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THREE-ELEMENT NON-FINITELY

AXIOMATIZABLE MATRICES

AND TERM-EQUIVALENCE

Abstract. It was shown in [5] that all two-element matrices are finitely
based independently of their classification by term equivalence (the Post
classification). In particular, each 2-valued matrix is finitely axiomatizable.
We show below that for certain two not finitely axiomatizable 3-valued
matrices this property is also preserved under term equivalence. The general
problem, whether finite axiomatizability of a finite matrix is preserved under
term-equivalence, is still open, as well as the related problem as to whether
the consequence operation of a finite matrix is finitely based.
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1. Introduction

Recall that a matrix is a triple M = 〈M,F,D〉, where ∅ 6= D ⊆ M and
F is a finite set of finitary operations on M . The set D is called the set
of designated values of M. Let for each f ∈ F , λf be a symbol denoting
the operation f ∈ F of the same arity as f and let ΛF := {λf : f ∈ F}.
Let V be a fixed, countable set of variables, V = {x1, x2, . . .}, and let
x := x1, y := x2, z := x3. The set of all terms in variables from V
and operation symbols from ΛF is denoted by TeF . The set TeF is
turned into an algebra TeF in the standard way and the homomorphisms
from this algebra into the algebra 〈M,F 〉 are called valuations in M.
Functions from V into M are called valuations of variables in M and
each valuation is induced by a valuation of variables. If the target
algebra of a valuation is the algebra of terms then the valuation is called
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a substitution. For terms t, s ∈ TeF and a variable v ∈ V , we write t[s/v]
for σ(t), where σ is the substitution such that σ(v) = s and σ(xi) = xi

for all xi 6= v. For a finite set X ∪ {α} ⊆ TeF the pair 〈X,α〉, written

as
X

α
, is called a rule. This rule is valid in M iff for every valuation

ϕ, we have: ϕ(X) ⊆ D ⇒ ϕ(α) ∈ D. The members of the set X are

called premisses and the term α the conclusion of the rule
X

α
. A rule

with the empty set of premisses is identified with its conclusion and
called axiomatic. The conclusion of an axiomatic rule valid in M is a
tautology of M. The set of all tautologies of M is denoted by E(M).
The notion of a derivation or proof of a term by means of a given set
of rules is standard. A set of rules by means of which all tautologies
of M and nothing more can be derived will be called an axiomatization

of M (see [9, 10]). If E(M) is not empty, then some of the rules in its
axiomatization must be axiomatic, but in general, axiomatization may
contain some non-axiomatic rules.

A related notion is that of a basis of the consequence operation of M:
a set R of valid rules of M is called a basis of M iff all valid rules of M can
be derived by means of R. Clearly, every basis is an axiomatization. A
matrix is finitely based, iff it has a finite basis; it is finitely axiomatizable

iff there exists a finite set of rules that forms its axiomatization. If a
matrix is not finitely axiomatizable then it is not finitely based.

The question whether the finite basis property is preserved under
term-equivalence was raised by W. Rautenberg. For matrices with the
finite replacement property defined by B. Herrmann and W. Rautenberg
in [5] this, indeed, is true. It was proved there that all 2-element matrices
have the finite replacement property and this result was used in [5] to
complete the proof that all of them (not just the ones resulting explicitely
from the Post classification) are finitely based. It is also known that no
matrix term-equivalent to the three-element Wroński’s matrix of [11] is
finitely based ([7]). Wroński’s matrix is finitely axiomatizable but three-
element non-finitely axiomatizable matrices also exist. In Section 2 below
we recall two such matrices and in Section 5 we show that all matrices
term-equivalent to them are also non-finitely based.
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2. Two non-finitely axiomatizable matrices

The two non-finitely axiomatizable matrices that will be discussed in this
paper both are defined on the three-element set M = {0, 1, 2}, have one
binary operation and one designated value: 2. Let M1 = 〈M, ·1, {2}〉
and M2 = 〈M, ·2, {2}〉, where ·1 and ·2 are presented in Table 1; the two
operations differ only in 0 · 0. (In [6] these two matrices were denoted by
M7 and M8 and were shown to be nonfinitely axiomatizable.)

·1 0 1 2

0 2 2 2

1 2 2 2

2 1 2 2

·2 0 1 2

0 1 2 2

1 2 2 2

2 1 2 2

Table 1. Tables for ·1 and ·2

We use the binary operation symbol · as a metavariable to be inter-
preted as either ·1 or ·2. When writing terms in Te{·}, we will omit the
symbol · and adopt the convention of associating to the left. Let 2 be
the term 2 := x(yz) and notice that it is a tautology both in M1 and
in M2.

Proposition 1. Every term t ∈ Te{·} is of the form

t = t1vm · · · v1, (1)

for some m ≥ 0, where v1, . . . , vm are variables and t1 is either a variable

or a substitution instance of 2.

By convention, if m = 0 then (1) becomes t = t1, where t1 is a
substitution of 2 or a variable. It is easy to see that the term xx is a
tautology of M1 and xxx is a tautology of M2. In both M1 and M2,
for an element a ∈ {1, 2}, a00 = a and for an element a ∈ {0, 1, 2},
a000 = a0. So it follows that for v1, . . . , vm ∈ V :
• if the term vm · · · v1 is a tautology of M1, then m is even and m ≥ 2.

If vm · · · v1 is a tautology of M2, then m is odd and m ≥ 3;
• if the term 2vm · · · v1 is a tautology of either M1 or M2, then m is

even.
Let L be the set of all terms of the form (1) such that t1 is a variable
not occurring among v1, . . . , vm. For a term t ∈ L we put: l(t) = t1
and C(t) = {v1, . . . , vm}; we call l(t) the leading variable of t. Notice
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that the functions l and C are not defined on the entire set of terms; the
domain of each of them is the set L ⊂ Te{·}. This set has the following
obvious property.

Proposition 2. Let t1, s ∈ Te{·}, t1 /∈ V and let v ∈ V be a variable

occurring in s.

1. If t = s[t1/v], then

t ∈ L iff s, t1 ∈ L, v = l(s) and l(t1) /∈ C(s).

2. More generally, let σ be a substitution such that σ(v) = t1, σ(s) = t.
Then

t ∈ L iff s, t1 ∈ L, v = l(s), σ(C(s)) ⊆ V and l(t1) /∈ σ(C(s)).

In Proposition 3 below, we use the expression “v is not a leading
variable of t” as an abbreviation for “either t does not have a leading
variable or it has one but this variable is different from v”, i.e., “t ∈ L ⇒
l(t) 6= v”. By inspection of the operation tables one gets the following
proposition.

Proposition 3. Let M = 〈M, ·, {2}〉 be either M1 or M2. Let ϕ and ψ
be valuations in M, v ∈ V .

1. Let t ∈ L, l(t) = v. Assume that ϕ(w) = ψ(w) = 0 for every variable

w ∈ C(t), while ϕ(v) = 1 and ψ(v) = 2. Then ϕ(t) 6= ψ(t).
2. If t is of the form (1), ϕ, ψ valuations such that for some i = 1, . . . ,m
ϕ(vi), ψ(vi) ∈ {1, 2} and ϕ(vj) = ψ(vj) for all j < i , then ϕ(t) = ψ(t).

3. Let t be any term in Te{·} such that v is not a leading variable of t.
Assume that ϕ(w) = ψ(w) for all variables w 6= v, while ϕ(v), ψ(v) ∈
{1, 2}. Then ϕ(t) = ψ(t).

Corollary 4. Let t ∈ Te{·}, let v be a variable and ϕ, ψ valuations.

Assume that ϕ(w) = ψ(w) for all w 6= v, while ϕ(v), ψ(v) ∈ {1, 2}. Then

if ϕ(t) 6= ψ(t) then t ∈ L, v = l(t) and C(t) ⊆ ϕ−1({0}).

Proof. Since ϕ(t) 6= ψ(t), it follows by item 3 of Proposition 3, that
t ∈ L and v = l(t). Hence t = vvm · · · v1 for some variables v1, . . . , vm ∈
V such that v /∈ {v1, . . . , vm}. By assumption, ϕ(vi) = ψ(vi) for all
i = 1 . . . ,m.

Suppose that for some i = 1, . . . ,m, ϕ(vi) 6= 0. So ψ(vi) 6= 0 as
well and for every j < i, ϕ(vj) = ψ(vj). By item 2. of Proposition 3,
ϕ(t) = ψ(t), a contradiction.
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Tautologies of M can be characterized as follows.

Proposition 5. A term t of the form (1) is a tautology of M1 iff the

conjunction of the following conditions holds:

1. t1 is a substitution of 2 and m is even or t1 is a variable and m is

odd,

2. if t1 is a variable, then t1 ∈ {v1, . . . , vm},

3. for each variable v ∈ {v1, . . . , vm} there exists an odd i ∈ {1, . . . ,m}
such that v = vi and v /∈ {v1, . . . , vi−1}.

Similarly, a term t of the form (1) is a tautology of M2 iff conditions 2

and 3 hold as well as the following modification of condition 1:

1′. t1 is a substitution of 2 or a variable and in both cases m is even.

Notice that condition 2 is equivalent to “t /∈ L” and implies that t is
not a variable. Condition 3 says that when scanning a tautology of the
form (1) from the right, the first occurrence of every variable is on an
odd position.

Proof. (⇒) If a term t ∈ L, then by Proposition 3, item 1, there are two
valuations assigning different values to t, so t cannot be a tautology. By
the contrapositive, if t is a tautology then t /∈ L and condition 2 holds.
Condition 1 for tautologies of M1 and condition 1′ for tautologies of M2

follow from the observations made on page 483. To see condition 3, notice
that for every term of the form (1), for each variable v ∈ {v1, . . . , vm},
there is i ∈ {1, . . . ,m} such that v = vi and for each j < i, vj 6= v. We
claim that such an index i must be odd. For assume i is even and let
ϕ(v) = 2, while ϕ(vj) = 0 for all j < i. Then ϕ(t) = 20i−1 = 1, a
contradiction. Hence 3 holds.

(⇐) For the proof for M1 assume that t is of the form (1) and that
conditions 1–3 hold. Assume that for some valuation ϕ into M1, ϕ(t) 6=
2. Since t is not a variable, we have that ϕ(t) = 1. Then ϕ(t1vm · · · v2) =
2 and ϕ(v1) = 0. By condition 3, v2 = v1, so ϕ(v2) = ϕ(v1) = 0 and
ϕ(t1vm · · · v3) = 1. Proceeding inductively, for each even k ≤ m, we
have that ϕ(vk) = . . . = ϕ(v1) = 0 and ϕ(t1vm · · · vk+1) = 1. If m is
even, we get that ϕ(t1) 6= 2, so t1 is not a substitution of 2, contradicting
condition 1. Hence m is odd and t1 is a variable. So ϕ(vm−1) = . . . =
ϕ(v1) = 0 and ϕ(t1vm) = 1. Hence ϕ(t1) = 2 and ϕ(vm) = 0. But
by condition 2., t1 ∈ {v1, . . . , vm}, a contradiction. This finishes the
proof that conditions 1–3 imply that t is a tautology of M1.



486 Katarzyna Pałasińska

Now assume that for a term of the form (1), the conditions 1′, 2
and 3 hold. We will show that t is a tautology of M2. Assume that for
some valuation ϕ into M2,

ϕ(t) 6= 2. (2)

If for all i ≤ m, ϕ(vi) = 0 then by conditions 1′ and 2, ϕ(t) = 2. So there
is an index i ∈ {1, . . . ,m} such that ϕ(vi) 6= 0 and for all j < i, ϕ(vj) = 0.
By (2) this i is even. But then by condition 3 in the assumptions of the
proposition, there is j < i such that vi = vj , a contradiction.

It follows from Proposition 5 that for k ≥ 2 the term

x2kx2k−1 · · ·xi · · ·x2x1x2kx2kx2k−2x2k−2 · · ·x2x2 (3)

is a tautology of M1. Similarly, the term

x2k+1x2kx2k−1 · · ·x1x2k+1x2k+1x2kx2kx2k−2x2k−2 · · ·xixi · · ·x2x2 (4)

is a tautology of M2.
The proof given in [6] that neither M1 nor M2 is finitely axiomati-

zable was inspired by [4] and by proofs in [9, 10]; we will now outline
its idea. The same idea will later be expanded to an argument that no
matrix term-equivalent to M1 or M2 is finitely axiomatizable.

Let M = 〈M, ·, {2}〉 be either M1 or M2. For each k ≥ 1 one defines
a term t̂k, where in case of M = M1, t̂k := x2kx2k−1 · · ·x1 and in case
of M = M2, t̂k = x2k+1x2k · · ·x2x1. Let Gk be the set of terms of the
form t̂kvm · · · v1, where v1, . . . , vm are variables. For every k, the set
E(M) ∩ Gk is nonempty, for consider (3) and (4). The following is a
consequence of Proposition 5.

Proposition 6. Let k ≥ 1 and let t ∈ E(M) ∩Gk. Then

t = t̂kvm · · · v1

for some even m and some variables v1, . . . , vm. Also, for each i =
1, . . . , k the variable x2i occurs among v1, . . . , vm. Finally, for each v
occurring in t, the first occurrence of v when counting from the right is

on an odd position.

Corollary 7. If t ∈ E(M) ∩Gk then t̂k is a subterm of t and there are

at least k distinct variables occurring in t outside of t̂k.

Proof. By Proposition 6 at least all x2i, for i = 1, . . . , k must occur in
t outside of t̂k.



Three-element non-finitely axiomatizable. . . 487

Let us mention that in the case that M = M2 when t̂k is defined as
t̂k = x2k+1x2k · · ·x2x1, also the variable x2k+1 must occur in t outside
of t̂k, so in this case there are even at least k + 1 variables in t outside
of t̂k.

For a finite set A the symbol ♯(A) denotes the number of elements in
the set A. Corollary 7 can be restated as follows:

Proposition 8. If s ∈ L and t ∈ E(M)∩Gk is obtained by substituting

t̂k for the leading variable in s, then ♯(C(s)) ≥ k.

Let Rk be the set of all rules valid in M with the conclusion not
longer than k. Using Corollary 7 one shows that the set E(M) \ Gk is
closed under Rk. It follows that no tautology from the nonempty set
Gk ∩ E(M) can be derived by means of the rules from Rk. Since every
finite set of rules is a subset of some Rk, it follows that there is no finite
axiomatization.

3. Term-equivalence

Let M be a nonempty set and let F and G be two sets of operations
on M . Let ΛF and ΛG be the corresponding sets of operation symbols
and TeF and TeG corresponding algebras of terms in variables V . For
a valuation of variables ϕ : V → M , let ϕF : TeF → 〈M,F 〉 and
ϕG : TeG → 〈M,G〉 denote valuations induced by ϕ.

Definition 9. Let M = 〈M,F,D〉 and N = 〈M,G,D〉 be two matrices
with the same underlying set M and the same set of designated values
D. We say that M and N are term-equivalent and write M ≡ N if

1. for every n and every n-ary operation f ∈ F there is a term t ∈ TeG

such that for every ϕ : V → M , ϕF (λf(x1, . . . , xn)) = ϕG(t); and
2. for every n and every n-ary operation g ∈ G there is a term s ∈ TeF

such that for every ϕ : V → M , ϕG(λg(x1, . . . , xn)) = ϕF (s).

If two terms t ∈ TeF , s ∈ TeG are such that for every valuation ϕ
of variables ϕF (t) = ϕG(s), then we write t ≡ s and say that t and
s are equivalent relatively to (M,N). In other words, terms t ∈ TeF

and s ∈ TeG are equivalent iff the equality t ≈ s is an identity of the
algebra 〈M,F ∪ G〉. When using this notation, we do not assume that
the sets F and G are distinct; actually, they may be equal. As the set D
does not play any role in this definition, term-equivalence is really the
property of pairs of algebras: matrices are term-equivalent iff their base
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algebras are. The finite basis property considered in universal algebra is
obviously independent of the choice of the operation sets, as long as they
are equivalent. More specifically, if there is a finite basis E of identities of
an algebra A and an algebra B is term-equivalent to A then E can easily
be transformed into a finite basis of identities of B. The same is true for
a finite basis of quasi-identities of A. There is still another meaning of a
finite basis of an algebra that best resembles the finite axiomatizability
property of a matrix: one may ask whether there is a finite set of quasi-
identities of an algebra A from which all identities of A can be derived.
This finite basis property, too, is preserved under term-equivalence. If a
consequence operation Cn is algebraizable ([2]) with equivalent algebraic
semantics quasivariety Q then Cn is finitely axiomatizable iff there is a
finite set of quasi-identities of Q from which all identities of Q can be
derived. A similar connection holds between finite basis property of
an algebraizable consequence operation and finite basis property for the
quasi-identities of its equivalent algebraic semantics quasivariety Q.

A weaker property than algebraizability of a consequence operation
is sufficient to reproduce the universal algebraic argument that the fi-
nite basis and the finite axiomatizability properties are preserved under
term-equivalence. Namely, if the consequence operation of M is congru-

ential ([3]), M ≡ N and M is finitely axiomatizable (or based) then so
is N. Now, such a direct general argument cannot be applied to the
two non-finitely axiomatizable matrices considered here, as their conse-
quence operations are not congruential. In Proposition 10 we claim that
they are not even protoalgebraic ([1]), which is a weaker property than
congruential.

Proposition 10. Let M be M1 or M2. Then the deductive system

defined by the set of all rules valid in M is not protoalgebraic.

Proof. For the proof by contradiction assume that the deductive sys-
tem determined by M is protoalgebraic. Then there is a set of binary
terms ∆(x, y) such that all terms in ∆(x, x) are tautologies and y is

deducible from {x} ∪ ∆(x, y), i.e., the rule {x}∪∆(x,y)
y

is valid in M.

Since ∆(x, x) are tautologies of M, none of the terms in ∆(x, y) is a
single variable. Under the valuation ϕ such that ϕ(x) = 2, ϕ(y) = 1, all
compound terms take the designated value 2 (see the table of ·). So the

premisses of the rule {x}∪∆(x,y)
y

all take the designated value 2, while
the conclusion does not.
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4. Auxiliary definitions and lemmas

Let M = {0, 1, 2} and let M be either M1 or M2. The following Propo-
sition concerning terms equivalent relatively to (M,M) is a consequence
of Proposition 3 and Corollary 4.

Proposition 11. Let t, s ∈ Te{·}, where t = t1vm · · · · · v1, s = s1wn ·
· · · · w1, for some t1, s1, v1, . . . , vm, w1, . . . wm ∈ V . Assume that t ∈ L
and t ≡ s. Then s ∈ L, t1 = s1 and {v1, . . . , vm} = {w1, . . . , wn}.

Proof. Define valuations ϕ and ψ such that ϕ(w) = ψ(w) = 0 for all
w ∈ C(t); ϕ(t1) = 1, ψ(t1) = 2 and ϕ(w) = ψ(w) = 2 for all other
variables w. Then by item 1. of Proposition 3, ϕ(t) 6= ψ(t). Since
t ≡ s, it follows that ϕ(s) 6= ψ(s). By Corollary 4, s ∈ L, t1 = l(s) and
C(s) ⊆ ϕ−1({0}). So s1 = t1 and {w1, . . . , wn} ⊆ {v1, . . . , vm}. Another
application of Corollary 4 yields the opposite inclusion {v1, . . . , vm} ⊆
{w1, . . . , wn}.

A consequence of this proposition is that a term t ∈ L depends on
each of the variables occurring in it.

Now let F be some set of operations on M such that N = 〈M,F, {2}〉
is term-equivalent to M. Let ≡ denote the equivalence relative to (M,N).
First of all, by term-equivalence, there is a term ⊗(x, y) ∈ TeF such that
xy ≡ ⊗(x, y). We will write the symbol ⊗ between its arguments and
use the association to the left. For every k ≥ 1 we define the term

α̂k := x2k ⊗ x2k−1 ⊗ · · · ⊗ x1 if M = M1 and

α̂k := x2k+1 ⊗ x2k ⊗ · · · ⊗ x1 if M = M2.

Clearly, α̂k ≡ t̂k, where t̂k is as defined in section 2.
Next, every operation from F can be expressed by some term t ∈

Te{·}, so for every n, every n-ary operation symbol λ ∈ ΛF there is
t ∈ Te{·} such that:

λ(x1, . . . , xn) ≡ t. (5)

If in addition t ∈ L, then by Proposition 11 the variable l(t) and the set
C(t) are independent of the choice of the term t on the right hand side
of (5). As was noticed after Proposition 11, the term t ∈ L depends on
all variables occurring in it, i.e., on every variable in the set {l(t)}∪C(t).
Therefore, in this case also λ(x1, . . . , xn) depends on every variable from
this set, hence {l(t)} ∪ C(t) ⊆ {x1, . . . , xn}. The following convention
will be used.
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Convention. If (5) holds and t ∈ L then we assume that x1 = l(t)
and C(t) = {x2, . . . , xl} for some l ≤ n. In this case, we write the term
λ(x1, . . . , xn) as

λ(x1, . . . , xl; xl+1, . . . , xn)

marking with the semicolon the end of the list of variables actually oc-
curring in t.

The purpose of this convention is to simplify the notation; all arguments
below can be rewritten in the general case when the variables on which
λ(x1, . . . , xn) actually depends are not necessarily the first l variables on
the list. The variables on which a term depends are also called essential

in this term. If the set of operations F contains projections, then there
are composed terms in TeF that are equivalent to variables.

Notation. For T ⊆ TeF we write T⊂≡V iff for every t ∈ T there exists
a variable z ∈ V such that t ≡ z. If T⊂≡V and Z = {z ∈ V : α ≡ z for
some α ∈ T} then we write T ≡ Z.

The set L̂ of terms that we are now going to define is a generalization
of the set L considered in Section 2 to the case of an arbitraty set of
operations F instead of {·}, such that 〈M,F, {2}〉 is term-equivalent to
M. Also, the functions C and l defined previously on L are now redefined
as the functions with the general domain of L̂. In the special case when
F = {·}, the concepts defined in Definition 12 coincide with the previous
ones.

Definition 12. Inductively, we define the set L̂ ⊆ TeF . For a term
α ∈ L̂ its leading variable l(α) and the set C(α) of its remaining essential
variables are also inductively defined.

1. If v ∈ V , then v ∈ L̂, l(v) = v and C(v) = ∅.
2. Let α1 ∈ L̂. Assume that λ ∈ ΛF and t ∈ L are such that

λ(x1, . . . , xl; xl+1, . . . , xn) ≡ t.

Assume further that α2, . . . , αn ∈ TeF and that for some Z ⊆ V ,
{α2, . . . , αl} ≡ Z, while l(α1) /∈ Z. Then the term

β := λ(α1, . . . , αl;αl+1, . . . , αn)

is a member of L̂, l(β) = l(α1) and C(β) = C(α1) ∪ Z.
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By Definition 12 all terms equivalent to variables are in L̂. It also
follows from this definition and Proposition 11 that if (5) holds then

t ∈ L iff λ(x1, . . . , xl; xl+1, . . . , xn) ∈ L̂.

This can be generalized to all terms in L̂.

Proposition 13. Let α ∈ TeF . Then α ∈ L̂ iff there exists a term t ∈ L
such that α ≡ t. For such α and t as above, l(t) = l(α) and C(t) = C(α).

Proof. If α is a variable, then the statements of the proposition clearly
hold. Assume that α ∈ L̂ and suppose that α = λ(α1, . . . , αl;αl+1, . . . ,
αn), where α1 ∈ L̂, {α2, . . . , αl} ≡ Z ⊆ V , l(α1) /∈ Z and there is
s ∈ L such that λ(x1, . . . , xl; xl+1, . . . , xn) ≡ s. Then by Definition 12,
l(α) = l(α1) and C(α) = C(α1) ∪ Z. Also, by our Convention l(s) = x1

and C(s) = {x2, . . . , xl}. By the induction hypothesis there is a term
t1 ∈ L with l(t1) = l(α1) and C(t1) = C(α1) such that t1 ≡ α1. Let t
be the result of substituting t1 for x1 and zj for xj for j = 2, . . . , l in s,
where zj ∈ Z is such that αj ≡ zj . Then α ≡ t and by Proposition 2,
t ∈ L. Also l(t) = l(t1) = l(α1) = l(α) and C(t) = C(t1) ∪ {z2, . . . , zl} =
C(α1) ∪ {z2, . . . , zl} = C(α1) ∪ Z = C(α).

For the proof in the other direction, assume that α ≡ t ∈ L and
that α = λ(α1, . . . , αn), where λ ∈ ΛF and α1 . . . , αn ∈ TeF . By term-
equivalence there exists a term s ∈ Te{·} such that s ≡ λ(x1, . . . , xn).
Similarly, let t1, t2, . . . , tn ∈ Te{·} be such that

t1 ≡ α1, t2 ≡ α2, . . . , tn ≡ αn. (6)

Let σ be a substitution in Te{·} such that for i = 1, . . . , n, σ(xi) =
ti. Then α ≡ σ(s), so σ(s) ≡ t. By Proposition 11, σ(s) ∈ L. If,
for all i = 1, . . . , l, σ(xi) is a variable, then by Definition 12, α ∈ L̂
and the condition on variables in Proposition 13 holds. If for some
i = 1, . . . , l, σ(xi) is not a variable, then by Proposition 2, s ∈ L and
xi = l(s). Assume, as in our convention, that x1 = l(s), so this i = 1,
and C(s) = {x2, . . . , xl} for some l ≤ n. Also, by Proposition 2, t1 ∈ L,
t2, . . . , tl are variables and l(t1) /∈ {t2, . . . , tl}. Then l(t1) = l(t). By
the induction hypothesis, α1 ∈ L̂, l(α1) = l(t1) and C(α1) = C(t1). By
(6) α2, . . . , αl are equivalent to variables and none of these variables
coincides with l(α1). So α ∈ L̂, l(α) = l(α1) = l(t1) = l(t) and C(α) =
C(α1) ∪ {t2, . . . , tl} = C(t1) ∪ {t2, . . . , tl} = C(t).
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By Proposition 13 we get the following corollaries to Proposition 3
and Corollary 4.

Corollary 14. Let ϕ and ψ be valuations. Let β ∈ L̂, l(β) = v, ϕ(v) 6=
ψ(v), both ϕ(v), ψ(v) ∈ {1, 2} and ϕ(w) = ψ(w) = 0 for w ∈ C(β). Then

ϕ(β) 6= ψ(β).

Corollary 15. Let ϕ and ψ be valuations. Let γ ∈ TeF , ϕ(v), ψ(v) ∈
{1, 2} and ϕ(w) = ψ(w) for w 6= v, w ∈ V . Assume ϕ(α) 6= ψ(α). Then

γ ∈ L̂, v = l(γ) and C(γ) ⊆ ϕ−1({0}).

Definition 16. For k ≥ 1 let Sk ⊆ TeF be the smallest set such that:

1. α̂k ∈ Sk;
2. if λ ∈ ΛF is an n-ary operation such that λ(x1, . . . xl; xl+1, . . . , xn) ∈

L̂ and if β ∈ Sk, β2, . . . , βn ∈ TeF , {β2, . . . , βn} ⊂≡ V , then the term
λf (β, β2, . . . , βn) ∈ Sk.

It follows from this definition that if α ∈ Sk, then α̂k is a subterm
of α. The following proposition follows from Definition 16 by induction.

Proposition 17. Let α, γ ∈ TeF . Then

1. α ∈ Sk iff there is β ∈ L̂ such that α = β[α̂k/l(β)].
2. Assume that γ ∈ L̂, σ(l(γ)) ∈ Sk and that σ(C(γ)) ⊂≡ V . Then

σ(γ) ∈ Sk.

Modifying terms (3) and (4) from Section 2 appropriately, we get the

following proposition.

Lemma 18. The set Sk ∩ E(N) is nonempty.

Lemma 19. If α ∈ Sk ∩ E(N) and β ∈ L̂ is such that α = β[α̂k/l(β)]
then ♯(C(β)) ≥ k.

Proof. Let s ∈ L be such that β ≡ s. The existence of such a term
s is guaranteed by Proposition 13. Then C(s) = C(β) and l(β) = l(s).
Since t̂k ≡ α̂k, we get α ≡ s[t̂k/l(s)], so s[t̂k/l(s)] ∈ E(M) ∩ Gk. By
Proposition 8, ♯(C(s)) ≥ k, so ♯(C(β)) ≥ k.

Define the length |β| of a term β ∈ TeF : if β ∈ V or β is a constant,
then |β| = 1. If β = f(β1, . . . , βn), then |β| =

∑n
i=1 |βi|.
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Lemma 20. Let k ≥ 1, β ∈ TeF , |β| ≤ k. Let σ : TeF → TeF be a

substitution such that σ(β) ∈ E(N) ∩ Sk. Define β0
1 := β. Then there

exists p ≥ 0 such that for each 1 ≤ i ≤ p there exist: ni ≥ 1, 1 ≤ li ≤ ni,

λi ∈ ΛF of arity ni and terms βi
1, . . . , β

i
ni

such that

λi(x1, . . . , xli
; xli+1, . . . , xni

) ∈ L̂ (7)

βi−1
1 = λi(β

i
1, . . . , β

i
li

; βi
li+1, . . . , β

i
ni

) (8)

σ(βi
1) ∈ Sk \ {α̂k} (9)

{σ(βi
j) : j = 2, . . . , li} ⊂≡ V and (10)

βp
1 is a variable. (11)

Proof. Clearly, there is p ≥ 0 such that for all 0 < i ≤ p there are
ni’s, λi’s and terms β1

1 , . . . , β
p
np

such that (8) holds and βp
1 is either a

variable or a constant. The following inductive argument shows that for
each i = 0, 1, . . . , p also (9) holds and if i ≥ 1 then (7) and (10) hold.
From (9) for i = p it then follows that βp

1 is not a constant and therefore
(11) is true.

Notice that σ(β0
1) = σ(β) 6= α̂k, for α̂k is not a tautology of M while

σ(β) is. So for i = 0 we have (9) and the statement “if i ≥ 1 then (7)
and (10)” is satisfied vacuously.

Let 1 ≤ i0 ≤ p and assume that for all i < i0 (9) holds and if i ≥ 1
then (10). By (9), for i = i0 − 1, we have

σ(βi0−1
1 ) ∈ Sk and σ(βi0−1

1 ) 6= α̂k. (12)

By (8) applied to i = i0

βi0−1
1 = λi0

(βi0

1 , . . . , β
i0

n1
), so

σ(βi0−1
1 ) = λi0

(σ(βi0

1 ), . . . , σ(βi0

n1
)).

By (12) and Definition 16

σ(βi0

1 ) ∈ Sk, {σ(βi0

2 ), . . . , σ(βi0

li0

)} ⊂≡ V,

λi0
(x1, . . . , xli0

; xli0
+1, . . . , xni0

) ∈ L̂,
(13)

so in particular (10) holds for i0. To finish the proof it remains to show
that σ(βi0

1 ) 6= α̂k. Suppose otherwise. Equations (8) yield:

β = λ1(β1
1 , . . . , β

1
n1

)
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β1
1 = λ2(β2

1 , . . . , β
2
n2

)

...
...

βi0−1
1 = λi0

(βi0

1 , . . . , β
i0

ni0

).

Therefore |β| ≥
∑i0

i=1(ni − 1) + |βi0

1 | and since |β| ≤ k, we get

i0
∑

i=1

(ni − 1) + |βi0

1 | ≤ k, so

i0
∑

i=1

(ni − 1) ≤ k − 1 . (14)

Applying the substitution σ to the equations expanding β, we get:

σ(β) = λ1(σ(β1
1), . . . , σ(β1

n1
))

σ(β1
1) = λ2(σ(β2

1), . . . , σ(β2
n2

))

...
...

σ(βi0−1
1 ) = λi0

(σ(βi0

1 ), . . . , σ(βi0

ni0

)).

By assumption that (10) holds for all i < i0 and by (13), we know that
for all i ≤ i0, all j = 2, . . . , li,

σ(βi
j) is equivalent to a variable. (15)

Let v be a new variable and let

γ1 = λi0
(v, σ(βi0

2 ), . . . , σ(βi0

ni0

))

γ2 = λi0−1(γ1, σ(βi0−1
2 ), . . . , σ(βi0−1

ni0−1
))

...
...

γi0
= λ1(γi0−1, σ(β1

2) . . . , σ(β1
n1

)).

Let γ := γi0
. Then by our assumption that σ(βi0

1 ) = α̂k, we get γ[αk/
v] = γ[σ(βi0

1 )/v] = σ(β). Also, by construction and (15), γ ∈ L̂, v = l(γ)
and

♯(C(γ)) ≤

♯({σ(β1
2), . . . , σ(β1

l1
), σ(β2

2), . . . , σ(β2
l2

), . . . , σ(βi0

2 ), . . . , σ(βi0

li0

)}).
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This is so because for each i = 1, . . . , i0 and for each j = 2, . . . , li there
is one variable in σ(βi

j) that is in C(γ) and some of these variables may
be repeating. So

♯(C(γ)) ≤
i0

∑

i=1

(li − 1) ≤
i0

∑

i=1

(ni − 1).

By (14)
♯(C(γ)) ≤ k − 1. (16)

But
γ[αk/v] = σ(β) ∈ E(N),

so by Lemma 19
♯(C(γ)) ≥ k

contradicting (16). Hence σ(βi0−1
1 ) 6= αk, which finishes the proof.

Corollary 21. Let k ≥ 1, β ∈ TeF , |β| ≤ k. Let σ : TeF → TeF be a

substitution such that σ(β) ∈ E(N) ∩ Sk. Then

1. β ∈ L̂,

2. σ(l(β)) ∈ Sk and

3. σ(C(β)) ⊂≡ V .

Proof. By conditions (7), (8) and (10) in Lemma 20, β ∈ L̂ and l(β) =
βp

1 . So by (9), σ(l(β)) = σ(βp
1 ) ∈ Sk. By (10), for each i = 1, . . . , p and

for each j = 2, . . . , li the substitution σ(βi
j) of the term βi

j is equivalent
to a variable, so the term βi

j is also equivalent to a variable. The set C(β)
consists of variables equivalent to all such terms βi

j . Therefore again by
(10), σ(C(β)) ⊂≡ V .

5. Main result

For k ≥ 1 let Rk be the set of valid rules of N, of the form X
β

, such that

|β| ≤ k. Let 0̄ denote the valuation that assigns 0 to every variable.

Lemma 22. Let k ≥ 1. Then the set E(N) \ Sk is closed under Rk.

Proof. Assume that X
β

∈ Rk, so |β| ≤ k. Let σ be a substitution and

assume that σ(X) ⊆ E(N) \ Sk. For the proof by contradiction assume
that α = σ(β) ∈ E(N) ∩ Sk. By Corollary 21, β ∈ L̂, σ(l(β)) ∈ Sk and
σ(C(β)) ⊂≡ V . Let v = l(β). Then v /∈ C(β) and σ(v) ∈ Sk. Let us
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define a valuation ϕ as follows: for w ∈ V let

ϕ(w) =















0̄(σ(w)) for w 6= v

1 for w = v if 0̄(σ(v)) = 2

2 for w = v if 0̄(σ(v)) = 1.

(17)

Since σ(β) is a tautology, 0̄(σ(β)) = 2. Since v /∈ C(β), for every
w ∈ C(β) we have ϕ(w) = 0̄(σ(w)) and since σ(C(β)) ⊂≡ V , ϕ(w) =
0̄(σ(w)) = 0. By Corollary 14, ϕ(β) 6= 0̄(σ(β)), so ϕ(β) 6= 2. Since X

β
is

valid, there must be a term γ ∈ X such that ϕ(γ) 6= 2. But σ(γ) is a
tautology of N, so 0̄(σ(γ)) = 2, hence ϕ(γ) 6= 0̄(σ(β)). By Corollary 15,
γ ∈ L̂, v = l(γ) and C(γ) ⊆ ϕ−1({0}). So σ(l(γ) = σ(v) ∈ Sk and for
every w ∈ C(γ) we have 0̄(σ(w)) = ϕ(w) = 0, so σ(w) is equivalent to
a variable. Hence σ(C(γ)) ⊂≡ V . By Proposition 17, σ(γ) ∈ Sk, which
contradicts the assumption that σ(X) ⊆ E(N) \ Sk.

Theorem 23. Let M = 〈M, {·}, {2}〉, where · is either ·1 or ·2. Let

N = 〈M,F, {2}〉 be a matrix term-equivalent to M. Then N is not

finitely axiomatizable.

Proof. Assume that there is a finite set R of rules in ΛF such that R
is an axiomatization of N. Then there exists k ≥ 1 such that R ⊆ Rk.
Let α be a term in E(N) ∩ Sk with the shortest proof by means of R.
By Lemma 18 such α exists. Obviously, by length considerations, α is
not an axiomatic rule in R. So there is a substitution σ and a rule
X

β
∈ R that was used at the end of this proof with the substitution σ.

Then σ(X) ⊆ E(N) \ Sk and σ(β) = α ∈ E(N) ∩ Sk. This contradicts
Lemma 22.
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