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NO SUCCESSFUL INFINITE REGRESS

Abstract. We model infinite regress structures  not arguments  by means
of ungrounded recursively defined functions in order to show that no such
structure can perform the task of providing determination to the items
composing it, that is, that no determination process containing an infinite
regress structure is successful.
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1. Introduction and prefatory characterization

We are concerned here with modeling and assessing with respect to their
possibility infinite regress structures, not infinite regress arguments.1

The latter are arguments that use the derivation of the existence of an
infinite regress structure as some kind of argumentative resource, often
as a form of reductio ad absurdum. We are not directly concerned with
these arguments here. However, as we will use our modeling to argue
that no infinite regress structure can successfully perform a determina-
tion process, our result may lend support to a vast class of infinite regress
arguments.

We will first propose a preliminary definition of infinite regress struc-
tures and try then to turn it into a precise mathematical modeling.

1 For the relation between infinite regress and infinite regress arguments, see [2,
Part 5], [3, Chapter 1, pp. 1–56] and [4, pp. 421–438].
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We have an infinite regress if and only if:

i. we have a set D that is ordered by some relation <o, and the trans-
mission of some sort of determination P from some members of D

to others, in such a way that,
ii. <o is a non well-founded relation, and

iii. each member of D receives P only from some <o-prior members
of D.2

An order <o is non well-founded if it contains a backward infinite
chain of the form . . . x2 <o x1 <o x0. In an infinite regress structure,
<o turns D into a channel of transmission of P , which we will call a
determination channel. If D is finite, then the determination channel
contains a loop.

Determination P may be almost anything: existence brought about
by other existing members of D put into existence by still others; ex-
planation provided by other members of D that are in turn explained
by others; definition of some members of D in terms of others, which
are defined in terms of yet others, or any other kind of condition or
determination.

Although most times we visualize an infinite regress structure as a
set with order type ω∗

0  the order type of the negative integers  or
ω0 the order type of the naturals (e.g. [3, Chapter 1, pp. 1–56]) such
structures need not be non-dense or even discontinuous: we can set up
an infinite regress structure on the real line, for example, by the following
stipulation inspired by the Benardete and Yablo paradoxes [1, p. 259]
and [10]:

∀x ∈ R f(x) =

{

1 if max{f(y) | y ∈ R & y < x} = 0

0 otherwise.

where R is the set of all real numbers. This is why graphs, which are dis-
crete structures, may not be adequate to model infinite regress structures
with full generality.

The particular order type of D will not make any difference, provided
it is non well-founded. The point of an infinite regress structure is non

2 The existence of such a dependence relation is sometimes used to distinguish
vicious from benign infinite regress; see, for instance, [4, Section 3], [6] and [7]. Making
or avoiding that distinction only amounts to a difference in terminology: ‘infinite
regress’ means here what other authors would call ‘vicious infinite regress’.
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well-foundedness or ungroundedness: the fact that the determination
channel contains recursion  that is, determination of each item based
on determination of previous items  but no initial or base case. In
addition, one essential condition must be fulfilled by any infinite regress
structure: there must be a genuine dependence relation between the
items in D as regards the acquisition of P , that is, each item in D

must in fact depend on prior items in order to get P ; the items in D

are determined as regards P exclusively by other items in D; this is
what clause iii. makes explicit. This condition we call exclusiveness.
Recursion plus ungroundedness plus exclusiveness characterize infinite
regress structures.

This is our preliminary and intuitive approach to infinite regress and
we will assume it as a definition. It is against this prefatory defini-
tion that we will painstakingly assess our definitive modeling of infinite
regress structures in the appendix.

Traditionally, a chain of determination containing an infinite regress
was deemed impossible or doomed to failure for (broadly taken) logical
reasons. And in our view this opinion rests indeed on an imperious
intuition; if, for instance, z explains y but y requires further explanation
to be found in x, and so on, it is intuitive that no explanation is actu-
ally provided. Let us recall, however, that not everyone is of the same
opinion. Here is the famous argument by Cleanthes in Hume’s Dialogue

Concerning Natural Religion:

In such a chain, too, or succession of objects, each part is caused by
that which preceded it, and causes that which succeeds it. Where then
is the difficulty? But the whole, you say, wants a cause. I answer,
that the uniting of these parts into a whole [. . . ] is performed merely
by an arbitrary act of the mind and has no influence on the nature of
things. [5, p. 59]

It is natural to assume that, regarding our description above, Clean-
thes would claim that there is no reason for the chain of P-receivers and
P-givers to fail, since each term in it receives P from some prior term, so
that, for any member x of D, the possession of P by x is fully explained.
But this is far from obvious since one can reasonably suspect that ac-

tual explanation requires ultimate explanation  explanation that is not
indefinitely postponed  and that in such a structure the possession of
P is actually explained for no member of D. We will put forward two
examples to support this intuition.



192 Laureano Luna

Consider a set of lenders and borrowers formed by John, Mary and
Peter, and let C be a coin. Assume that John claims he is legitimately
in possession of C and is entitled to lend it out because Mary has lent
it to him; assume Mary claims she had the right to lend C to John on
the grounds that she was previously lent C by Peter, and that Peter
claims the right to lend C to Mary, at the time he did, based on the fact
that he was previously lent C by John. This depicts a loop that would
have John, Mary and Peter lending C to one another from eternity. The
right claimed by each of them seems justified by the loan made by some
other. However, there can be no such rights because there is no owner

of C who would ground on ownership rights the rights claimed by John,
Mary and Peter.

My second case involves no loop. Imagine I am holding between
my open hands the following structure: on top, a plank of wood one
centimeter broad lying on another plank of wood broad half the first
but equally shaped for the rest, and so on, with each of the infinitely
many planks having half the breadth of the one just above it. The
whole structure is two centimeter broad. Of course, this need not be
physically possible: the example is a thought experiment and should be
granted the benevolence usually bestowed upon the inessential details of
such experiments. Anyway, imagine I drop the structure: will it fall?
According to Cleanthes, it should not: the plank on top should not fall
because it leans on the one immediately below and the same is true for
any other. Since no plank should fall, the whole structure should keep
floating on air. However, we know that it will fall as soon as no force
counterpoises gravity.

2. Mathematical modeling and examples

We could claim that all possible cases of infinite regress are ultimately the
same as one of the two examples above and that this makes an intuitive
case against the possibility of successful determination through infinite
regress. But for most of our contemporary philosophers showing that
something is intuitive or counterintuitive is not enough to make the case
for or against it. So, we will try to turn the intuitive idea that infinite
regress must always fail into a formal argument by modeling infinite
regress with the help of extremely simple mathematical tools. As there is
little doubt that circularity entails failure in any determination channel,
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we will focus on noncircular cases of infinite regress. By ‘infinite regress’
we will understand hereafter ‘noncircular infinite regress’.3

We aim to model infinite regress in terms that may permit us rea-
soning about it with due rigor.4 So, we have to model non well-founded
relations of exclusive dependence. Functions are the kind of mathemat-
ical objects that might seem to serve the end of capturing dependence
relations and, particularly, functions defined by recursion, at least if they
are ungrounded (i.e. they are defined for any argument in terms of their
own values for prior arguments), may seem adequate to model infinite
regress. Yet, functions, as they are understood in modern mathematics,
are much too formal to actually embody relations of genuine and exclu-
sive dependence: a set of ordered pairs, as the purely extensional entity
it is, can hardly encapsulate real links of dependence, let alone exclusive
dependence. This will be the main hurdle in our way in what follows, for
we will model infinite regress structures by means of functions defined
through ungrounded recursion and will have to manage to accommodate
the exclusiveness requisite.

As said above, a function f defined by ungrounded recursion has no
base case, that is, no value of f is given independently of values of f

for prior arguments. Such functions are sometimes called ungrounded.
Strictly speaking, what is ungrounded is not the defined function  ul-
timately, because sometimes no function is actually defined  but the
definition of the function by recursion. Still, for simplicity, our talk will
be of functions rather than of their (sometimes failed) definitions.

Let f : D → R be a nonempty function with domain D and range R.
Let <o be an order on D. Then for any x ∈ D and C ⊆ D, we say that
f(x) is essentially defined in terms of the values of f for the members of

C iff the following conditions are fulfilled:

i′. f(x) is defined by means of some function g : K × J → R, where
K is a subset of Rκ, for some cardinal κ 6= 0, and each κ-tuple
〈f(y), f(z), . . .〉 in K is such that all the κ objects: y, z, . . . are in
C, and J is a nonempty set of χ-tuples of parameters a, b, . . . , for
some cardinal χ 6= 0, together with a clause of the form

f(x) = g(〈〈f(y), f(z), . . .〉, 〈a, b, . . .〉〉);

3 However, the fact that the order relation <o introduced below is not required
to be strict allows one type of circularity, the shortest possible: f(x) = g(〈f(x))〉.

4 Related attempts have been undertaken before (see [9]).
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if no parameters are required, J can be thought of as containing just
one member, so that it contributes a constant value; we call function
g the auxiliary function; we will dispense with angle brackets when
not needed to make g have only one argument.

ii′. f(x) cannot be defined otherwise.

Now, we will say that f is recursively defined iff the value of f for any
of its arguments is essentially defined in terms of the value of f for some
<o-prior arguments; i.e., iff:

(∀x ∈ D)(∃C ⊆ D)[C 6= ∅ & (∀y ∈ C)(y <o x) & f(x) is essentially

defined in terms of the values of f for the members of C].5

Function f gives determinations from R (or conveys P ) to the mem-
bers of D. The auxiliary function g is charged with the task of defining
the values of f out of values of f for <o-prior arguments. So, f , <o, and
g turn D into a determination channel. The definition of g obeys the
following requirements. First of all, in defining f(x), g must act upon
values of f for arguments <o-prior to x, namely, those in C; there is no
need to set a limit to the number of such values and this is why κ is any
cardinal other than 0. But there is no reason either to prohibit g from
acting on an arbitrary number of arbitrary parameters, provided this
does not permit defining f(x) otherwise than by recursion; the former is
made possible by J and χ, which can be any cardinal other than 0; the
latter is taken care of by ii′.

Note that we are trying not to lose generality in our modeling of
infinite regress, so that we can claim that our model is able to model
any infinite regress structure.

Clause ii′ is meant to capture the exclusiveness condition introduced
above and it is necessary to guarantee that any recursively defined func-
tion will give rise to an infinite regress structure, because it is necessary
to preserve ungrounded recursion as the only form in which f(x) can be
defined.

An example of a recursively defined function is

∀x ∈ Z : f1(x) = g(f1(x − 1)) = 2f1(x − 1),

5 The recursive clause in a recursively defined function is sometimes called a
recurrence equation.
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where Z is the set of all integers. For any x ∈ Z, f1(x) is essentially
defined in terms of f1(x − 1); obviously, trying to compute f1(x), for
whatever x, leads to infinite regress.

Note that f1 is essentially the same as a dynamical system of the
form

xn+1 = f(xn),

where xn = x(n), so that, substituting f for x and g for f , we can write

f(n + 1) = g(f(n)).

In dynamical systems, a base case is usually supplied by the choice
of an initial value or seed x0. We could also provide f1 with a base case,
for instance:

f1(0) = 1

But then the function could also be defined without recursion by

f1(x) = 2x

and it would no longer be a recursively defined function, for it would not
comply with clause ii’. Note also that ungroundedness is not a sufficient
condition for a function defined by recursion to be recursively defined:
not all ungrounded functions defined by recursion are recursively defined
functions. Consider the expression:

∀x ∈ Z : h(x + 1) = g(h(x)) = 0 · h(x).

This sole clause is enough to let us know that

∀x ∈ Z : h(x) = 0.

Thus, h does not satisfy clause ii′. Or consider j : Z → Z, defined as
injective, and g = j such that

∀x ∈ Z : j(x) = g(j(x − 1)) = j2(x − 1) ⇒ j(x − 1) = x ⇒ j(x) = x + 1.

h and j fail to model the dependence relation required by any infinite
regress structure because neither h(x+1) really depends on h(x) nor j(x)
on j(x−1), since in the former case all possible values of the function have
collapsed into one and in the latter ‘j(x)’ can be re-written as ‘x + 1’,
where ‘j(x − 1)’ does not occur. We will call ungrounded functions
that are defined by recursion but are not recursively defined functions
degenerate cases. So, h and j are degenerate cases.
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The exclusion of degenerate cases guarantees that recursively defined
functions involve infinite regress. That they can model all cases of infi-
nite regress follows from the fact that we have proceeded without loss of
generality, that is to say, imposing no unnecessary restrictions on the ob-
jects involved. So, if our preliminary characterization of infinite regress
structures is adequate, as it seems to be, recursively defined functions
have been defined in as general a way as possible, given the class of
structures they are devised to model. So, it is sensible to claim that any
infinite regress structure can be modeled by some recursively defined
function. In any event, the reader can find a more detailed assessment
of these issues in the appendix.

Elaborating on an idea we have used before [8], we can collect the
main elements constituting a recursively defined function into a determi-

nation system. A determination system is then a sextuple Σ = 〈D, R, <o,

f, ∆, Γ〉, where D and R are nonempty sets; <o is an order on D;
f : D → R is a function; Γ is a set of auxiliary functions g, as defined
above; ∆ is a set of definitions d in which f is defined, by recursion with
the help of some member g of Γ. Note that we are not requiring so far
that f be recursively defined.

Determination systems, when successful, can be viewed as devices
taking arguments from D and assigning them values or determinations
from R in a recursive way by means of functions f ’s and their auxiliary
functions g’s, in accordance with the stipulations in the d’s. So, recursion
in the d’s, always based on <o, turns D into a determination channel.

A couple of examples may be in order here. If what we wish to model
by some Σ is the temporal course of a system ruled by a causal law, D

will be a set of time units ordered by the usual temporal order and R a
set of events. Then f will give us the content of a time unit in terms of
the content of preceding time units by means of some g in Γ, representing
the incumbent causal law. For a very simple case, if we want to model
the law that, for all n ∈ Z, it rains at day tn+1 iff it didn’t rain at tn, we
can represent presence of rain by 1 and absence of rain by 0, and then d

will be as follows:

f(tn+1) = g(f(tn)) = 1 − f(tn)

If we want to model a chain of definitions of concepts by means of other
concepts, D will be a set of concepts ordered by some epistemological
dependence relation and R will be a set of definitions of concepts. Then
f will give us, with the help of the auxiliary functions, the definition of
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a concept in terms of the definitions of some other concepts. This is how
the concept of addition (+) is usually defined in terms of the concept of
successor (s), the concept of multiplication (∗) is defined in terms of the
concept of addition, and the concept of exponentiation (ˆ) in terms of
the concept of multiplication:

o0 = s,

o1 = +,

o2 = ∗,

o3 = ˆ

which are such that:

∀x, y ∈ N : x + 0 = x & x + y + 1 = g1(x + y) = s(x + y)

∀x, y ∈ N : x ∗ 0 = 0 & x ∗ (y + 1) = g2(x ∗ y) = x ∗ y + x

∀x, y ∈ N : xˆ0 = 1 & xˆ(y + 1) = g3(xˆy) = (xˆy) ∗ x

If f in Σ is a recursively defined function, then Σ is a recursively de-

fined determination system (RD-Σ, hereafter).6 RD-Σ’s always involve
infinite regress because recursively defined functions do. Conversely, all
infinite regress structures, as defined, can be modeled by some RD-Σ,
since all of them can be modeled by recursively defined functions, as
shown above and an RD-Σ is only the assembling of the objects consti-
tuting a recursively defined function.

3. Conclusion: No successful infinite regress

Now we want to show that no RD-Σ succeeds in determining values for
the members of D because recursively defined functions fail to assign
values to their arguments. Then we will show that, if a determination
process running into an infinite regress could succeed, there could also
be a successful RD-Σ: this implication encapsulates the entire merit of
our modeling for our present purposes.

That recursively defined functions must fail to provide values for their
arguments can be shown as follows. Let f : D → R be one such function

6 In [8] I used a related construction; unfortunately, in that paper I forgot to
explicitly exclude degenerate cases and cases in which C = ∅. I owe Casper Hansen
acknowledgement for spotting the latter.
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and let’s assume for simplicity that <o is such that each member x of D

has a <o-successor so(x) and that, for each x ∈ D, f(so(x)) is a function
of just f(x)  generalization to other cases is straightforward. Then, if f

is recursively defined, all we can get from its definition is a set of chains
of conditionals of the form

. . .

if f(s−1
o (x)) = k then f(x) = g(k),

if f(x) = g(k) then f(so(x)) = g(g(k)),

if f(so(x)) = g(g(k)) then f(so(so(x))) = g(g(g(k))),

. . .

and so for each pair 〈x, so(x)〉 of successive members of D. Each possible
value of f(x) would induce one such series of concatenated conditionals.

But it is a logical truth that no categorical sentence of the form
‘f(x) = k’, for some member x of D, follows from such a chain of con-
ditionals and only a categorical sentence of that form would actually
determine a value for a member of D. This fact and clause ii. entail that
f , as defined by d in Σ, is undefined for all members of D. Indeed, the
recursive definition of the values of f leaves us with only a doubly infinite
chain of hypothetical sentences concatenated as in this general form

. . .

if pn−1 then pn,

if pn then pn+1,

if pn+1 then pn+2,

. . .

and, in general, from these no categorical sentence can be derived. In
our case only a categorical sentence would deliver the determination of
a value of f . Furthermore, by clause ii′, this necessarily failing way is
the only way in which values of f could possibly be determined. These
two facts ensure that no value is actually assigned by f to any x in D.
So, the fact that a set of concatenated conditionals entails no categorical

statement turns out to be decisive for the question whether a process of

determination involving an infinite regress can be successful.
It follows that RD-Σ’s fail to assign members of R to the members

of D: there is no successful RD-Σ. But it follows from the fact that
RD-Σ’s can model any infinite regress structure that, if some items were
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actually produced, explained, entailed, qualified or anyhow else deter-
mined through infinite regress  shortly: if a successful infinite regress

existed  a successful RD-Σ would also exist, namely, the one model-
ing the successful infinite regress structure at issue. Now it only takes a
humble Modus Tollens to infer that there is no successful infinite regress.

Appendix

Our definition of recursively defined function has been devised to meet
these demands:

a) Ensure that any recursively defined function models an infinite regress
structure.

b) Ensure that no other conditions than the required for a) are imposed.

If, and only if, (b) is actually satisfied, any infinite regress structure can
be modeled by some recursively defined function. Let us make reason-
ably sure that a) and b) have actually been met. a) is very intuitive,
since ungrounded recursion and clause ii′. clearly make infinite regress
unavoidable. So, let us address (b), which is the requirement of greatest
possible generality. To address b), we exposit our definition of recursively
defined functions more compactly through conditions (α) and (β) below.

For any nonempty sets D and R, a function f : D → R is recursively
defined iff f satisfies the following conditions:

(α) there is a relation <o ordering D and for any x ∈ D there are: a
nonempty subset C of D, cardinal numbers κ and χ, a subset K of

Rκ, a κ-tuple

κ

︷ ︸︸ ︷

〈f(y), f(z), . . .〉 ∈ K, a set J of χ-tuples of parameters,

a χ-tuple

χ

︷ ︸︸ ︷

〈a, b, . . .〉 ∈ J , and a function g : K × J → R such that

(∀w ∈ C)(w <o x) & (∀

κ

︷ ︸︸ ︷

〈f(y), f(z), . . .〉 ∈ K)(

κ

︷ ︸︸ ︷
y, z, . . . ∈ C) &

f(x) = g(〈

κ

︷ ︸︸ ︷

〈f(y), f(z), . . .〉,

χ

︷ ︸︸ ︷

〈a, b, . . .〉〉).

(β) ∀x : f(x) can only be defined as in (α).

The formula in (α), even if it is a rather cumbersome one, should
facilitate supervising all objects and conditions involved in our charac-
terization of recursively defined functions.



200 Laureano Luna

Let us assess the definitions (α) and (β) for generality. Concerning
α, we must show that f , <o, C and g are required for infinite regress
and as general as possible. First of all, these four objects are required:
f is necessary to assign determinations from R to members of D, which
represents the transmission of P from items to items in the determination
channel, while <o, C and g are necessary to express recursion. Let us
now evaluate their generality.

As regards f : f depends only on D, R, g, and C; D and R are as
general as possible, for they are only prohibited to be empty; we consider
C and g below.

As regards <o: being any order, <o is as general as possible.
Note that f , which involves D and R, and <o are the only objects

independent of x: all others may be different for different members of
D, and this lends the definition greater generality.

As regards C: from C, we only ask that it be a nonempty subset of D

and that its members be <o-prior to x; the latter is clearly required for
recursion and the former is necessary for f(x) to be defined in terms of
the value of f for other members of D, which is required by our definition
of infinite regress according to which P is received by members of D from
members of D. So C is as general as possible.

As regards g: g depends only on K, J , R, C, κ, and χ; we have
already seen that R and C are as general as possible; κ and χ are just any
cardinals other than 0; this restriction is necessary for g to be nonempty
and for C to be nonempty, since infinite regress demands that f(x) be
defined in terms of some members of D that are <o-prior to x, and these
are the members of C; hence, κ and χ are as general as possible; J is just
any set and its presence contributes to make g as general as possible, for it
provides arbitrary parameters for g; and if no parameters are required, J

contributes just a constant; K must be a nonempty subset of Rκ because
g must act on values of f for members of C; thus, the arguments of the
members of the κ-tuples in K must be members of C; we set no other
restrictions on K; hence K is as general as possible; hence, so is g.

Once C and g have been shown to be as general as possible, we know
that also f is so.

Finally, (β) is nothing but clause ii’, which is necessary to fulfill the
exclusiveness condition present in our provisional definition of infinite
regress.



No successful infinite regress 201

References

[1] Benardete, J., Infinity: An Essay in Metaphysics, Oxford, Clarendon
Press, 1964.

[2] Black, O., “Infinite regress arguments and infinite regresses”, Acta Ana-

lytica, 16/17 (1996): 95–124.
[3] Gratton, C., Infinite regress arguments, Dordrecht, Springer, 2009.
[4] Maurin, A-S., Infinite Regress Arguments. Johanssonian Investigations:

Essays in Honour of Ingvar Johansson in his Seventieth Birthday,
C. Svennerlind, J. Almäng and R. Ingthorsson (eds.), Heusenstamm, On-
tos Verlag, 2013.

[5] Hume, D., [1779] Dialogue Concerning Natural Religion, H. D. Aiken (ed.),
New York, Hafner Pub. Co., 1966.

[6] Johansson, I., “Proof of the existence of universals – and Roman Imgar-
den’s ontology”, Metaphysica, 10 (2009): 65–87.
DOI: 10.1007/s12133-008-0040-0

[7] Johnstone, H. W., Jr., “The rejection of infinite postponement as a philo-
sophical argument”, The Journal of Speculative Philosophy, 10 (1996):
92–104.

[8] Luna, L., “Ungrounded causal chains and beginningless time”, Logic and

Logical Philosophy, 18 (2009): 297–307. DOI: 10.12775/LLP.2009.014
[9] Pruss, A., “The Hume-Edwards principle and the cosmological argument”,

International Journal for Philosophy of Religion, 43: 149–165.
[10] Yablo, S., “Paradox without self-reference”, Analysis, 53 (1993): 251–252.

Laureano Luna

I.E.S. Doctor Francisco Marin
Philosophy, Siles, Spain
laureanoluna@yahoo.es

http://dx.doi.org/10.1007/s12133-008-0040-0
http://dx.doi.org/10.12775/LLP.2009.014

	Introduction and prefatory characterization
	Mathematical modeling and examples
	Conclusion: No successful infinite regress
	Appendix
	References


