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A FIRST-ORDER EXTENSION OF GL

Abstract. We introduce a first order extension of GL, called ML3, and
develop its proof theory via a proxy cut-free sequent calculus GLTS. We
prove the highly nontrivial result that cut is a derived rule in GLTS, a
result that is unavailable in other known first-order extensions of GL. This
leads to proofs of weak reflection and the related conservation result for
ML3, as well as proofs for Craig’s interpolation theorem for GLTS.

Turning to semantics we prove that ML3 is sound with respect to arith-
metical interpretations and that it is also sound and complete with respect
to converse well-founded and transitive finite Kripke models. This leads us
to expect that a Solovay-like proof of arithmetical completeness of ML3 is
possible.
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1. Introduction

This paper develops the proof theory of a first-order extension of GL,
the ML3 introduced in Section 3. This logic also extends the first-order
modal logic M3 of [20, 21] that is in turn an extension of K4.

To motivate the introduction of ML3 we need briefly to explain the
genesis of M3, which was introduced to settle a question posed in [5] that,
essentially, was: “can we add � to classical predicate logic so that  for
classical A and B  the provability of �A → �B is tantamount to the

Received June 13, 2013. Revised September 1, 2013. Published online September 18, 2013

© 2013 by Nicolaus Copernicus University

http://dx.doi.org/10.12775/LLP.2013.030


330 Yehuda Schwartz, George Tourlakis

classical derivability of B from A?” Using model-theoretic tools (Kripke
models), [20, 21] proved “the conservation result” for M3 that answers the
question affirmatively: For classical Γ, A, B, we have that B is provable
from Γ ∪{A} classically iff M3 establishes that the premises Γ, �Γ prove
�A → �B. In other words, � in this context is a general-purpose (as
opposed to one specific to Peano arithmetic) provability operator for
classical predicate logic.

The design criterion for M3  to solve a specific problem  dictated
that just as the classical ⊢, in something like ⊢ A, is oblivious to the
free variables of A,1 so must � be in something like �A. Thus the latter

expression is always a sentence. Nevertheless, M3 does have free and
bound object variables, quantifiers and predicates and is a first-order
system that is however not interested in prying inside the scope of the
“box” �.

ML3 is an extension of M3 over the same modal language, obtained
by adding Löb’s axiom schema �(�A → A) → �A, and thus this logic
extends GL as well. Our motivation to study it was on one hand to
introduce a well behaved first-order extension of GL, and on the other
hand obtain a logic that still simulates classical provability ⊢ via the
modal box, just as M3 does.

In what sense is ML3 “well behaved”? The design criterion that
it must support simulation of general provability  i.e., “� is classical
⊢”  entails that all object variables in a box’s scope must be bound,
and this in turn entails that ML3 (just as was the case with M3) has
a cut-free Gentzenisation in which the cut rule is derivable. This in
turn leads to a user-friendly proof theory. Moreover we are hoping to
prove that ML3, or some closely related variant of it, are arithmetically
complete. As a first instalment toward this goal we establish here that
ML3 is semantically complete with respect to transitive and converse
well-founded finite Kripke models (Subsection 7.2).

How well behaved are the various known predicative extensions of
GL? First let us compare ML3 with the QML, that is, the first-order
modal logic  where �A is not closed if A is not  whose theorems,
by definition, are precisely those formulae of the language whose every
arithmetical interpretation is Peano-provable. QML is by construction

arithmetically complete, however, it is not recursively axiomatisable as

1 This is true in a foundation of first-order classical logic that supports strong
generalisation  that is, A unconditionally derives ∀xA  as in [9, 16, 19].
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shown by Vardanyan [23], and thus is unusable as a tool to do logic with.
On the other hand, ML3 is axiomatised by its very construction, and is
eminently usable.2

One does not need to go to extreme first-order examples such as
QML. There have been other predicate modal logics in the literature,
beyond QML and ML3, for example, QGL (quantified GL), that is, the
“straightforward” first-order extension of GL where �A has as free
variables precisely those of A. It is known ([1]) that (a) QGL admits no
cut elimination3 and (b) it is not arithmetically complete ([10]).

Thus it appears that insisting that the language must have access to
the free variables of A behind a box  in �A  introduces undesirable
side-effects and severely limits the resulting first-order modal calculus in
that, apart from an artificial appearance of “generality” in the behaviour
of its quantifiers in relation to the box �, the calculus fails to support

important metatheoretical tools, such as cut elimination and Craig inter-

polation, a fact that also limits the usability of said “predicate” modal
logics. We will return to this point shortly.

We next outline how Gentzenisation of M3 was done in [15] and
how it is accomplished here for ML3. Thus, loc. cit. set out to develop a
proof theory for M3 and, in particular, to prove the conservation theorem
without the use of semantical tools. The main proof-theoretic tool was
to obtain a cut-elimination result for a Gentzen-style logic that we built
as a proxy for M3 and we called GTKS. Such an approach, building a
sequent calculus proxy for a Hilbert-style logic in order to develop the

latter’s proof theory, has been common in the modal logic literature,
albeit in the Boolean domain, for example, [8, 11, 22].

The modal rule “TR” below  where ∀Γ denotes the set of all uni-
versal closures of formulae in Γ,

∀Γ,�Γ ⊢ A

Φ,�Γ ⊢ �A, Ψ

was central in GTKS and is a first-order version of the rule TR that
appears in [11]. Of course, the added complexity of a Gentzen-style
system helps as long as it admits cut-elimination. We proved in [15] that
this is the case, using an adaptation of Schütte’s [14] “cut-elimination”
proofs in the (first-order) classical and intuitionistic settings, that is,

2 [20, 21] contain examples of uses of the related M3 and so does [6].
3 That is, its Gentzenisation does not.
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rather than adopting cut as a primitive and then trying to get rid of
it, we started instead without a cut rule and proved that GTKS can
simulate cut (it is a derived rule). In that respect our “cut-elimination”
proof was drastically different from the ones in [11, 22]. The rule TR

originated in [8, 11, 22] in the form
Γ,�Γ ⊢ A

�Γ ⊢ �A
where it was used toward

obtaining a propositional modal sequent calculus system equivalent to
K4. Our version was a modification aimed to fit a predicate context
(dictating the presence of ∀Γ) and we included the Ψ and Φ to avoid the
inclusion of weakening/strengthening primary rules, thus simplifying the
cut simulation proof.

Given that one can trivially show that M3 is sound under arithmetical
interpretations, the next natural question was: can we extend this logic
so that it also becomes complete with respect to such interpretations and
thus serve as a predicate provability logic  and do so without sacrificing
cut eliminability?

The present paper is a contribution toward precisely this direction,
introducing a proper extension of M3, the ML3, via the addition of the
Löb axiom schema �(�A → A) → �A. While we do not have yet
a polished proof of arithmetical completeness to include in this paper,
we nevertheless include here a key result that is expected to lead us
there, namely a proof that ML3 is sound and complete with respect to
finite and converse well-founded transitive Kripke structures. Moreover,
we develop the proof theory of ML3 by introducing a sequent calculus
proxy  called GLTS this time  which while it does not include cut as a
primary rule, it nevertheless can simulate cut (as a derived rule). We use
the freedom from cut of GLTS to show that the modal operator in ML3

can also act  just as it did in M3  as a “general provability operator”
for classical logic in that the conservation result is preserved as we pass
from M3 to ML3.

Related results obtained are a proof of weak reflection (essentially,
if ML3 can prove �A from certain assumptions, then it can also prove
A from closely related assumptions), that Craig Interpolation holds for
both GTKS and GLTS, and we also prove two negative results: Neither
schema �A → A (strong reflection) nor A → �A (strong necessitation)
are provable in ML3.

Our GLTS includes a modified “GLR” rule that we adapted from
[8, 22]. This rule proves the Löb schema in this sequent calculus. The
cut simulation proof that we include here has similarities to the one in
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[22] but is considerably more complex due to the presence of quantifiers.
This time we had to borrow techniques from loc. cit. since the Schütte-
like induction that we used in [15] did not work here due to the presence
of the “diagonal formula” �A in the modified GLR:

∀Γ,�Γ,�A ⊢ A

Φ,�Γ ⊢ �A, Ψ

Nevertheless, following Schütte [14], we have chosen some seemingly
“nonstandard” sequent calculus rules. Suffice it to say that our GTKS
(and GLTS of the current paper) are as they should be in terms of proof
power, since we have proved them to be equivalent to two semantically
complete Hilbert-style systems, M3 (and ML3 respectively).

We can now add some final remarks to our preceding discussion re-
garding the choice that �A be always closed. Rather than accept an a
priori “right way” to go about this, which would be oblivious to specific
design goals, we note that our choice, which was made all the way back
in [20, 21], was goal-driven: What do we want our logic to be able do?

Well, our logic should force �A to behave like ⊢ A whenever A is
classical. It should also make �A behave like Pr(pA∗

q)  where Pr is
Gödel’s provability predicate  to obtain an arithmetical interpretation.
Neither of these two goals require one to reach inside the scope of �,
notwithstanding the assertion in [4], that

“At Grade 3, � is allowed to attach to open formulae, as in �(x > 7).
This is the level needed [our italics] to combine modality with quanti-
fiers, for we need [our italics] to say such things as ‘something is such
that it is necessarily greater than 7’ ”

This assertion must be seen in the context where it is offered, for if it is
applied universally, then the word “need” that occurs twice in it is too
strong. The assertion applies to the use of � as a necessity operator 
and Quine disputes the assertion even in this context. The italicised
verbs above purport to apply to all contexts. Yet, in our context  where
� can be at once a general and a Peano-specific provability operator 
we note that in both statements “for some x, ⊢ A(. . . , x, . . .)” (classical
A) and “for some x, Pr(pA(. . . , x, . . .)q) (modal A) is Peano provable”
the result is independent of x.

Our choice of syntax for �A has subsequently led to two predicate
sequent calculi, GTKS and GLTS, that are cut-free and yet can each
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simulate the cut rule. This much cannot be said for “the more general”
systems, such as QGL, that allow �A to have free variables.

Our approach has led to one solution of how to add the box to clas-
sical predicate calculus and still have a usable system, with powerful
proof-theoretic tools such as “cut-elimination” and Craig interpolation 
for both GTKS and GLTS, using a proof that, just like that of Maehara-
Takeuti, hinges on the absence of cut in both systems  and the ability
to simulate classical proofs via the conservation result. It is notable that
Craig Interpolation fails in other predicate modal logics (cf. [3]). More-
over ML3, with its finite converse well-founded Kripke models is most
likely, as we hope to prove, complete under arithmetical interpretations.

Finally, we briefly mention another choice that we made in [20, 21],
which we preserved here. This too makes eminent sense from the end-
result, or design, point of view: Our Kripke semantics in loc. cit. and
in the present paper, use the varying domain semantics ([4]), with one
important variation: While in such semantics, “normally”, ∀xA is eval-
uated in the current world, yet A(y) is evaluated over all worlds. As a
result, ∀xA → A(y) does not evaluate as true, and that is unacceptable
for our first-order logics and our intended semantics that include the
goal of simulating the classical ⊢. Thus, in our case, A(y) is evaluated

in the current world just as ∀xA is, and thus the “substitution axiom”
(axiom (2) in 3.1) is true, as intended.

2. Language and terminology

This paper is a continuation of [15], and thus it is recommended that
the reader reviews the first few pages of section 1 in loc. cit. that cover
the specifics of the first-order language and (some of) the terminology
that will be used here. However, for convenience’s sake, we will restate
the following points:

• We do not include equality in our logic and we employ neither con-
stants nor functions in its alphabet, but we do allow predicates  in
particular, 0-ary predicates, that is, propositional variables. Also, as
in Schütte [14], we distinguish between bound x, y, x′′

11, . . . and free
a, b, a′

2, . . . variables.
• Formulae are built from atomic first-order formulae by the connectives

∀, → and ⊥ and the modal �.
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• Our interest in a variable a (resp. x) that may or may not occur in an
expression F is denoted by F [a] (resp. F [x]).

• For any formula, A, ∀A will denote the (canonical) universal closure of
A  “canonical” requiring the ∀x∀y . . . prefix to be sorted in ascending
lexicographic order of the bound variables.

• We say that a first-order formula is classical if it does not contain the
� symbol.

• We say that a first-order proof is classical if all the formulae involved
in the proof are classical.

• For any formula, A, �A is considered to be closed. The specific for-
mation rules that guarantee closure by � are detailed in [15]. This
convention, already utilised in [20, 21, 6], is consistent with the in-
tended semantics of the � as general (classical) first-order provability:
A is provable iff ∀A is. Thus, ∀�A is simply a verbose manner of
writing �A.

• For any set of formulae, Γ, the notations �Γ and ∀Γ mean {�A : A ∈
Γ} and {∀A : A ∈ Γ} respectively.

3. The system ML3

In [15] we showed that the proof theory of the logical axioms of the
Hilbert-style formal systems BM ([6]) and M3 ([20, 21]) can be investi-
gated from within the Gentzen system GTKS. Indeed, GTKS, BM and
M3 are closely related with respect to deductive power.

We will now introduce a new Hilbert-style formal first-order extension
of GL (and of M3 of [15]), that we call ML3, and will start developing its
proof theory in the next section via a proxy Gentzen system introduced
there, GLTS.

Definition 3.1 (Axioms and rules of inference for ML3). The set of
logical axioms of ML3 is Λ∪�Λ∪��Λ4, where Λ consists of all instances
of the following basic schemata:

(1) All tautologies
(2) ∀xA[x] → A[a]
(3) A[a] → ∀xA[x], provided a does not occur in A.
(4) ∀x(A → B) → (∀xA → ∀xB)
(5) �(A → B) → �A → �B

4 The presence of ��Λ helps in proving the derivability of �A → ��A.
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(6) �(�A → A) → �A
(7) �A → �∀xA

There are two primary rules of inference. Modus ponens (MP) “if A
and A → B, then infer B”, and generalisation (Gen) “if A, then infer
(∀x)A”. Derivability in ML3 is denoted by Γ ⊢ML3 A, that is, A is
derived from hypotheses Γ. ⊣

Remark 3.2. Axiom schema (7) is rendered unremarkable by the neces-
sity of its presence: If ML3 is to achieve conservation, that for classical
A and B, if A ⊢ B, then �A → �B is ML3-provable, then it must be
that �A → �∀xA is ML3-provable since A ⊢ ∀xA classically (and, by
the way, modally as well). The reader will note that this schema is a
special case of the Barcan formula (schema) ∀x�A → �∀xA in view of
schema (3). Neither 7 nor the general Barcan formula are adopted in
QGL. Rather, QGL has as axiom schemata those of GL, augmented by
the classical schemata 1–4 of 3.1.

The M3 of [15, 20, 21] uses �A → ��A instead of (6) and its logical
axiom set is Λ′ ∪ �Λ′, the prime reflecting the disagreement regarding
axiom (6). As is well known, axiom group (1) allows proof by tautological

implication, that is, if A, B, . . . |=taut X , then X is derivable (syntacti-
cally) from the hypotheses A, B, . . .5 We use the following notation:

(i) Γ ⊢ML3 A is short for “the formula A is derivable from Γ in ML3”.
(ii) Γ ⊢M3 A is short for “the formula A is derivable from Γ in M3” of

[20, 21, 15]. ⊣

In the following series of lemmata we shall explore some of the prop-
erties of ML3 and its relation to M3.

We will use A ∧ B as an abbreviation for (A → (B → ⊥)) → ⊥. ⊣

Lemma 3.3. ⊢ML3 �(�(A ∧ B) → (�A ∧�B))

Proof. I. �
(
�(A ∧ B → A) → (�(A ∧ B) → �A)

)
∈ �Λ

(Boxed (5))

II. ��(A ∧ B → A) ∈ ��Λ
III. ��(A ∧ B → A) → �

(
�(A ∧ B) → �A)

)
(By I. using (5))

IV. �
(
�(A ∧ B) → �A

)
(MP of II. and III.)

V. �
(
�(A ∧ B) → �B

)
(Similarly)

VI. �
[
(�(A ∧ B) → �A) →

(
(�(A ∧ B) → �B) → (�(A ∧ B) →

�A ∧�B)
)]

∈ �Λ

5 “A, B, . . . |=taut X” is short for “A → B → . . . → X is a tautology”.
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VII. �
(
�(A ∧ B) → (�A ∧�B)

)
(Using (5) and then MP with IV. and V.)

⊣

Corollary 3.4. ⊢ML3 �(�A ∧�B → C) → �(�(A ∧ B) → C).

Proof. �
([
�(A∧B) → �A∧�B

]
→

[
(�A∧�B → C) → (�(A∧B) →

C)
])

∈ �Λ, now using (5) and MP with the conclusion of the previous

lemma we get �(�A ∧�B → C) → �
(
�(A ∧ B) → C

)
. ⊣

Lemma 3.5. ⊢X �(A ∧ B) ↔ �A ∧�B when X is M3 or ML3.

Proof. This is well-known and uses only MP, (1), and (5). ⊣

Lemma 3.6. ⊢ML3 �A → ��A

Proof. Relying on 3.4 and 3.5, the proof is basically the one appearing
in [2]. ⊣

Theorem 3.7 (Weak Necessitation). If Γ ⊢ML3 A, where Γ = Γ′ ∪ �Γ′

or Γ = �Γ′, then Γ ⊢ML3 �A

Proof. By induction on Γ-theorems.

1. If A ∈ Λ ∪�Λ ∪ Γ′ then �A ∈ �Λ ∪��Λ ∪�Γ′ thus �Γ′ ⊢ML3 �A
and so Γ ⊢ML3 �A.

2. If A ∈ ��Λ ∪ �Γ′ then A = �B for some B ∈ �Λ ∪ Γ′. Then since
Γ ⊢ML3 �B and since ⊢ML3 �B → ��B (3.6), then using MP we get
Γ ⊢ML3 ��B i.e. Γ ⊢ML3 �A.

3. If Γ ⊢ML3 B → A and Γ ⊢ML3 B, then by the I.H. we get Γ ⊢ML3

�(B → A). Now using (5) and MP we get Γ ⊢ML3 �B → �A.
Another application of the I.H. gives us Γ ⊢ML3 �B and now using
MP we get Γ ⊢ML3 �A.

4. If A = ∀xB and Γ ⊢ML3 B, then by the I.H. Γ ⊢ML3 �B, but since
Γ ⊢ML3 �B → �∀xB (7) then by using MP we get Γ ⊢ML3 �A. ⊣

Note. Let us introduce the abbreviation L(A) for �(�A → A) →
�A, i.e., axiom (6), and Ln(A1, . . . , Am) for the sequence �nL(A1), . . . ,
�

nL(Am). Note that Ln(A) is simply the formula �nL(A), and, in
particular, L0(A) = L(A).

Proposition 3.8. ⊢M3 Ln(A) → L(A), for n ­ 0.

Proof. This is Lemma 2.2. in [13] ⊣
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Corollary 3.9. Γ ⊢ML3 A if and only if there are formulae A1, . . . , An

such that L1(A1, . . . , An), Γ ⊢M3 A.

Proof. Let the axioms of ML3 be Λ ∪�Λ ∪��Λ (Λ as in 3.1) and the
axioms of M3 be Λ′ ∪ �Λ′ ([20, 21]). Let us show the only if. We have
cases:

1. A is in Λ ∪ �Λ. Since both Λ and Λ′ share axioms (1)-(5) and (7),
we only need to consider the subcases where A is �L(B) or L(B)
(boxed or unboxed axiom (6)). Now, the first subcase is immediate
since trivially �L(B) ⊢M3 A. On the other hand, by 3.8 and MP we
have �L(B) ⊢M3 L(B), which settles the second case.

2. A is in ��Λ. Then A = ��B where �B ∈ �Λ and so by the
previous part there are A1, . . . , An such that L1(A1, . . . , An) ⊢M3

�B. Now using the fact that ⊢M3 �B → ��B, and MP, we get
L1(A1, . . . , An) ⊢M3 A.

3. A is in Γ. Obviously Γ ⊢M3 A.
4. Γ ⊢ML3 A as a result of MP on B → A and B. Then by the I.H. there

are A1, . . . , Am and Am+1, . . . , An such that L1(A1, . . . , Am), Γ ⊢M3

B → A and L1(Am+1, . . . , An), Γ ⊢M3 B. Thus, L1(A1, . . . , An),
Γ ⊢M3 B → A and L1(A1, . . . , An), Γ ⊢M3 B. Now apply MP to reach
the sought for conclusion.

5. A = ∀xB and Γ ⊢ML3 B. Follows directly from the I.H.

We now turn to the if.

1. A is in Λ′ ∪�Λ′. Again we only need to show the claim for the case
A = �B → ��B or A = �(�B → ��B). The first case is by 3.6,
and the second by 3.7 applied to the first case.

2. A is in Γ or L1(A1, . . . , An) for some i = 1, . . . , n. But �L(Ai) ∈
Λ ∪�Λ for all such i and so Γ ⊢ML3 A.

3. A was obtained via MP or generalisation. Similar to the only if. ⊣

4. The Gentzen system GLTS

We now introduce the earlier announced Gentzen-style system that we
will prove to be equivalent to ML3 in terms of deductive power.

The formal rules (schemata) of GLTS are:
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(1) Initial rules: Γ, A ⊢ ∆, A  where A is atomic6  and Γ, ⊥ ⊢ ∆.

(2) →-left rule:
Γ, A → ⊥ ⊢ ∆ Γ, B ⊢ ∆

Γ, A → B ⊢ ∆

(3) →-right rule:
Γ, A ⊢ ∆, B

Γ ⊢ ∆, A → B

(4) ⊥-right rule:
Γ, A ⊢ ∆

Γ ⊢ ∆, A → ⊥

(5) ⊥-left rule:
Γ ⊢ ∆, A

Γ, A → ⊥ ⊢ ∆

(6) ∀-right rule:
Γ ⊢ ∆, A[a]

Γ ⊢ ∆, ∀xA[x]
 as long as a, the eigenvariable of the

rule, does not occur in the conclusion (“denominator”) of the rule.7

(7) ∀-left rule:
Γ, A[a] ⊢ ∆

Γ, ∀xA[x] ⊢ ∆

(8) The modified “GLR”8 modal rule:
∀Γ,�Γ,�A ⊢ A

Φ,�Γ ⊢ �A, Ψ
⊣

The Γ and ∆ in the rules are called the “side formulae” (s.f.); the result-
ing single formula in the “denominator” in rules (2)–(8) is the “principal
formula” (p.f.) of the rule; rule (1) has A as principal formula. The single
formulae displayed in the “numerators” of (2)–(8) are the “minor formu-
lae” (m.f.). A numerator sequent is a premise while the denominator
sequent is the conclusion of the rule. (3) is, intuitively, the “deduction
theorem”. The (arbitrary) sets Φ and Ψ in rule (8) are weakening and
strengthening parts respectively (they help us easily achieve 4.4 and 4.5).

For convenience’s sake, let us restate the following definitions, the-
orems and corollaries from [15]. Whenever a proof is supplied for said
results here, it will only address the modal case, since the other cases
are identical to the corresponding parts in loc. cit.

6 The intuition behind the rule is evident. The requirement for atomic A facili-
tates the basis step of (meta)proofs by induction on the “order” of (formal) theorems,
as it will soon become evident.

7 “x” is thought of as a metavariable that denotes any bound variable.
8 Cf. [8, 11, 12]  the modifications are two: a) we require the universal closure

of Γ in the numerator, rather than Γ itself, which helps to simulate axiom (7) of
ML3 b) we allow the rule to introduce “weakening” and “strengthening” parts to its
conclusion.
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Definition 4.1 (Theorems). A theorem, or derived sequent, is defined
inductively to be one of:

(1) A sequent of the type of rule (1). We say it is derived with order 0
or that it is an axiom.

(2) A sequent of the same type as in the denominator of rule (2) provided
the two corresponding sequents in the numerator are also theorems.
If the latter two are derived with orders ¬ m and ¬ n, then the
former is derived with order ¬ 1 + max(m, n).

(3) A sequent of the same type as in the denominator of rules (3–8) pro-
vided the corresponding sequent in the numerator is also a theorem.
If the latter is derived with order ¬ m, then the former is derived
with order ¬ 1 + m.

We say that “Γ ⊢ ∆ is (a theorem) provable (derivable) with order
¬ m”. ⊣

Remark 4.2. The concept of order in the definition above is indebted
to [14]. A sequent derivable with order ¬ m is, of course, also derivable
with order ¬ m + 1, ¬ 2m+1, etc. ⊣

In what follows we extend the notation F [a] to Γ[a] and (Γ ⊢ ∆)[a]
when attention is to be drawn to the free variable a (that may or may
not actually occur).

Theorem 4.3. If (Γ ⊢ ∆)[a] is provable with order ¬ m and b is some
other free variable, then (Γ ⊢ ∆)[b] is also provable with order ¬ m.

Proof. Induction on theorems. Let (Γ ⊢ ∆)[a] be the result of rule (8).
This sequent has the form Φ[a],�Ξ[a] ⊢ �A[a], Ψ[a], where ∀Ξ[a], �Ξ[a],
�A[a] ⊢ A[a] is derivable with order < m. By the I.H. so is ∀Ξ[b], �Ξ[b],
�A[b] ⊢ A[b]. Thus Φ[b],�Ξ[b] ⊢ �A[b], Ψ[b] is derivable with order ¬ m
by an application of rule (8). It is noted that, since boxed formulae
have no free variables, �A[a] = �A[b] and �Ξ[a] = �Ξ[b]; moreover
∀Ξ[a] = ∀Ξ[b] since ∀Ξ has no free variables either. ⊣

Theorem 4.4 (Weakening). If Γ ⊢ ∆ is derived with order ¬ m then
so is Θ, Γ ⊢ ∆.

Proof. Induction on the derivation of Γ ⊢ ∆. Our sequent Γ ⊢ ∆
was derived with order ¬ m, is the result of rule (8) and has the form
Σ,�Φ ⊢ �A, Π (�A p.f.) where ∀Φ,�Φ,�A ⊢ A is derived with order
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< m. By an application of rule (8) we can obtain Φ, Σ,�Φ ⊢ �A, Π with
order ¬ m (the I.H. was not needed here).

Corollary 4.5 (Strengthening). If Γ ⊢ ∆ is derived with order ¬ m
then so is Γ ⊢ ∆, Θ.

Corollary 4.6. Γ, A ⊢ ∆, A is derivable for any A.

Note. In what follows, =⇒ and ⇐⇒ are often employed inside a proof
as abbreviations of the informal “if . . . then” and “iff” respectively.

Proof. By 4.4 and 4.5 it suffices to show the provability of A ⊢ A. We
do induction on the complexity of A.9 We only show the case where A
is �C. Then

I.H. =⇒ C ⊢ C
(4.4)
=⇒ C,�C ⊢ C

repeated ∀-left
=⇒

∀C,�C ⊢ C
GLR-rule

=⇒ �C ⊢ �C ⊣

The following are important inversion results. They say that our
rules are, in some weak sense, reversible.

Theorem 4.7. (a) If Γ, A → B ⊢ ∆ is derivable with order ¬ m, then
each of Γ, A → ⊥ ⊢ ∆ and Γ, B ⊢ ∆ are derivable with order ¬ m.

(b) If Γ ⊢ ∆, A → B is derivable with order ¬ m, then Γ, A ⊢ ∆, B is
derivable with order ¬ m.

(c) If Γ ⊢ ∆, A → ⊥ is derivable with order ¬ m, then Γ, A ⊢ ∆ is
derivable with order ¬ m.

(d) If Γ, A → ⊥ ⊢ ∆ is derivable with order ¬ m, then Γ ⊢ ∆, A is
derivable with order ¬ m.

(e) If Γ ⊢ ∆, ∀xA[x] is derivable with order ¬ m, then Γ ⊢ ∆, A[a] is
derivable with order ¬ m (for any choice of a).

Gentzen’s Hauptsatz

Definition 4.8. A proof gives rise to a directed graph in a natural way.
Its sequents are the graph nodes. Edges are introduced as follows: For
every application of inference (2)  a “V-type” inference  we introduce
two edges, one connecting the left premise, the other connecting the
right premise, to the conclusion. For all other inferences applied in the
proof  each an “I-type” inference  we introduce one edge that connects
the premise to the conclusion.

9 Number of →, ∀,� in the formula.
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a. The end-sequent of a proof is the final (i.e. the bottommost) sequent
of the proof.

b. A sequence of sequents (Si)0¬i¬n in a proof P is called a path iff it
is so in the graph-theoretic sense: For i = 0, 1, 2, . . . , n − 1, there is
an edge connecting Si to Si+1. If i < j, we say that Si is above Sj in
the proof and, correspondingly, Sj is below Si. We say that the path
(Si)0¬i¬n has length n  that is, the path length equals the number
of participating edges. We write l(S0, Sn) = n.

c. A thread (of P ) is a path that connects an axiom to the end-sequent.
d. An inference I that is applied in a proof P belongs to a path (Si)0¬i¬n

iff it contributes an edge to the path.
e. Let I be an inference rule10 and S be a sequent. We say that I is

above S if S is either the conclusion of I or is below said conclusion. If
I is a GLR inference and S is a sequent, then we say that I is directly

above S if I is above S and no GLR inferences belong to the path
that connects the conclusion of I to S.11

f. Let I1 and I2 be two distinct inferences that belong to the same path
(Si)0¬i¬n in a proof P . We say that I1 is above I2 (I2 is below I1) in
P iff I1 contributes nodes Si and Si+1 and I2 contributes nodes Sj

and Sj+1 and i + 1 ¬ j. ⊣

As is usual, a Gentzen-style proof leads to a tree rather than to an
undirected acyclic graph since rather than reusing nodes we use new
copies (e.g., several copies of the same axiom).

Given the nomenclature introduced by the above definition we may
now freely use colloquialisms such as “I is the second GLR rule above
sequent S on some thread”, meaning that there is a GLR rule I ′ on the
thread that is directly above S, while I is directly above the premise
of I ′.

Definition 4.9 (Width [22]). Let S = Γ ⊢ A, ∆ be a sequent in a proof
P . We denote by W(S, A) the set of all rules I above S (along some
thread through S) that satisfy all the following

(1) I is the second GLR rule above S on the relevant thread
(2) the GLR rule I ′ that is between I and S on that thread has A as its

diagonal formula

10 A “rule” means an application of a rule in this context.
11 In particular, if S is the conclusion of a GLR inference, I, then I is directly

above S.
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(3) No rule on the path I  I ′
 S introduces A by weakening.12

(4) A is not the p.f. of I.

For a given S, the cardinality of W(S, A) is called the width of A 
denoted by w(S, A) with lower case w. ⊣

Clearly, if A is not boxed then (2) in 4.9 fails, and thus w(S, A) = 0.
On the other hand, if w(S, A) > 0, then first off A = �C for some C
and, secondly, each I in W(S, A) has �C occur in the antecedent of its
conclusion. Indeed,

• �C occurs in the antecedent of the I ′ premise by (2).
• By (3) in 4.9, �C cannot be introduced by weakening, thus I must

have the form
∀Φ,�Φ, ∀C,�C,�B ⊢ B

Ψ,�Φ,�C ⊢ �B, Ξ
where, by (4), B is not the

same as C.

Definition 4.10. If S is a sequent in a proof P , then we denote by
SubS(P ) the sub-proof of P that derives S. We then define:

(1) If P is a proof and S is a sequent in P , then a cover of S in P is a set
of sequents in SubS(P ) such that each thread in SubS(P ) contains
exactly one member of the set.

(2) A cover of S with the property that there are no GLR inferences
in the paths between any of its members and S, is called a classical

cover.
(3) If U is a cover of S then we define m(U) =

∑
S′∈U

l(S′, S).

(4) A cover U of S is called a maximal classical cover if U is classical
and m(U) = max{m(U ′)| U ′ is a classical cover of S}.13

Note that for any S, {S} is a (classical) cover of S, and therefore a
maximal classical cover of S always exists.

Lemma 4.11. Let P be a proof and S = Γ,�A ⊢ ∆ a sequent in P , and
let U = {S1, . . . , Sn} be a maximal classical cover of S in P , then:

(a) Each S′ on the path from Si to S has the form Γ′,�A ⊢ ∆′ for
i = 1 . . . n. (In particular Si = Γi,�A ⊢ ∆i for i = 1 . . . n).

(b) If, for each i = 1 . . . n, there is a proof of S̄i = Γi, ∀Σ,�Σ ⊢ ∆i, then
there is a proof of S̄ = Γ, ∀Σ,�Σ ⊢ ∆.

12 The only rule that can introduce weakening formulae is the GLR.
13 Note that if we remove the word classical from this definition, then a maximal

cover of S is always the set of initial sequents of SubS(P ).
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Proof. (a) Fix an i. We proceed by induction on l = l(Si, S). If l = 0
we are done. If l > 0, then, since boxed formulae cannot be introduced
by a non-GLR inference  and S is the conclusion of such an inference,
I �A must be present in the antecedent(s) of the premise(s) of I. Now,
Si must either be a premise of I and we are done, or Si is above (one
of) the premise(s) S′ of I. Since l(Si, S′) < l we are done by the I.H.

(b) By induction on m = m(U). If m = 0, then it must be that
U = {S}, and the conclusion is identical to the hypothesis.

Let next m > 0. We examine the case where S is the conclusion
of rule (2). Thus, let the premises be S′ = Γ′,�A, C ⊢ ∆ and S′′ =
Γ′,�A, B → ⊥ ⊢ ∆ (so Γ = Γ′, C → B). Let us focus on S′: We have
either S′ ∈ U , or there is an Sk ∈ U , which is above S′ along a path
Sk  S′

 S. Let us take the latter case first. Then  since we omit
members of U on threads that pass through S′′  we have a proper subset
of U , say U ′, that is a maximal classical cover of S′. Thus m(U ′) < m(U)
and so, by the I.H., we have a proof of Γ′, ∀Σ,�Σ, C ⊢ ∆ if C 6= �A,
or of Γ′, ∀Σ,�Σ ⊢ ∆ if C = �A; but we can always use 4.4 to turn the
second sequent to the first. If S′ ∈ U then we can use the hypothesis
(and possibly 4.4) to reach the same conclusion. Similarly, we have a
proof of Γ′, ∀Σ,�Σ, B → ⊥ ⊢ ∆, and now applying rule (2) we get S̄.

The other cases are done in a similar manner: if S′

S
was the rule

responsible for S, and it is that S′ /∈ U , then U is a maximal classical
cover of S′ as well, but its m-value is smaller and hence the I.H. applies.
If S′ ∈ U , then the I.H. is not needed. Moreover note that, since ∀Σ and
�Σ are closed, they cannot interfere with the application of rule (6). ⊣

Theorem 4.12 (Gentzen’s Hauptsatz). If Γ ⊢ ∆, A and Θ, A ⊢ Φ are
derivable, then so is Γ, Θ ⊢ ∆, Φ.

Note. The formula A above is called the cut formula.

Proof. This proof is a slightly more involved version of the proof of
the Hauptsatz given in [15], the complication arising from the presence
of the diagonal formula in GLR.

Now, the proof is by induction on the ordinal

α = ω3 · c + ω2 · w + ω · m + n , (⋆)

where c is the modified complexity of the “cut formula” A. By “modified
complexity” we mean the ordinal ω · k + r where k counts � occurrences



On the proof-theory of . . . 345

and r counts the total of all →, ∀ occurrences in A. Thus (k, r) <
(k +1, r′) and (k, r) < (k, r+1) for all k, r, r′.14 Thus the induction on α
can be visualised as a quadruple induction: We do a primary induction

on c as in the analogous proof in [15]. Induction on w = w(Γ ⊢ ∆, A)
is a secondary induction  S.I.  on the width of the cut formula A that
occurs to the right of ⊢. A tertiary and even a quaternary induction 
T.I. and Q.I.  on derivation orders for Γ ⊢ A, ∆ (order ¬ m) and Θ, A ⊢
Φ (order ¬ n) will be called upon at appropriate points. Because of the
“weights” attached to c, w, m and n, a reduction of c by 1 reduces α
even if the other parameters increase. A reduction of w also reduces α
as long as c does not increase.

In all inductions  P.I., S.I., T.I. and Q.I.  Γ, ∆, Θ and Φ are param-
eters (i.e., the P.I.H., S.I.H., T.I.H. and Q.I.H. hold for all Γ, ∆, Θ, Φ).

First, we deal with the cases where A is not a boxed formula. The
only thing we need to show is that cuts in the proof in [15] that rely
on induction on the order of the derivation, i.e. tertiary and quaternary
induction, do not involve a cut formula with a higher width, and thus the
corresponding argument in [15] is also valid here. This task is relatively
easy since a quick examination of the proof in [15] reveals that in all the
cuts whose feasibility relied on induction on the order of derivation the
cut formula was the original A; and since A is not boxed then the width
remained at 0.

Assume now that A = �C. In this case too we start with a
tertiary induction, this time on the derivation order ¬ m of Γ ⊢ �C, ∆.

1. Say Γ ⊢ �C, ∆ is an axiom. Since �C is not atomic, so is
Γ, Θ ⊢ Φ, ∆.

2. We assume first that �C is not the p.f. in the last rule applied to
derive S = Γ ⊢ �C, ∆.

Suppose that it was obtained via rule (2) from S3 = Γ′ ⊢ �C, ∆
and S4 = Γ′′ ⊢ �C, ∆ (orders < m). It is immediate that w(S3,�C),
w(S4,�C) ¬ w(S,�C) thus, using the T.I.H., both of Θ, Γ′ ⊢ ∆, Φ and
Θ, Γ′′ ⊢ ∆, Φ are derivable. Applying to these two the rule (2) we derive
Θ, Γ ⊢ ∆, Φ.

For applicable rules among (3)–(7) the argument is precisely like that
for (2), except that it involves one premise.

14 This definition of “complexity” is needed at step IV(d). The whole fuss in the
definition is to have “more complexity” in �A than in ∀A.
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3. Case where GLR was applied  still �C is not the p.f. thus it
is a strengthening formula. The premise, obtained with order < m, is
of the form ∀Γ′,�Γ′,�D ⊢ D, where Γ = Γ1,�Γ2 and Γ′ ⊆ Γ2 while
Φ = �D, Φ′. Reapplying GLR to the last sequent, with a judicious
choice of weakening/strengthening, yields

Θ,

Γ︷ ︸︸ ︷
Γ1,�Γ2 −�Γ′,�Γ′ ⊢

Φ︷ ︸︸ ︷
�D, Φ′, ∆

4. Let now �C be the p.f. in the last step of the derivation of Γ ⊢
�C, ∆: Then Γ = Ξ,�Ψ1 while the premise has the following form, with
Ψ ⊆ Ψ1:

∀Ψ,�Ψ,�C ⊢ C, derived with order < m (∗)

Our key objective is to show that

∀Ψ,�Ψ ⊢ C (∗1)

is derivable. Once we have (∗1) we can conclude the proof exactly as
in [15].

Now, an application of GLR to (∗), without weakening/strengthening
parts, yields

�Ψ ⊢ �C, derived with order ¬ m. (∗∗)

This has not increased the induction variable (⋆).
We now turn to the analysis of the derivation of Θ,�C ⊢ Φ by a

quaternary induction (Q.I.) on its derivation order ¬ n.15 For the basis,
if this sequent is an axiom, then so is Γ, Θ ⊢ ∆, Φ since �C is not atomic.

For the Q.I. step we only have the case that �C is not the p.f. in the
rule that derived Θ,�C ⊢ Φ.

(i) Θ,�C ⊢ Φ was obtained via an applicable rule, let us call it
“R”, among (2)–(7); say, it was (2). The premises have the forms S3 =
Θ′,�C ⊢ Φ and S4 = Θ′′,�C ⊢ Φ, each derived with order < n. By the
Q.I.H. Θ′, Γ ⊢ Φ, ∆ and Θ′′, Γ ⊢ Φ, ∆ are derivable. We can now apply
rule R to them to derive Θ, Γ ⊢ Φ, ∆.

The cases for the other rules are similar, but with one premise. We
note that for rule (6) we can employ 4.3, if necessary, to guarantee that
the eigenvariable used does not appear free in Γ.

15 Note that since the induction is on the width of the formula in the left upper
sequent, this induction parameter does not come into play here.
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(ii) Rule (8) was used to derive Θ,�C ⊢ Φ. The only possible sce-
narios are that the premise was either ∀Ω,�Ω,�D ⊢ D (subcase where
�C is a weakening formula), or ∀Ω,�Ω, ∀C,�C,�D ⊢ D, for some D;
either sequent being derived with order < n. Since weakening does not
add to derivation order, without loss of generality we accept that the

premise was

∀Ω,�Ω, ∀C,�C,�D ⊢ D, derived with order < n. (∗∗∗)

Thus Θ = Θ1,�Θ2 and Ω ⊆ Θ2, while Φ = �D, Φ′.

We now embark on establishing (∗1). Notice that by remarks fol-
lowing Definition 4.9, the set W(�Ψ ⊢ �C,�C)  if not empty  will
contain rules such as

J =
∀Λ,�Λ, ∀C,�C,�B ⊢ B

Π,�Λ,�C ⊢ �B, Ξ

We thus have two cases:
Case w(�Ψ ⊢ �C,�C) = 0. Let us set S = ∀Ψ,�Ψ,�C ⊢ C, and

let U be a maximal classical cover of S in the proof. Let S′ ∈ U . By
Lemma 4.11(a), S′ has the form Γ′,�C ⊢ ∆′. We have three subcases:

1. S′ = Γ′,�C ⊢ ∆′ is an axiom. Then so is S′′ = ∀Ψ,�Ψ, Γ′ ⊢ ∆′.
2. S′ is the conclusion of a GLR inference of the form

∀Γ′,�Γ′,�D ⊢ D

�C, Ξ′,�Γ′ ⊢ �D, Θ′
,

where �C is a weakening formula; cf. 4.9.
Reusing the GLR differently, we obtain a proof for S′′ = ∀Ψ,�Ψ, Ξ′,
�Γ′ ⊢ �D, Θ′.

3. S′ is the conclusion of a GLR inference that has �C as its p.f. (diag-
onal):

∀Λ,�Λ, ∀C,�C ⊢ C

Π,�Λ,�C ⊢ �C, Ξ
.

By (∗∗) via 4.4, we also have a proof of S′′ = ∀Ψ,�Ψ, Π,�Λ ⊢ �C, Ξ.

In all cases we succeeded to go from “the provable S′” to “the also
provable S′′”, replacing �C in the antecedent of S′ by “∀Ψ,�Ψ”. By
Lemma 4.11(b) we have a proof of (∗1).

Case w(�Ψ ⊢ �C,�C) > 0. We will derive (∗1) once more. By the
condition governing this case, we have at least one GLR inference above
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(∗) that has the form J above. Let us concentrate on one such actual
member of W(�Ψ ⊢ �C,�C) and eliminate it while showing that we
can still derive (∗). Below we have a partial view of the path where J
and �Ψ ⊢ �C belong in the proof. By Definition 4.9(4), C is not the
same as B  the former cannot be the p.f.

.

. π0.

.
∀C,�C, ∀Λ,�Λ,�B ⊢ B

J
Π,�C,�Λ ⊢ �B, Ξ

.

. π.

.
∀Ψ,�Ψ,�C ⊢ C

�Ψ ⊢ �C

Examine the following diagram where although we employ cuts we will
explain that they can be simulated by the rules (1)–(8) alone. To reduce
notational clutter we use the abbreviation Γ̂ for “∀Γ,�Γ”. The π-labels
are used to keep track of paths that are “copied-and-pasted”.

.

.
cf. 4.6.

.

∀B,�B ⊢ B
GLR1

∀B,�B, Π, �C︸︷︷︸
weaken.

,�Λ ⊢ �B, Ξ.
.

π; B̂ is s.f..
.

B̂, Ψ̂,�C ⊢ C
GLR′′

�Ψ,�B ⊢���C

.

.
π.

.

Ψ̂,�C ⊢ C
.
.

∀-right.
.

Ψ̂,�C ⊢��∀C

.

.
π0.

.

��∀C,�C, Λ̂,�B ⊢ B
Cut1

�
��C, Ψ̂, Λ̂,�B ⊢ B

Cut2

Ψ̂, Λ̂,�B ⊢ B
GLR′′′

�C, Π,︸ ︷︷ ︸
Weaken.

�Ψ,�Λ ⊢ �B, Ξ
.
.

π; �Ψ is s.f..
.

Ψ̂,�C ⊢ C

�Ψ ⊢���C

.

.
π.

.

Ψ̂,���C ⊢ C
Cut3

Ψ̂ ⊢ C

• The conclusion of Cut1 is derivable by the P.I.H.
• The conclusion of Cut2 is derivable because GLR1 does not con-
tribute to the width (cf. 4.9(3)) since �C is weakening, and thus
w(�Ψ,�B ⊢ �C,�C) < original w(�Ψ ⊢ �C,�C), allowing the
use of the S.I.H.
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• The conclusion of Cut3 is derivable, again utilising the S.I.H. Notice
that we removed the GLR J  depicted above at the end of the π0-
path  from W(�Ψ ⊢ �C,�C) and GLR1 was not added. Thus we
have reduced the original w(�Ψ ⊢ �C,�C) by 1.

By reference to the proof in [15], this concludes the present proof. ⊣

5. Comparing ML3 and GLTS

In this section and later we use the notational convention

(i) Γ ⊢GLTS ∆ is short for “the sequent Γ ⊢ ∆ is derivable in GLTS”.
(ii) Γ ⊢GTKS ∆ is short for “the sequent Γ ⊢ ∆ is derivable in GTKS

of [15]”.

The main theorem of this section is:

Theorem 5.1. If Γ ⊢GLTS ∆ then Γ ⊢ML3

∨
∆, and if Γ ⊢ML3 A, then

∀Γ ⊢GLTS A.

As in [15],
∨

∆ means
∨

A∈∆ A. Furthermore, Γ ⊢X ∆ means that
the sequent Γ ⊢ ∆ is derivable in X , if X is a Gentzen-style system. If
Y is a Hilbert-style system, then Γ ⊢Y A means that A is derivable in
Y from hypotheses Γ.

Lemma 5.2. 1. Γ ⊢GTKS ∆ =⇒ Γ ⊢GLTS ∆.
2. Γ ⊢GLTS ∆ ⇐⇒ ∃A1 . . . ∃An such that L1(A1, . . . , An), Γ ⊢GTKS ∆.

Proof. 1. Since both share the same non-modal inference rules, we
only need to show that GLTS can simulate the rule TR of GTKS.

Indeed, if ∀Γ,�Γ ⊢GLTS A then by 4.4, ∀Γ,�Γ,�A ⊢GLTS A and
thus (8) derives Σ,�Γ ⊢GLTS �A, Ξ.

2. First assume the left hand side. The proof is by induction on the
order of derivation.

a. If Γ ⊢GLTS ∆ is an axiom then so is L1(A), Γ ⊢GTKS ∆ for any A.
b. If Γ ⊢GLTS ∆′, ∀xA(x) is the conclusion of rule (6) applied to the

premise Γ ⊢GLTS ∆′, A(a), then by the I.H. there are A1, . . . , An such
that L1(A1, . . . , An), Γ ⊢GTKS ∆′, A(a). Now apply rule (6),16 bear-
ing in mind that L1(A1, . . . , An) is a set of closed formulae, to obtain
L1(A1, . . . , An), Γ ⊢GTKS ∆′, ∀xA(x).

16 Which both systems share.
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(The other non-modal rules are done similarly.)
c. If Σ,�Γ ⊢GLTS �A, Ξ is the conclusion of rule (8) applied to the

premise ∀Γ,�Γ,�A ⊢GLTS A, then, by the I.H., L1(A1, . . . , An), ∀Γ,
�Γ,�A ⊢GTKS A for some A1, . . . , An.

Using rule (3) we get L1(A1, . . . , An), ∀Γ, �Γ ⊢GTKS �A → A and,
via 4.4, ∀Ψ,�Γ ⊢GTKS �A → A with the appropriate Ψ to make TR ap-
plicable. The latter then yields L1(A1, . . . , An), Σ, �Γ ⊢GTKS �(�A →
A), Ξ. Also, it is readily seen that �L(A),�(�A → A) ⊢GTKS �A. Now,
by cutting the formula �(�A → A) we derive L1(A, A1, . . . , An), Σ,
�Γ ⊢GTKS �A, Ξ.

Next, assume the right hand side. Thus, we have A1, . . . , An such that
L1(A1, . . . , An), Γ ⊢GTKS ∆. By part 1, L1(A1, . . . , An), Γ ⊢GLTS ∆.

Now, 3.8 and the results in [15] yield �L(Ai) ⊢GTKS L(Ai) and, by
part 1, �L(Ai) ⊢GLTS L(Ai). Thus, applying GLR, we obtain ⊢GLTS

�L(Ai), for all i = 1 . . . n. It follows that we can remove L1(A1, . . . , An)
from L1(A1, . . . , An), Γ ⊢GLTS ∆ using repeated cuts. ⊣

Proof of 5.1. Γ ⊢GLTS ∆
5.2

⇐⇒ ∃A1 . . . ∃An : L1(A1, . . . , An), Γ ⊢GTKS

∆
[15]
=⇒ ∃A1 . . . ∃An : L1(A1, . . . , An), Γ ⊢M3

∨
∆

3.9
⇐⇒ Γ ⊢ML3

∨
∆.

Conversely,

Γ ⊢ML3 A
3.9

⇐⇒ ∃A1 . . . ∃An : L1(A1, . . . , An), Γ ⊢M3 A
[15]
=⇒ ∃A1 . . . ∃An :

L1(A1, . . . , An), ∀Γ ⊢GTKS A
5.2

=⇒ ∀Γ ⊢GLTS A. ⊣

6. Weak reflection

Toward a proof of 6.4 below, we state without proof the following two
results (proved in [15]):

Proposition 6.1 (GTKS vs M3). If Γ ⊢GTKS ∆, then Γ ⊢M3

∨
∆. In

the other direction, if Γ ⊢M3 A, then ∀Γ ⊢GTKS A.

Proposition 6.2. If Σ, ∆ are classical, the GTKS-derivability of Σ,
�Γ ⊢ ∆ implies that of Σ ⊢ ∆ with a proof that does not use the TR
rule and employs only classical formulae.

Note. In loc. cit. the additional assumption that Γ is classical was never
used in the proof of 6.2, thus it is not made here.

Proposition 6.3. If Γ, ∆ are classical, then the derivability of Γ,�Θ ⊢
�A, ∆ in GTKS implies that of Γ, ∀Θ,�Θ ⊢ A, ∆.
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Note. Again, there was a restriction in the statement of 6.3 as given in
loc. cit. that Θ is classical. Given that the said restriction was not used
anywhere in the proof, we have also lifted it in the proposition statement
here. We emphasise, as it was also emphasised in loc. cit., that we do
not require A to be classical either.

Proposition 6.4 (Weak Reflection for ML3). If Γ,�Γ ⊢ML3 �A, where
Γ is classical, then Γ,�Γ ⊢ML3 A as well.

Note. A is not assumed to be classical.

Proof. Γ,�Γ ⊢ML3 �A
3.9

=⇒ ∃A1, . . . , An : L1(A1, . . . , An), Γ,�Γ ⊢M3

�A
6.1

=⇒ ∃A1, . . . , An : L1(A1, . . . , An), ∀Γ,�Γ ⊢GTKS �A
6.3

=⇒ ∃A1, . . .

, An : ∀L0(A1, . . . , An), L1(A1, . . . , An), ∀Γ,�Γ ⊢GTKS A
3.8 & 4.12

=⇒ ∃A1,

. . . , An : L1(A1, . . . , An), ∀Γ, �Γ ⊢GTKS A
5.2

=⇒ ∀Γ,�Γ ⊢GLTS A
5.1

=⇒

Γ,�Γ ⊢ML3 A. A short explanation for step
6.3

=⇒: The premise L1(Aj) 
i.e., �L0(Aj)  is a “�Θ”, thus, by 6.3, contributes a ∀L0(Aj) to the
premise. But L0(Aj) is closed. ⊣

Corollary 6.5 (Conservation Theorem for ML3). If Γ and A are clas-
sical, then Γ,�Γ ⊢ML3 �A implies that we have a classical proof of A
from Γ.

Proof. As in the proof of the previous proposition, we can deduce that
∃A1, . . . , An : L1(A1, . . . , An), ∀Γ,�Γ ⊢GTKS A. By 6.2 we obtain a
classical proof of ∀Γ ⊢GTKS A and hence (using 6.1) of Γ ⊢M3 A and, by
3.9, of Γ ⊢ML3 A.17 ⊣
Note. The converse is trivially true, as the assumption leads to Γ,
�Γ ⊢ML3 A and then we apply weak necessitation.

What about strong reflection and strong necessitation?

Neither �p → p (strong reflection) nor p → �p (strong necessitation)
are provable within ML3, where p is a propositional variable: Note that
if ⊢ML3 �p → p then ⊢GLTS �p → p, hence �p ⊢GLTS p. By rule (8) we
have ⊢GLTS �p and cutting it with the first sequent we obtain ⊢GLTS p
which is untenable: ⊢ p is neither a GLTS axiom, nor the consequence
(denominator) of any rule.

17 It is quite simple to establish that any classical proof in M3 is a classical proof
in ML3.
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Similarly, if ⊢ML3 p → �p, then ⊢GLTS p → �p and hence p ⊢GLTS

�p. Now, p ⊢ �p is not a (GLTS) axiom and p cannot be the p.f. of
any rule. Can �p be such a p.f.? Well, if so, the premise must be of the
form ∀Γ,�Γ,�p ⊢ p. Now Γ 6= ∅ since �p ⊢ p is not derivable as we
have just seen. But then the result  p ⊢ �p, must contain at least one
boxed formula to the left of ⊢, which is not the case.

7. Semantic completeness of ML3
+

and ML3

7.1. Preliminaries

The standard semantic approach to modal logic is due to Kripke, who
in 1959 introduced his “possible worlds” semantics [7]. This approach
involves a frame, which is a pair, 〈W, R〉, consisting of a non-empty set of
possible worlds, W , and a binary accessibility relation, R, on W . Thus,
for example, if w1 and w2 are possible worlds in W then we say that w2

is accessible from w1 iff w1Rw2.

We will use here a particular type of a Kripke frame, called a pointed

Kripke frame (cf. [17]), which is a triplet 〈W, R, w0〉 such that 〈W, R〉 is
a frame and w0 ∈ W is an R-minimum, that is, for all w ∈ W , w0 = w
or w0Rw.

A Kripke structure, M, is a pair (〈W, R, w0〉, {(Mw, Iw) : w ∈ W})
where 〈W, R, w0〉 is a pointed frame, and Iw is an interpretation (on each
w ∈ W  cf. [21]) where Mw is the domain of individuals associated with
w. Basically, an interpretation (or sometimes, a valuation), Iw, effects
a truth-assignment, for each world w ∈ W , from closed formulae to the
set {f, t}, so that for any closed formula A in w, Iw(A) = t indicates
that A is true in w. For all modal formulae B, not necessarily closed, B
is true in w iff Iw(∀B) = t.18 We write, w |= B ([17] writes w 
 B and
says “w forces B”, terminology that we often use here).

For the record (cf. [21]), each interpretation Iw acts on a countable
(finite or enumerable) domain Mw associated with w, and is defined by
induction on the complexity of closed formulae. The interesting points
to note are two: one, for each w, Iw(∀xB[x]) is defined “locally”  that

18 The Ww are just a sets. The functions Iw effect a first-order modal interpre-
tation of formulae. Apart from the slight departure mentioned in the last paragraph
of the Introduction, the definition of the various Iw is unremarkable, and details are
given in [20, 21].
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is, it is true iff all of B[x := i] (i ∈ Mw) are forced by w; two, Iω(�B) is
defined “globally”  that is, it is true iff all w′ satisfying wRw′ force ∀B.

We say that B is true in a structure M iff w0 |= B  i.e., is forced
by the “start-world” of the frame. We also say that the structure is a
model of B and write |=M B. If, for some S, the foregoing holds for
all B ∈ S, we call M a model of S and write |=M S. We write |= S 
no subscript  iff every structure is a model of S. Semantic implication,
S |= B, means that every model of S is a model of B as well.

The parallel notion (to truth) of validity of C in M  i.e., truth in

all worlds of M  will not concern us since it is tantamount to the truth
of �C ∧ C at w0.

In what follows, and in analogy with the term well-founded, we will
call a (binary) relation R converse well-founded iff its converse, R−1, is
well-founded. The next result is easily verifiable and well-known:

Proposition 7.1. Let 〈W, R〉 be a frame such that W is finite and R is
transitive, then R is converse well-founded if and only if R is irreflexive.

Now, returning to our development, it is known that GL is sound
with respect to Kripke models equipped with converse well-founded ac-
cessibility relations.

It is also known that the converse to this property is true for K4 and
GL: that is, if A is true in all (pointed) Kripke models whose accessibility
relation is transitive (resp. transitive and converse well-founded), then
A is a theorem of K4 (resp. of GL).

Reference [21] introduced the system (which we here call) M3
+ whose

language and axioms are those of M3 but is also equipped with the
equality predicate, constant and function symbols, and also the axioms:

1. a = a
2. �(a = a)
3. s = t → A[a := s] ↔ A[a := t], for all terms s, t.
4. �(s = t → A[a := s] ↔ A[a := t]), for all terms s, t.

The cited paper showed the completeness of M3
+ with respect to all

pointed Kripke frames whose accessibility relation is transitive.
In the next subsection, we build on techniques from loc. cit. and

show that the system ML3
+ (which is obtained from ML3 in the identical

manner that M3
+ was from M3) is complete with respect to the class

of pointed Kripke frames whose accessibility relation is transitive and
converse well-founded. In what follows we view ML3

+ as M3
+ with the
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Löb axiom added, thus the logical axioms are the schemata of Defini-
tion 3.1 plus �A → ��A (explicitly listed), along with their (singly, not

singly and doubly) boxed versions: in what follows, we denote all these

axioms by Λ̃ ∪ �Λ̃. The reason we opt to add �A → ��A explicitly
is convenience: Makes the inclusion of the �� versions of the schemata
in 3.1 redundant, as the only technical purpose for including ��Λ was
toward deriving the schema �A → ��A from the remaining schemata.

Since all the preliminary definitions and major parts of the proof
in [21] apply without modification here, we will only elaborate on the
parts where the two proofs diverge. Therefore, it is recommended that
the readers familiarise themselves with the said paper.

7.2. Semantic completeness of ML3
+

The following is borrowed from [21].

Lemma 7.2 (Main Semantic Lemma for M3
+). Let T be a consistent

set of wfmf over the language L of M3
+, and let N be an arbitrary

enumerable set. Then there is a finite or enumerable subset M of N
and a consistent Henkin completion Γ of T over L(M)  the language L
extended by adding all the members of M as new constants.

That is, Γ is a set of wfmf over L(M) such that

i. Γ is consistent and the set-difference Γ − T is a set of sentences.
ii. (Maximality) For any sentence A over L(M), either A ∈ Γ or ¬A ∈

Γ, where we henceforth write “ ¬A” for “A → ⊥”.
iii. (Henkin property) If Γ proves ∃xA over L(M) then it also proves

A[c] for some c ∈ M ; c is called a Henkin (witnessing) constant.
iv. (Distinguishing Constants) If a 6= b in M (metamathematically),

then Γ ⊢ ¬a = b.

Note that the maximality of Γ implies that Γ is deductively closed:
for all A, if Γ ⊢ A, then A ∈ Γ. The converse is, of course, trivial.

As in [21], strong completeness  “for M3
+: if T |= A, then T ⊢M3

+

A”  is proved by arguing the contrapositive: “If, for a closed A, T 0 A,
then there is a model M of T that falsifies A; Iw0

(A) = f”.
This is taken as is from [21] for M3

+ and using the “standard trick”
(cf. [17]) of cutting down a K4 model into a finite GL model  adapted
here to the first-order case  we will cut down a M3

+ model into a finite
ML3

+ model.
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First let us define the reduced set of subformulae of a given closed
formula A.

Definition 7.3. For any closed formula A over the language L, the
reduced set of closed subformulae of A, Sr(A), is defined as follows:

Sr(A) = {A}∪





∅ A is atomic

Sr(B) ∪ Sr(C) A is B → C

Sr(B) A is ¬B

Sr(∀B) A is �B

{B[x := t] : t is a closed term over L} A is ∀xB[x]

Note. The aim in the last clause is not to miss any subformulae of
A of the form �E by virtue of them “hiding” in the scope of a ∀. It
should be obvious that as all such subformulae are closed, we will get
multiple identical copies of boxed subformulae, one for each t. Thus, any
one, “canonically chosen”, t will do as well, rather than taking all the
(infinitely many) t.

It is immediate from 7.3 that:

Proposition 7.4. For any closed formula A, the set S�,∀(A), defined
as {�B, ∀B |�B ∈ Sr(A)}, is finite.

Let now A be closed such that S 0ML3
+

A. Then it is also the case that

S 0M3
+

A. Thus, by [21], let M = (〈W, R, w0〉, {(Mw, Iw) : w ∈ W}) be

a model of S such that Iw0
(A) = f . Here each w is a consistent Henkin

completion of Λ̃ ∪ �Λ̃  taking T = ∅ in 7.2  while w0 is a consistent
Henkin completion of S∪{¬A}. The Iw are defined as in loc. cit. starting
with

for each Boolean variable q, Iw(q) = t iff q ∈ w (♦)

and for each n-ary predicate φ, and i1, . . . in in Mw,

Iw

(
φ(~in)

)
= t iff φ(~in) ∈ w, (♥)

where Mw is the “domain M” associated with the Henkin completion w
as in 7.2.

We now identify any two worlds of M that contain precisely the
same subset of S�,∀(A)  that is, if w′, w′′ ∈ W then w′ ∼ w′′ iff w′ ∩
S�,∀(A) = w′′ ∩ S�,∀(A). Next, we first pick w0 as the representative of
the (equivalence) class of which it is a member, and then we arbitrarily
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pick a representative from each one of the remaining classes. We will
call these world-representatives α, β, γ, etc. rather than w, w′, w2, etc.
In particular, we will let α0 = w0. Thus, A /∈ α0. By 7.4, we obtain a
finite set of worlds Wr = {α0, α1, . . . , αm}. The corresponding domains
are naturally called Mαj

.
Now that we have cut down the set of worlds into a finite subset, our

task is to redefine the accessibility relation R, to get an irreflexive and
transitive relation, R̂ on the set Wr.

Definition 7.5 (The Accessibility Relation modulo a fixed A). Let
β, γ ∈ Wr. Then βR̂γ iff

i. For every �B ∈ β that is a reduced subformula of A we have that
∀B and �B are in γ.

ii. There is some reduced subformula �E of A such that �E ∈ γ but
�E /∈ β.

Note. With 7.5 recorded, we now further reduce Wr, if applicable, by
dropping all the αj that are not R̂-accessible from α0. We continue
calling it “Wr”.

Proposition 7.6. R̂ is irreflexive and transitive.

Proof. If βR̂β for some β ∈ Wr then, by 7.5, there must be some
�E ∈ β such that �E /∈ β which is impossible, therefore R̂ is irreflexive.

Now, assume that βR̂γR̂δ for β, γ, δ in Wr. Let �B be a subformula
of A such that �B ∈ β. Then, by 7.5, �B ∈ γ and thus {∀B,�B} ⊆ δ.
Now, since βR̂γ there is some �E ∈ γ such that �E /∈ β, but, because
γR̂δ, we know that �E ∈ δ. Thus, by definition, βR̂δ. ⊣

We now state:

Theorem 7.7. For the aforementioned pair S and A such that S 0ML3
+

A,

there is a Kripke model M̂ = (〈Wr, R̂, α0〉, {(Mβ, Iβ) : β ∈ Wr}) of S

such that Wr is finite, R̂ is transitive and irreflexive (hence also converse
well-founded) and Iα0

(A) = f .

The proof hinges on the following lemma that is the counterpart of
Lemma 6.3 in [21]:

Lemma 7.8. We have fixed a sentence A as in the foregoing, as well as
an M̂ obtained by cutting down a model M of S for M3

+ such that w0

does not force A.
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For each α ∈ Wr and any given reduced subformula B of A, we have
Iα(B) = t iff B ∈ α.

Proof. The proof will be done using induction on the modified com-

plexity of a formula (cf. the proof of 4.12), a natural choice since we took
∀B to be a “subformula” of �B.

The basis is the definition of Iα for α ∈ Wr as in (♦) and (♥) on
p. 355. For the induction step we will only develop the two interesting
cases, where B = ∀xC or B = �C. The other cases are handled similarly
to those in Lemma 6.3 of [21].

1. B = ∀xC. This is argued precisely as in [21]:
Let first Iα(∀xC) = t. Then (Kripke semantics) it must be that

Iα(C[x := i]) = t for all i ∈ Wα, and therefore, by the I.H., C[x := i] ∈ α
for all such i. Now, if ∀xC /∈ α, then, by maximality, ¬∀xC is in α; that
is, ∃x¬C is. It follows that for some Henkin constant c ∈ Mα, ¬C[x := c]
is in α contradicting the latter’s consistency.

Conversely, assume that ∀xC ∈ α. By Axiom (2) in 3.1, modus
ponens, and deductive closure, C[x := i] is in α, for all i ∈ Mα. By the
I.H., Iα(C[x := i]) = t for all such i, and by the definition of Iα we get
that Iα(∀xC) = t.

2. B = �C. Let first �C ∈ α. To conclude that B is forced by α,
examine the arbitrary β such that αR̂β  of course, if none such exists,
then there is nothing to prove. As �C is a subformula of our “reference”,
A, we have (cf. 7.5) that �C and ∀C are in β. The I.H. applies to ∀C
(lower modified complexity than B), and thus it is forced by (is true in)
β. By Kripke semantics, Iα(�C) = t.

Conversely, let (arguing contrapositively; cf. [21]) �C /∈ α. Con-
sider the set X = {�C, ¬∀C} ∪ {∀D,�D |�D is a reduced subformula
of A and �D ∈ α}. We write X as

{∀D1,�D1, . . . , ∀Dr,�Dr,�C, ¬∀C}

and claim that it is consistent. If not, using propositional logic, we get:

⊢ ∀D1 ∧�D1 ∧ . . . ∧ ∀Dr ∧�Dr →
(
�C → ∀C

)

By ⊢ ∀C → C (Axiom 2), the above yields:

⊢ ∀D1 ∧�D1 ∧ . . . ∧ ∀Dr ∧�Dr →
(
�C → C

)

Using weak necessitation (3.7), Axiom (5) and 3.5 we get:

⊢ �∀D1 ∧��D1 ∧ . . . ∧�∀Dr ∧��Dr → �(�C → C)
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Noting that ⊢ �Di → �∀Di ∧��Di
19 and that ⊢ �(�C → C) → �C,

we obtain:

⊢
(
�D1 ∧ . . . ∧�Dr

)
→ �C

However, by construction, the (deductively closed) world α contains all
of �D1, . . . ,�Dr but does not contain �C  a contradiction. Therefore,
the set X is consistent.

This fact and Lemma 7.2 imply that there must be a world, say w,
in W that contains X . Now, since every world in W that is equiv-
alent to w must contain the same subset of S�,∀(A) as w does (and,
by maximality, they also must contain the same subset of negations of
members of S�,∀(A)), we immediately conclude that all the members of
the equivalence class of w contain X . Let us call β the representative
picked from this equivalence class for membership in Wr. In particular,
notice that ∀C /∈ β.

By construction of X and β, if a subformula �D of A is in α, then
it is in β. Moreover, all ∀D are in β. Finally, �C ∈ β but �C /∈ α, the
latter by this case’s main assumption. Thus, αR̂β. But, ∀C is not in
β because ¬∀C is. Thus β forces the falsehood of ∀C, and we conclude
that Iα(�C) = f . ⊣

Proof of 7.7. Since A /∈ α0 = w0, then by the previous lemma (recall
that we assume that A is closed), M is a Kripke model of S for M3

+

such that Wr is finite, R̂ is transitive and converse well-founded, and
Iα0

(A) = f . But this model of S is also a model for ML3
+ since the

properties of R̂ make the Löb axiom (schema) true at α0, as is well-
known (e.g., [17]). ⊣

Remark 7.9. 1. That ML3
+ is sound with respect to finite transitive-

irreflexive Kripke structures is true with an unremarkably standard proof
(adapted from that for GL) that we omit.

2. In the case of ML3, it is easier to obtain a maximal Henkin set as
in 7.2 that only satisfies the first four requirements.20 Having that in
mind, the proof of the semantic completeness of ML3 is almost identical
to the one above. ⊣

19 Boolean logic, Axiom 7 and ⊢ �D → ��D
20 Recall that neither the equality symbol, =, nor constants or functions are part

of the language of ML3.



On the proof-theory of . . . 359

8. Interpolation

This section considers the reverse of cut for GTKS and GLTS: If we can
prove ⊢ A → B, then we can find a formula C  the interpolant of A and
B  that bears some relationship to A and B, so that both ⊢ A → C and
⊢ C → B are provable. To make “bears some relationship” precise, let
us indicate by the symbol 〈A〉 (cf. [14]), the support of A, that is, the set
of all free variables, Boolean variables and predicate letters appearing in
A. For example, 〈p〉 = {p}, 〈φa〉 = {φ, a}, 〈�φa〉 = {φ}, and 〈⊥〉 = ∅.
We extend the symbol so that 〈Σ〉 =

⋃
A∈Σ〈A〉.

We now state a general version of Craig’s interpolation theorem. A
partition of a sequent Γ ⊢ ∆ is an expression (Γ1, ∆1; Γ2, ∆2), where
Γ = Γ1 ∪Γ2 and ∆ = ∆1 ∪∆2. A Γi and a ∆j can be empty, consistently
however with the previous two equalities. Moreover, Γ1 ∩ Γ2 = ∅ =
∆1 ∩ ∆2.

Theorem 8.1 (Craig’s interpolation theorem for GTKS and GLTS).
If Γ ⊢X ∆ where X ∈ {GTKS, GLTS} then, for any chosen partition
(Γ1, ∆1; Γ2, ∆2) of Γ ⊢X ∆, an A (called an interpolant of {Γ1, ∆1; Γ2,
∆2}) can be found satisfying:

(1) Γ1 ⊢X A, ∆1 and Γ2, A ⊢X ∆2.
(2) 〈A〉 ⊆ 〈Γ1 ∪ ∆1〉 ∩ 〈Γ2 ∪ ∆2〉.

Proof. The proof is done by induction on the order of derivation of
Γ ⊢ ∆; however, since it follows very similar lines to the well-known
Maehara-Takeuti proof [18], it will be omitted. ⊣

9. Arithmetical soundness of ML3

First, let us suppose that the (free) variables v0, v1, . . . and the (bound)
variables x0, x1, . . . are common to the languages of ML3 and of arith-
metic. Second, let Pr(p·q) denote the provability predicate in Peano
Arithmetic. Following [2] we define:

Definition 9.1 (Realisation). 1. A realistion is a function ∗ from a
set of predicate letters to formulas (not necessarily atomic) in the
language of arithmetic such that for all n, if π is an n-place predicate
letter in the domain of ∗, then π∗ is a formula in which exactly the
first n variables (i.e. v0, . . . , vn−1) occur free.
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2. We say that F is a formulaic expression if F = F ′(q1, . . . , qn) where
F ′ is a formula and q1, . . . , qn are variables (free or bound). For
example, if π is a predicate letter then π(x2, v4) is a formulaic ex-
pression.

3. A realisation of a formulaic expression F of ML3 is a realisation
whose domain contains all predicate letters occurring in F . ⊣

Definition 9.2 (Arithmetical Interpretation  ML3). For every formu-

laic expression F of ML3 and realisation ∗ of F , we define the arithmeti-
cal interpretation (or translation) F ∗ of F under ∗ as follows:

1. ⊥∗ = ⊥.
2. If F is the formulaic expression π(q1, . . . , qn) where π is a sentence

letter, then F ∗ is the result π∗(q1 . . . , qn) of respectively substituting
q1, . . . , qn for v0, . . . , vn−1 in π∗ (while systematically changing, if
necessary, the bound variables of π∗ in order to avoid any bound
variable among q1, . . . , qn from being captured by a quantifier).21

3. If F = A → B then F ∗ = A∗ → B∗.
4. If F = ∀xiA[vk := xi] then F ∗ = ∀xj(A[vk := xj ])∗. Where, in the

case that xi occurs in (A[vk])∗, then xj is the first bound variable
that does not. Otherwise i = j.22

5. If F = �A then F ∗ = Pr(p∀A∗
q). ⊣

We only state the following lemma since its proof is quite standard.

Lemma 9.3. Let A and B be formulae. Then:

1. If ⊢PA A then ⊢PA Pr(p∀Aq).
2. ⊢PA Pr(p∀(A → B)q) → (Pr(p∀Aq) → Pr(p∀Bq)).
3. ⊢PA Pr(p∀(Pr(p∀Aq) → A)q) → Pr(p∀Aq).
4. ⊢PA Pr(p∀Aq) → Pr(p∀Pr(p∀Aq)q).

One can easily derive that ⊢PA (∀A)∗ ↔ ∀A∗ and that if xi does not
occur in (A[vj])∗ then (A[vj := xi])

∗ = (A[vj])∗[vj := xi]. These two
facts are helpful in the proof of the main result of our section (which we
omit):

21 Thus, if π is a 1-place sentence letter, and π∗ = ∀x1(v0 + v0 = x1) then
(π(x1))∗ = ∀x2(x1 + x1 = x2).

22 Thus, if π is a 2-place sentence letter and π∗ = ∀x1(v0 + x1 = v1), then in
order to find (∀x1π(v5 := x1, v9))∗ we first note that π(v5, v9) contains x1 and thus
we need to examine ∀x2(π(x2, v9))∗ which is equal to ∀x2∀x1(x2 + x1 = v9).
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Lemma 9.4 (Arithmetical Soundness of ML3). If ⊢ML3 A then for every
realisation ∗, ⊢PA A∗.

Proof. The proof can be done by induction on proofs in ML3 (3.1):
(Sketch) The interpretation, ∗, preserves tautologies since it commutes
with Boolean connectives. Furthermore, the definition of ∗ (and the fact
the PA is a first order system itself) will ensure that the interpretation
of any instance of (2)–(4) in 3.1 is provable in PA. Similarly, 9.3 implies
that the interpretation of any instance of (5)–(7) is provable in PA,
and 9.3(1) implies that interpretations of boxed instances of (1)–(7) are
also provable in PA. Finally, ∗ preserves implications by MP and Gen
since it commutes with Boolean connectives and (practically) commutes
with ∀. ⊣

10. Conclusions

We have introduced a first-order extension ML3 of GL and an equivalent
to it Gentzen-style system GLTS.

Unlike QGL, the “natural” first-order extension of GL, ML3 supports
cut-elimination (its Gentzen-style proxy is cut free). The precise techni-
cal demonstration that cut elimination fails in QGL is found in [1] and
it has its root in the fact that the underlying first-order language, unlike
ours, allows �A to have free variables.

Moreover, we proved that ML3 supports Craig Interpolation, its
modal box simulates the classical provability ⊢ on classical formulae, is
sound with respect to arithmetical interpretations, and is semantically
complete with respect to converse well-founded transitive finite Kripke
structures. Remains to be seen whether the latter property may prove to
be a stepping stone toward proving ML3 to be arithmetically complete 
as it was in Solovay’s proof for the case of GL  thus providing the first
example of a usable first-order provability logic.
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