj). For B is satisfiable in M.
Hence, A[kd/x] is true in f(wi) at g(tj) in M, for all d ∈ D. Let d be
such that v(a) = v(kd). By the Denotation Lemma, A[a/x] is true in
f(wi) at g(tj) in M. Accordingly we can take M′ to be M.

(Σ) Since B is satisfiable in M, ΣxA is true in f(wi) at g(tj) in M.
Hence, there is some d ∈ D such that M makes A[kd/x] true in f(wi)
at g(tj). Let M′ = 〈D, W, T, <, R, S, v′〉 be the same as M except that
v′(c) = d. Since c does not occur in A[kd/x], A[kd/x] is true in f(wi)
at g(tj) in M′, by the Locality Lemma. By the Denotation Lemma and
the fact that v′(c) = d = v′(kd), A[c/x] is true in f(wi) at g(tj) in M′.
Furthermore, M′ makes all other formulas on the branch true at their
respective world-moment pairs as well, by the Locality Lemma. For c
does not occur in any other formula on the branch. ⊣

Theorem 14 (Soundness Theorem). CS is strongly sound with respect
to its semantics.

Proof. The proof is as in [37]. ⊣
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6.1.2. Completeness theorem

Definition 15 (Induced Model). Let B be an open complete branch of
a tableau, let ti, tj and tk be temporal constants, and let I be the set
of numbers on B immediately preceded by “t” in a temporal constant.
We shall say that i ⇋ j just in case i = j, or “ti = tj” or “tj = ti”
occur on B. ⇋ is an equivalence relation and [i] is the equivalence class
of i. Furthermore, let C be the set of all non-temporal, rigid constants
on B. The (constant domain) model, M = 〈D, W, T, < R, S, v〉, induced
by B is defined as follows. D = {oa : a ∈ C} (or if C is empty, D = {o},
for some arbitrary o). For all non-temporal, rigid constants, a, on B,
v(a) = oa. For every n-place predicate on B 〈oa1 , . . . , oan

〉 ∈ vωiτ[j]
(P )

iff Pa1 . . . an, witj is on B. (o is not in the extension of anything.) W =
{ωi : wi occurs on B}, T =

{
τ[i] : i ∈ I

}
, τ[i] < τ[j] iff ti < tj occurs on

B, Rωiωjτ[k] iff rwiwjtk occurs on B, Sωiωjτ[k] iff swiwjtk occurs on
B. If a temporal constant, ti, occurs on B, then v(ti) = τ[i]. If our
tableau system neither includes T-FC, T-PC nor T-C, ⇋ is reduced
to identity and [i] = i. Hence, in such systems, we may take T to be
{τi : ti occurs on B} and dispense with the equivalence classes.

Lemma 16 (Completeness Lemma). Let B be an open branch in a com-
plete tableau and let M be a (constant domain) model induced by B.
Then, for every formula A:
(i) If A, witj is on B then vωiτ[j]

(A) = 1, and (ii) If ¬A, witj is on B then
vωiτ[j]

(A) = 0.

Proof. The proof is by induction on the complexity of A.
Atomic formulas. Pa1...an, witj is on B ⇒ 〈oa1 , . . . , oan

〉 ∈ vωiτ[j]
(P )

⇒ 〈v(a1), . . . , v(an)〉 ∈ vωiτ[j]
(P ) ⇒ vωiτ[j]

(Pa1 . . . an) = 1.
(¬) ¬Pa1 . . . an, witj is on B ⇒ Pa1 . . . an, witj is not on B (B open)

⇒ 〈oa1 , . . . , oan
〉 /∈ vωiτ[j]

(P ) ⇒ 〈v(a1), . . . , v(an)〉 /∈ vωiτ[j]
(P )

⇒ vωiτ[j]
(Pa1 . . . an) = 0.

Other truth-functional connectives and modal operators. The argu-
ment is as in [37].

(Σ) Suppose that ΣxA, witj is on the branch. Since the tableau is
complete (Σ) has been applied. Accordingly, for some c, A[c/x], witj is
on the branch. Hence, vωiτ[j]

(A[c/x]) = 1, by (IH). For some d ∈ D,
v(c) = d. However, v(kd) = d. Consequently, vωiτ[j]

(A[kd/x]) = 1, by
the Denotation Lemma. It follows that vωiτ[j]

(ΣxA) = 1. Suppose that
¬ΣxA, witj is on the branch. Since the tableau is complete (¬Σ) has
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been applied. So, Πx¬A, witj is on the branch. Again, since the tableau
is complete (Π) has been applied. Thus, for all c ∈ C, ¬A[c/x], witj is
on the branch. Consequently, vωiτ[j]

(A[c/x]) = 0 for all c ∈ C, by (IH).
If d ∈ D, then for some c ∈ C, v(c) = v(kd). By the Denotation Lemma,
for all d ∈ D, vωiτ[j]

(A[kd/x]) = 0. Consequently, vωiτ[j]
(ΣxA) = 0.

The case for Π is similar. ⊣

Theorem 17 (Completeness Theorem). CS is strongly complete with
respect to its semantics.

Proof. The proof is as in [37]. ⊣

6.1.3. General correctness theorem

Theorem 18 (General Correctness Theorem). Let S be any of the con-
stant domain tableau systems discussed in this essay (without identity).
Then S is (strongly) sound and complete with respect to its semantics.

Proof. The proof is as for CS , with some minor modifications. There
are new cases for the various accessibility rules in the Soundness Lemma.
In the proof of the Completeness Theorem, we have to check that the
induced model is a model of the appropriate kind. This is as in [37]. ⊣

6.2. Variable domain logics

In this section, we will prove soundness and completeness theorems for
variable domain systems. We start with the weakest system, VS , and
then consider all stronger systems. We also consider the addition of the
domain-inclusion (Barcan) rules.

Lemma 19 (Locality). The same as in the constant domain case, except
that we replace “constant domain” with “variable domain”.

Proof. We use the actualist quantifiers. However, the proof is essen-
tially as in the constant domain case. The only difference is that clauses
of the form “d ∈ D” are replaced by ones of the form “d ∈ Dωτ ”. ⊣

Lemma 20 (Denotation). The same as in the constant domain case,
except that we replace “constant domain” with “variable domain”.

Proof. Again, we use the actualist quantifiers. And again, the proof is
essentially as in the constant domain case. The only difference is that
clauses of the form “d ∈ D” are replaced by ones of the form “d ∈
Dωτ”. ⊣
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6.2.1. Soundness theorem

Theorem 21 (Soundness Theorem). VS is strongly sound with respect
to its semantics.

Proof. The proof is as in the constant domain case. However, now we
are using the actualist quantifiers. So, we have to add steps for them
in the Soundness Lemma. Let f and g be functions that show that the
branch B is satisfiable in M.

(∀) Since B is satisfiable in M, ∀xA is true in f(wi) at g(tj) in M.
Hence, A[kd/x] is true in f(wi) at g(tj) in M, for all d ∈ Df(wi)g(tj).
Consequently, for any d ∈ D, either ¬Ekd or A[kd/x] is true in f(wi) at
g(tj) in M. Let d be such that v(a) = v(kd). By the Denotation Lemma,
either ¬Ea or A[a/x] is true in f(wi) at g(tj) in M. Consequently, at
least one branch is satisfiable in M, and we can take M′ to be M.

(∃) Since B is satisfiable in M, ∃xA is true in f(wi) at g(tj) in M.
Accordingly, for some d ∈ Df(wi)g(tj), A[kd/x] is true in f(wi) at g(tj)
in M. Hence, M makes Ekd and A[kd/x] true in f(wi) at g(tj). Let
M′ = 〈D, W, T, <, R, S, v′〉 be the same as M, except that v′(c) = d. By
the Locality Lemma, M′ makes Ekd and A[kd/x] true in f(wi) at g(tj),
since c does not occur in A[kd/x]. Furthermore, v′(c) = d = v′(kd).
So, Ec and A[c/x] are true in f(wi) at g(tj) in M′, by the Denotation
Lemma. By the Locality Lemma, M′ makes all other formulas on the
branch true in f(wi) at g(tj) as well. For c does not occur in any other
formula on the branch. ⊣

6.2.2. Completeness theorem

Theorem 22 (Completeness Theorem). VS is strongly complete with
respect to its semantics.

Proof. The proof is a modification of that for CS . In the Completeness
Lemma we add steps for the actualist quantifiers. The Completeness
Theorem then follows from the Completeness Lemma as usual. Fur-
thermore, in the induced model Dωiτ[j]

= v(ωiτ[j]) = vωiτ[j]
(E) = {oa :

Ea, witj occurs on B}.
(∃) Assume that ∃xA, witj is on the branch. Since the tableau is com-

plete (∃) has been applied. Hence, for some c ∈ C, Ec, witj and A[c/x],
witj are on the branch. By (IH), vωiτ[j]

(Ec) = 1 and vωiτ[j]
(A[c/x]) =

1. For some d ∈ D, v(c) = d = v(kd). Accordingly, by the De-
notation Lemma, vωiτ[j]

(Ekd) = vωiτ[j]
(A[kd/x]) = 1. It follows that
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vωiτ[j]
(∃xA) = 1. Suppose that ¬∃xA, witj is on the branch. Since

the tableau is complete (¬∃) has been applied. So, ∀x¬A, witj is on
the branch. Again, since the tableau is complete (∀) has been ap-
plied. Hence, for every c ∈ C, either ¬Ec, witj or ¬A[c/x], witj is on
the branch. Accordingly, for all c ∈ C, if Ec, witj is on the branch,
then ¬A[c/x], witj is so too. For the branch is open. By (IH), if
vωiτ[j]

(Ec) = 1, vωiτ[j]
(A[c/x]) = 0. If d ∈ D, then for some c ∈ C, v(c) =

v(kd). By Denotation Lemma, for all d ∈ D, such that vωiτ[j]
(Ekd) = 1

(d ∈ Dωiτ[j]
), vωiτ[j]

(A[kd/x]) = 0. It follows that vωiτ[j]
(∃xA) = 0. The

case for ∀ is similar. ⊣

6.2.3. Systems with domain-inclusion (Barcan) rules

Theorem 23 (Soundness with Barcan Rules). VS + any subset of the
domain-inclusion (Barcan) rules is (strongly) sound with respect to its
semantics.

Proof. In the Soundness Lemma we have some new cases. Assume
that f and g show that the branch B is satisfiable in M.

(T-ACBF) Suppose that B contains rwiwjtk and Ea, witk. Then
Rf(wi)f(wj)g(tk) and v(a) ∈ vωiτ[k]

(E) = Dωiτ[k]
. By (C-ACBF),

Df(wi)g(tk) ⊆ Df(wj)g(tk). Hence, v(a) ∈ Dωjτ[k]
= vωjτ[k]

(E). Conse-
quently, Ea is true in f(wj) at g(tk) in M, and we can take M′ to be M.

(T-TBF) Suppose that B contains ti < tj and Ea, witj . Then g(ti) <
g(tj) and v(a) ∈ vωiτ[j]

(E) = Dωiτ[j]
. By (C-TBF), Df(wi)g(tj) ⊆

Df(wi)g(ti). Therefore, v(a) ∈ Dωiτ[i]
= vωiτ[i]

(E). It follows that Ea
is true in f(wi) at g(ti) in M, and we can take M′ to be M.

The other cases are proved similarly. ⊣

Theorem 24 (Completeness with Barcan Rules). VS + any subset of
the domain-inclusion (Barcan rules) is (strongly) complete with respect
to its semantics.

Proof. In the relevant Completeness Theorem, we have to check that
the induced model is of the appropriate kind.

(T-ACBF) Suppose that Rωiωjτ[k] and that oa ∈ Dωiτ[k]
. Then

rwiwjtk and Ea, witk are on the branch. Since the branch is complete
(T-ACBF) has been applied. Accordingly, Ea, wjtk is on the branch.
Consequently, oa ∈ Dωjτ[k]

.
(T-TBF) Suppose that τ[i] < τ[j] and that oa ∈ Dωiτ[j]

. Then ti < tj

and Ea, witj are on the branch. Since the branch is complete (T-TBF)
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has been applied. Hence, Ea, witi is on the branch. It follows that
oa ∈ Dωiτ[i]

. The other cases are proved similarly. ⊣

6.2.4. General correctness theorem

Theorem 25 (General Correctness Theorem). Let S be any of the vari-
able domain tableau systems discussed in this essay (without identity).
Then S is (strongly) sound and complete with respect to its semantics.

Proof. The proof is similar to the proof in the constant domain case.
⊣

6.3. Constant and variable domain logics

6.3.1. General correctness theorem

Theorem 26 (General Correctness Theorem). Let S be any constant
and variable domain tableau system discussed in this essay (without
identity). Then S is (strongly) sound and complete with respect to its
semantics.

Proof. Combine the proofs for the constant systems and the variable
systems. ⊣

6.4. Systems with necessary identity

So far we have assumed that the identity predicate is not part of our
language. In this section we will prove soundness and completeness for
systems with necessary identity. In Subsection 6.4.3 we will see what
happens when we add descriptors to our language. In the next section
we turn to systems with contingent identity.

Adding the identity predicate does nothing to affect the proofs of the
Locality and Denotation Lemmas; they still hold.

6.4.1. Soundness, necessary identity

Theorem 27 (Soundness Necessary Identity). Let S be any system in
this essay (without identity). Then S + the rules for necessary identity
is strongly sound with respect to its semantics (variable, constant or
constant and variable).

Proof. There are three new cases in the Soundness Lemma.
(T-R=) Trivial.
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(T-S=) At this stage the only (non-temporal) constants in our lan-
guage are rigid. So, let s = a and t = b. Since f and g show that the
branch is satisfiable in M, v(a) = v(b) and 〈v(a1), . . . , v(a), . . . , v(an)〉 ∈
vωiτ[j]

(P ). Accordingly, 〈v(a1), . . . , v(b), . . . , v(an)〉 ∈ vωiτ[j]
(P ). Conse-

quently, Pa1 . . . b . . . an is true in f(wi) at g(tj) in M. So, we may take
M′ to be M.

(T-N=) Since f and g show that the branch is satisfiable in M, a = b
is true in f(wi) at g(tj). Accordingly, v(a) = v(b). Hence, a = b is true
in f(wk) at g(tl), and we may take M′ to be M.

The Soundness Theorem then follows as usual. ⊣

6.4.2. Completeness, necessary identity

Definition 28 (Induced Model). We define the induced model as before,
but with the following modification. Define a ∼ b to mean that a =
b, w0t0 is on the branch. This is obviously an equivalence relation. Let
[a] be the equivalence class of a under ∼. D = {[a] : a ∈ C} (or, if C = ∅,
D = {o} for an arbitrary o). v(a) = [a], and 〈[a1], . . . , [an]〉 ∈ vωiτ[j]

(P )
iff Pa1 . . . an, witj is on B, given that P is any n-place predicate other
than identity. (Due to (T-N=) and (T-S=) this is well defined.) For the
variable domain case, Dωiτ[j]

= vωiτ[j]
(E).

Theorem 29 (Completeness Necessary Identity). Let S be any system
in this essay (without identity). Then S+ the rules for necessary identity
is strongly complete with respect to its semantics (variable, constant or
constant and variable).

Proof. Here are the modified cases in the Completeness Lemma.
Pa1...an, witj is on B ⇒ 〈[a1], ..., [an]〉 ∈ vωiτ[j]

(P ) ⇒ 〈v(a1), ...,
v(an)〉 ∈ vωiτ[j]

(P ) ⇒ vωiτ[j]
(Pa1...an) = 1.

¬Pa1...an, witj is on B ⇒ Pa1...an, witj is not on B (B open) ⇒
〈[a1], ..., [an]〉 /∈ vωiτ[j]

(P ) ⇒ 〈v(a1), ..., v(an)〉 /∈ vωiτ[j]
(P ) ⇒

vωiτ[j]
(Pa1...an) = 0.

a = b, witj is on B ⇒ a ∼ b (T-N=) ⇒ [a] = [b] ⇒ v(a) = v(b) ⇒
vωiτ[j]

(a = b) = 1.
¬a = b, witj is on B ⇒ a = b, w0t0 is not on B (B open) ⇒ it is not

the case that a ∼ b ⇒ [a] 6= [b] ⇒ v(a) 6= v(b) ⇒ vωiτ[j]
(a = b) = 0.

The proof of the Completeness Theorem then goes through as before.
⊣
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6.4.3. Soundness and completeness with descriptors
and necessary identity

In this section we show that systems including descriptors are sound
and complete. The proofs of the Locality and Denotation Lemmas go
through as before. The only modification is that we replace anything of
the form v(t) by vωiτ[j]

(t), where t is a non-temporal term. Note that the
co-referring constants are rigid in the Denotation Lemma. (Descriptors
that co-refer at a world-moment pair do not necessarily co-refer at all
world-moment pairs.)

Theorem 30 (Soundness Descriptors). Let S be any system in this essay
(with necessary identity). Then S + the rule for descriptors is strongly
sound with respect to its semantics (variable, constant or constant and
variable).

Proof. There is one novel case in the Soundness Lemma. The rest is
as in the necessary identity case.

(T-D=) Suppose that f and g show that the branch, B, to which we
apply the rule, is satisfiable in M. In world f(wi) at time g(tj), α has
some denotation, d. Thus, v(kd) = vf(wi)g(tj)(α). Let M′ be the same
as M, except that v′(c) = d. v′(c) = d = v(kd) = vf(wi)g(tj)(α). Hence,
c = α is true in f(wi) at g(tj) in M′. And the rest of the branch is
satisfiable in M′ as well, by the Locality Lemma. This is shown by f
and g, since c does not occur in any formula on B. ⊣

Theorem 31 (Completeness Descriptors). Let S be any system in this
essay (with necessary identity). Then S + the rule for descriptors is
strongly complete with respect to its semantics (variable, constant or
constant and variable).

Proof. We want to show that the Completeness Lemma still holds. So,
we extend the definition of the induced model to descriptors. For any α,
wi and tj , on the branch, there is a line of the form a = α, witj . Take any
one such a (it does not matter which, because of (T-S=)), and let this
be α̂. Let b̂ be b itself, for any rigid designator, b. In the induced model,
we define vωiτ[j]

(α) to be [α̂]. Here are the necessary modifications in
the Completeness Lemma.

Pt1...tn, witj is on B ⇒ P t̂1...t̂n, witj is on B (T-S=) ⇒ 〈[t̂1], ...,
[t̂n]〉 ∈ vωiτ[j]

(P ) ⇒ 〈vωiτ[j]
(t1), ..., vωiτ[j]

(tn)〉 ∈ vωiτ[j]
(P ) ⇒

vωiτ[j]
(Pt1...tn) = 1.
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¬Pt1 . . . tn, witj is on B ⇒ P t̂1...t̂n, witj is not on B ((T-S=), B open)
⇒ 〈[t̂1], ..., [t̂n]〉 /∈ vωiτ[j]

(P ) ⇒ 〈vωiτ[j]
(t1), ..., vωiτ[j]

(tn)〉 /∈ vωiτ[j]
(P ) ⇒

vωiτ[j]
(Pt1 . . . tn) = 0.

t1 = t2, witj is on B ⇒ t̂1 = t̂2, witj is on B (T-S=) ⇒ t̂1 = t̂2, w0t0

is on B (T-N=) ⇒ t̂1 ∼ t̂2 ⇒ [t̂1] = [t̂2] ⇒ vωiτ[j]
(t1) = vωiτ[j]

(t2) ⇒
vωiτ[j]

(t1 = t2) = 1.
¬t1 = t2, witj is on B ⇒ t̂1 = t̂2, witj is not on B ((T-S=), B open)

⇒ t̂1 = t̂2, w0t0 is not on B ((T-N=), B open) ⇒ it is not the case that
t̂1 ∼ t̂2 ⇒ [t̂1] 6= [t̂2] ⇒ vωiτ[j]

(t1) 6= vωiτ[j]
(t2) ⇒ vωiτ[j]

(t1 = t2) = 0.
The Completeness Theorem then follows as usual. ⊣

6.5. Contingent identity logic

In this section we will prove soundness and completeness for systems
with contingent identity. In Subsection 6.5.3 we add descriptors to our
systems and prove soundness and completeness.

Our models now have one new component, H. With this exception,
the Locality and Denotation Lemmas are as in the constant or variable
domain cases.

Theorem 32 (Denotation and Locality). The Denotation and Locality
Lemmas hold in contingent identity semantics.

Proof. The proofs are as in the constant or variable domain cases,
except for the atomic formulas.

Locality: v1ωτ (Pa1...an) = 1 iff 〈|v1(a1)|ωτ , ..., |v1(an)|ωτ〉 ∈ v1ωτ (P )
iff 〈|v2(a1)|ωτ , ..., |v2(an)|ωτ〉 ∈ v2ωτ (P ) iff v2ωτ (Pa1 . . . an) = 1.

Denotation: vωτ (Pa1...a...an) = 1 iff 〈|v(a1)|ωτ , ..., |v(a)|ωτ , ...,
|v(an)|ωτ 〉 ∈ vωτ (P ) iff 〈|v(a1)|ωτ , ..., |v(b)|ωτ , ..., |v(an)|ωτ〉 ∈ vωτ (P ) iff
vωτ (Pa1...b...an) = 1. ⊣

6.5.1. Soundness, contingent identity

Theorem 33 (Soundness Contingent Identity). Let S be any system in
this essay (without identity). Then S + the rules for contingent identity
is strongly sound with respect to its semantics (variable, constant or
constant and variable).

Proof. The proof is as in the necessary identity case with some mi-
nor modifications. E.g. here is the step for (T-S=). Since f and g
show that the branch is satisfiable in M, |v(a)|ωiτ[j]

= |v(b)|ωiτ[j]
and
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〈|v(a1)|ωiτ[j]
, ..., |v(a)|ωiτ[j]

, ..., |v(an)|ωiτ[j]
〉 ∈ vωiτ[j]

(P ). So, 〈|v(a1)|ωiτ[j]
,

..., |v(b)|ωiτ[j]
, ..., |v(an)|ωiτ[j]

〉 ∈ vωiτ[j]
(P ). Accordingly, Pa1...b...an is

true in f(wi) at g(tj) in M, and so we may take M′ to be M. ⊣

6.5.2. Completeness, contingent identity

Definition 34 (Induced Model). Given an open complete branch B of
a tableau, the induced model is defined as usual, but with the following
modifications. If there are no constants on the branch, D = {o}, for
an arbitrary o; H = {h}, for an arbitrary h; and for every ω ∈ W and
τ ∈ T , |o|ωτ = h. Otherwise, D = {oa : a occurs on B} as usual. The
objects in D are now functions from W × T to H. We shall say that
a ∼ωiτ[j]

b iff a = b, witj occurs on B. ∼ωiτ[j]
is an equivalence relation.

Let [a]ωiτ[j]
be the equivalence class of a under ∼ωiτ[j]

. H = {[a]ωiτ[j]
:

for all a, witj on B}. Let |oa|ωiτ[j]
= [a]ωiτ[j]

, for ωi ∈ W and τ[j] ∈ T .
For each (non-temporal, rigid) constant, a, v(a) = oa. For each n-place
predicate, P , other than identity: 〈[a1]ωiτ[j]

, ..., [an]ωiτ[j]
〉 ∈ vωiτ[j]

(P ) iff
Pa1...an, witj is on B. Any n-tuple that contains a substratum that is
not of the form [a]ωiτ[j]

is not in vωiτ[j]
(P ). Because of (T-S=), it does

not matter which member of an equivalence class we chose. If the model
is a variable domain model, Dωiτ[j]

= {d ∈ D : |d|ωiτ[j]
∈ vωiτ[j]

(E)}.

Theorem 35 (Completeness Contingent Identity). Let S be any system
in this essay (without identity). Then S + the rules for contingent iden-
tity is strongly complete with respect to its semantics (variable, constant
or constant and variable).

Proof. The proof of the Completeness Lemma is as in the non-identity
case, except for the following steps.

Pa1 . . . an, witj is on B ⇒ 〈[a1]ωiτ[j]
, . . . , [an]ωiτ[j]

〉 ∈ vωiτ[j]
(P ) ⇒

〈|oa1|ωiτ[j]
, ..., |oan

|ωiτ[j]
〉 ∈ vωiτ[j]

(P ) ⇒ 〈|v(a1)|ωiτ[j]
, . . . , |v(an)|ωiτ[j]

〉 ∈
vωiτ[j]

(P ) ⇒ vωiτ[j]
(Pa1 . . . an) = 1.

¬Pa1 . . . an, witj is on B ⇒ Pa1 . . . an, witj is not on B ⇒ 〈[a1]ωiτ[j]
,

. . . , [an]ωiτ[j]
〉 /∈ vωiτ[j]

(P ) ⇒ 〈|oa1 |ωiτ[j]
, . . . , |oan

|ωiτ[j]
〉 /∈ vωiτ[j]

(P ) ⇒
〈|v(a1)|ωiτ[j]

, . . . , |v(an)|ωiτ[j]
〉 /∈ vωiτ[j]

(P ) ⇒ vωiτ[j]
(Pa1 . . . an) = 0.

a = b, witj is on B ⇒ a ∼ωiτ[j]
b ⇒ [a]ωiτ[j]

= [b]ωiτ[j]
⇒ |oa|ωiτ[j]

=
|ob|ωiτ[j]

⇒ |v(a)|ωiτ[j]
= |v(b)|ωiτ[j]

⇒ vωiτ[j]
(a = b) = 1.

¬a = b, witj is on B ⇒ a = b, witj is not on B, (B open) ⇒ it is not
the case that a ∼ωiτ[j]

b ⇒ [a]ωiτ[j]
6= [b]ωiτ[j]

⇒ |oa|ωiτ[j]
6= |ob|ωiτ[j]

⇒
|v(a)|ωiτ[j]

6= |v(b)|ωiτ[j]
⇒ vωiτ[j]

(a = b) = 0.
The rest of the Completeness Theorem then follows as usual. ⊣
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6.5.3. Soundness and completeness with descriptors
and contingent identity

In this section we consider the addition of descriptors to contingent iden-
tity systems. The Locality and Denotation Lemmas are established as
in the constant or variable domain cases. The proofs of the soundness
and completeness theorems are as in the necessary identity case, with
some minor modifications.

Theorem 36 (Soundness Descriptors). Let S be any system in this essay
(with contingent identity). Then S + the rule for descriptors is strongly
sound with respect to its semantics (variable, constant or constant and
variable).

Proof. Suppose that f and g show that the branch B is satisfiable in
M. Here are the new interesting cases.
(T-S=) For the sake of illustration, assume that there is only one occur-
rence of s. Accordingly, |vf(wi)g(tj)(s)|f(wi)g(tj) = |vf(wi)g(tj)(t)|f(wi)g(tj)

and 〈|vf(wi)g(tj)(t1)|f(wi)g(tj), ..., |vf(wi)g(tj)(s)|f(wi)g(tj), ...,
|vf(wi)g(ti)(tn)|f(wi)g(tj)〉 ∈ vf(wi)g(tj)(P ). So, 〈|vf(wi)g(tj)(t1)|f(wi)g(tj),
..., |vf(wi)g(tj)(t)|f(wi)g(tj), ..., |vf(wi)g(tj)(tn)|f(wi)g(tj)〉 ∈ vf(wi)g(tj)(P ).
It follows that Pt1...t...tn is true in f(wi) at g(tj) in M, and we may
take M′ to be M.

(T-D=) In f(wi) at g(tj), α has some denotation, d ∈ D. Thus
|v(kd)|f(wi)g(tj) = |vf(wi)g(tj)(α)|f(wi)g(tj). Let M′ be the same as M,
except that v(c) = d. |v(c)|f(wi)g(tj) = |d|f(wi)g(tj) = |v(kd)|f(wi)g(tj) =
|vf(wi)g(tj)(α)|f(wi)g(tj). Hence, c = α is true in f(wi) at g(tj) in M′.
Furthermore, f and g show that the rest of the branch is satisfiable
in M′, by the Locality Lemma. For c does not occur in any formula
on B. ⊣

Theorem 37 (Completeness Descriptors). Let S be any system in this
essay (with contingent identity). Then S + the rule for descriptors is
strongly complete with respect to its semantics (variable, constant or
constant and variable).

Proof. We modify the definition of an induced model so that it applies
to descriptors as well. Then we check that the Completeness Lemma
holds. For any descriptor, α, and any wi and tj on the branch, there is
a line of the form a = α, witj . Let any one such a (it does not matter
which, because of (T-S=)) be α̂. If b is a rigid designator, let b̂ be b itself.
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Finally: vωiτ[j]
(α) = o

α̂
. Here are the modified steps in the Completeness

Lemma.
Pt1...tn, witj is on B ⇒ P t̂1 . . . t̂n, witj is on B (T-S=) ⇒ 〈[t̂1]ωiτ[j]

,

. . . , [t̂n]ωiτ[j]
〉 ∈ vωiτ[j]

(P ) ⇒ 〈|o
t̂1

|ωiτ[j]
, . . . , |o

t̂n
|ωiτ[j]

〉 ∈ vωiτ[j]
(P ) ⇒

〈|vωiτ[j]
(t1)|ωiτ[j]

, ..., |vωiτ[j]
(tn)|ωiτ[j]

〉 ∈ vωiτ[j]
(P ) ⇒ vωiτ[j]

(Pt1...tn) = 1.
¬Pt1...tn, witj is on B ⇒ Pt1...tn, witj is not on B (B open) ⇒

P t̂1...t̂n, witj is not on B ((T-S=), B open) ⇒ 〈[t̂1]ωiτ[j]
, . . . , [t̂n]ωiτ[j]

〉 /∈
vωiτ[j]

(P ) ⇒ 〈|o
t̂1

|ωiτ[j]
, . . . , |o

t̂n
|ωiτ[j]

〉 /∈ vωiτ[j]
(P ) ⇒ 〈|vωiτ[j]

(t1)|ωiτ[j]
,

. . . , |vωiτ[j]
(tn)|ωiτ[j]

〉 /∈ vωiτ[j]
(P ) ⇒ vωiτ[j]

(Pt1 . . . tn) = 0.

t1 = t2, witj is on B ⇒ t̂1 = t̂2, witj is on B (T-S=) ⇒ t̂1 ∼ωiτ[j]
t̂2

⇒ [t̂1]ωiτ[j]
= [t̂2]ωiτ[j]

⇒ |o
t̂1

|ωiτ[j]
= |o

t̂2
|ωiτ[j]

⇒ |vωiτ[j]
(t1)|ωiτ[j]

=
|vωiτ[j]

(t2)|ωiτ[j]
⇒ vωiτ[j]

(t1 = t2) = 1.

¬t1 = t2, witj is on B ⇒ t1 = t2, witj is not on B (B open) ⇒ t̂1 =
t̂2, witj is not on B, ((T-S=), B open) ⇒ it is not the case that t̂1 ∼ωiτ[j]

t̂2 ⇒ [t̂1]ωiτ[j]
6= [t̂2]ωiτ[j]

⇒ |o
t̂1

|ωiτ[j]
6= |o

t̂2
|ωiτ[j]

⇒ |vωiτ[j]
(t1)|ωiτ[j]

6=
|vωiτ[j]

(t2)|ωiτ[j]
⇒ vωiτ[j]

(t1 = t2) = 0.
The Completeness Theorem now follows in the usual fashion. ⊣
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