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POWERSET RESIDUATED ALGEBRAS

Abstract. We present an algebraic approach to canonical embeddings of

arbitrary residuated algebras into powerset residuated algebras. We propose

some construction of powerset residuated algebras and prove a representa-

tion theorem for symmetric residuated algebras.
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1. Introduction

Residuated algebras are models of some substructural logics. For exam-
ple, residuated groupoids are models of Nonassociative Lambek Calcu-
lus [11] and other weak substructural logics [6]. Symmetric residuated
groupoids are models of Lambek-Grishin Calculus [12], which is a sym-
metric extension of the Lambek Calculus [7]. There are also studied
different extensions of this calculus by additional axioms such as Grishin
axioms. Other logics of that kind are Multiplicative Linear Logics, corre-
sponding to commutative involutive symmetric residuated semigroups,
and their noncommutative and nonassociative variants such as InFL,
InGL (see e.g. [1, 6]).

There are many natural constructions of multiple residuated group-
oids, i.e. residuated groupoids with several residuation triples (see e.g.
[4, 8]). Dual residuated groupoids, satisfying the residuation law with
respect to dual ordering ≥, can be constructed by using an involutive
negation, i.e. set complementation ∼ that defines the dual residuation
triple:

X ⊕ Y = ∼(∼ X ⊗ ∼ Y ), X �Y = ∼(∼ X\ ∼ Y ), X ⊘ Y = ∼(∼ X/ ∼ Y ).
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In the paper, some special construction of residuated algebras and
dual residuated algebras is established. Recall that a residuated algebra
is a generalization of a residuated groupoid in which binary operation ⊗
is replaced by an n-ary basic operation o and binary operations \ and /
are replaced by n residual operations associated with o.

Our main result is the proof of a representation theorem for symmet-
ric residuated algebras. As a special case of this theorem, we obtain a
representation theorem for symmetric residuated groupoids. Analogous
results have been obtained by the author for other classes of algebras such
as (commutative) symmetric residuated semigroups, symmetric residu-
ated unital groupoids and cyclic bilinear algebras [9].

The concept of residuation is closely related to Galois connections
from Galois logics. Different kinds of generalized Galois logics called
“gaggles” are studied by Bimbó and Dunn in [2]. The authors prove
representation theorems for e.g. boolean, distributive, partial (multi-)
gaggles. The paper on symmetric generalized Galois logics due to the
same authors [3] contains topological representation results for a range of
symmetric distributive lattice-ordered groupoids. Many-sorted gaggles
and their canonical embeddings are discussed by Buszkowski in [5]. Al-
gebras for Galois-style connections and their discrete duality are studied
by Orłowska and Rewitzky in [13].

The paper is organized as follows. In Section 2 we set up notation
and terminology. Section 3 provides a powerset construction of residu-
ated algebras. The main result, a representation theorem for symmetric
residuated algebras, is presented in Secion 4. In Section 5 we illustrate
the construction of powerset residuated groupoids by an example and we
establish a representation theorem for symmetric residuated groupoids.

2. Preliminaries

We begin this section with definitions of some notions.
Let (A, ≤) be a poset. By a residuation family on (A, ≤) we mean

operations o, io : An → A such that the following equivalence holds:

o(a1, . . . , an) ≤ b iff ai ≤ io(a1, . . . , ai−1, b, ai+1, . . . , an)

for i = 1, . . . , n.
A dual residuation family on (A, ≤) is a residuation family on the

dual poset (A, ≥), it means: a family of operations o, oi, for i = 1, . . . , n,
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such that the operations o, oi : An → A and the following equivalence
holds:

b ≤ o(a1, . . . , an) iff oi(a1, . . . , ai−1, b, ai+1, . . . , an) ≤ ai

for i = 1, . . . , n.
We denote [n] := {1, 2, . . . , n}.
A residuated algebra is a structure (A, o, (io)i∈[n], ≤) such that (A, ≤)

is a poset and n-ary operations o, io for i = 1, . . . , n are a residuation
family.

A dual residuated algebra is a structure (A, ω, (ωi)i∈[n], ≤) such that
(A, ≤) is a poset and n-ary operations ω, ωi for i = 1, . . . , n are a dual
residuation family.

A symmetric residuated algebra is a structure A = (A, o, (io)i∈[n], ω,
(ωi)i∈[n], ≤), if the (o, (io)i∈[n], ≤)-reduct of A and the (ω, (ωi)i∈[n], ≤)-
reduct of A are a residuated algebra and a dual residuation algebra,
respectively, for i = 1, . . . , n. Some authors consider residuation algebras
in a more general sense, see, e.g., Buszkowski [4] who admits several
residuation families on the same poset.

3. A powerset construction

Let us denote by A a poset (A, ≤). By A
op we denote the dual poset

(A, ≥). An upset is a set X ⊆ A such that, if x ∈ X and x ≤ y, then
y ∈ X for all x, y ∈ A. A downset is a set X ⊆ A such that, if x ∈ X
and y ≤ x, then y ∈ X for all x, y ∈ A. By the principal upset (downset)
generated by a ∈ A we mean the set of all b ∈ A such that a ≤ b (b ≤ a).
We denote it a↑ (a↓).

We will denote:

P(A) := {X : X ⊆ A},

P↑(A) := {X ⊆ A : X is an upset},

P↓(A) := {X ⊆ A : X is a downset}.

Let o : An → A. We define the operations o ↑P(A), o ↓P(A) from P(A)n

to P(A) as follows:

o ↑P(A)(X1, ..., Xn) := {z ∈ A : (∃a1 ∈ X1, ..., an ∈ Xn) o(a1, ..., an) ≤ z},

o ↓P(A)(X1, ..., Xn) := {z ∈ A : (∃a1 ∈ X1, ..., an ∈ Xn) z ≤ o(a1, . . . , an)}.
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They possess residual operations io ↑P(A), io ↓P(A) defined in the follow-
ing way:

io↑P(A)(X1, ..., Xn) := {ai ∈ A : ∀j 6= i, aj ∈ Xj

∀z(o(a1, ..., an) ≤ z ⇒ z ∈ Xi)},

io↓P(A)(X1, ..., Xn) := {ai ∈ A : ∀j 6= i, aj ∈ Xj

∀z(z ≤ o(a1, ..., an) ⇒ z ∈ Xi)}.

The above defined residuation operations for i = 1, . . . , n satisfy the
general residuation laws:

o↑P(A)(X1, ..., Xn) ⊆ Y iff Xi ⊆ io↑P(A)(X1, ..., Xi−1, Y, Xi+1, ..., Xn),

o↓P(A)(X1, ..., Xn) ⊆ Y iff Xi ⊆ io↓
P(A)

(X1, ..., Xi−1, Y, Xi+1, ..., Xn)

for all X1, . . . , Xn, Y ⊆ A.
Observe that for any X1, . . . , Xn ∈ P(A):

o ↑P(A)(X1, . . . , Xn) ∈ P↑(A),

o ↓P(A)(X1, . . . , Xn) ∈ P↓(A).

If the operation o is isotone on i-th argument, then

io↑P(A)(X1, . . . , Xn) ∈ P↑(A),

io ↓
P(A)

(X1, . . . , Xn) ∈ P↓(A).

In any residuated algebra with operations o and io, i ∈ [n], o is
isotone in the i-th argument and io is isotone in the i-th argument and
antitone in other arguments. In any dual residuation algebra the same
holds for o, oi. Consequently, P↑(A) is a subalgebra of the residuation

algebra (P(A), o ↑P(A), (io ↑P(A))i∈[n], ⊆), and P↓(A) is a subalgebra of

the algebra (P(A), o ↓P(A), (io ↓P(A))i∈[n], ⊆).

The operations o ↑P(A), (io ↑P(A))i∈[n] and o ↓P(A), (io ↓
P(A)

)i∈[n]

form residuation families.
For any i = 1, . . . , n, we have defined the powerset structures (P(A),

o ↑P(A), (io ↑P(A))i∈[n], ⊆) and (P(A), o ↓P(A), (io ↓P(A))i∈[n], ⊆). Both

structures are residuated algebras. By o↑P↑(A) we denote the restriction

of o↑P(A) to P↑(A), i.e., o↑P↑(A)(X1, . . . , Xn) = o ↑P(A)(X1, . . . , Xn), for

X1, . . . , Xn ∈ P↑(A). The operation o↓P↓(A) is defined in a similar way.
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The construction presented above can be used to construct a powerset
algebra on the second level. Consider the subalgebra of (P(A), o ↑P(A),

(io ↑P(A))i∈[n], ⊆) restricted to upsets on the first level. Next, we con-
struct the second level algebra (P(P↑(A)), O, (iO)i∈[n], ⊆), where O =

(o ↑P↑(A)) ↑P(P↑(A)). Thus, our construction is uniform, since the first
level is related to the ground level in the same way as the second one to
the first one.

4. Main result

In this section, we prove the main theorem of the paper.

Lemma 1. If o, (io)i∈[n] is a residuation family on (A, ≤), then the

mapping h such that h(a) = {X ∈ P↑(A) : a ∈ X} is an embed-

ding of (A, o, (io)i∈[n], ≤) into (P(P↑(A)), O, (iO)i∈[n], ⊆), where O =

(o ↑P↑(A)) ↑P(P↑(A)) and O, (iO)i∈[n] is a residuation family on

(P(P↑(A)), ⊆).

Proof. First, we show that h preserves the order, i.e.

a ≤ b iff h(a) ⊆ h(b), for all a, b ∈ A.

(⇒) Assume a ≤ b. Let X ∈ h(a). By the definition of h, a ∈ X .
Since X is an upset, a ∈ X and a ≤ b imply b ∈ X . Thus X ∈ h(b).

(⇐) Assume h(a) ⊆ h(b). We have a ∈ a↑ ∈ h(a). Hence, a↑ ∈ h(b).
By the definition of h, b ∈ a↑. It means that a ≤ b.

We recall the definitions of operations O, (iO)i∈[n]:

O(X1, . . . , Xn) := {Z ∈ P↑(A) :

(∃X1 ∈ X1, . . . , Xn ∈ Xn) o↑P↑(A) (X1, . . . , Xn) ⊆ Z},

iO(X1, . . . , Xn) := {Xi ∈ P↑(A) : ∀j 6= i Xj ∈ Xj ∀Z ∈ P↑(A)

(o ↑P↑(A) (X1, . . . , Xn) ⊆ Z ⇒ Z ∈ Xi)}.

We show that h preserves all operations. First, we show that

h(o(a1, . . . , an)) = O(h(a1), . . . , h(an)).

(⊆) Let Z ∈ h(o(a1, ..., an)). We have then o(a1, ..., an) ∈ Z. Since Z ∈

P↑(A), by the definition of operation o ↑P↑(A), o ↑P↑(A) (a1
↑, ..., an

↑) ⊆
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Z. We have ai
↑ ∈ h(ai) for i = 1, . . . , n. Then, by the definition of

operation O, we obtain Z ∈ O(h(a1), . . . , h(an)).

(⊇) Let Z ∈ O(h(a1), . . . , h(an)). By the definition of operation O,

there exist Xi ∈ h(ai) for i = 1, . . . , n such that o ↑P↑(A) (X1, . . . , Xn) ⊆
Z. By the definition of h, ai ∈ Xi for i = 1, . . . , n. Hence by the
definition of operation o ↑P↑(A), o(a1, . . . , an) ∈ o ↑P↑(A) (X1, . . . , Xn).
Thus, o(a1, . . . , an) ∈ Z, and finally Z ∈ h(o(a1, . . . , an)).

Now, we show that h(io(a1, . . . , an)) = iO(h(a1), . . . , h(an)).

(⊆) Assume Xi ∈ h(io(a1, ..., an)). We have then io(a1, . . . , an) ∈ Xi.

Take Xj ∈ h(aj) for all j 6= i and Z ∈ P↑(A) such that io↑P(A)(X1, . . . ,
Xn) ⊆ Z. Since aj ∈ Xj for j 6= i and o(a1, . . . , ai−1, io(a1, . . . , an),

ai+1, . . . , an) ≤ ai, so ai ∈ io ↑P↑(A)(X1, . . . , Xn). Hence ai ∈ Z. Thus
Z ∈ h(ai) and Xi ∈ iO(h(a1), . . . , h(an)).

(⊇) Assume Xi ∈ iO(h(a1), . . . , h(an)). We have aj
↑ ∈ h(aj) for all

j 6= i. By the definition of operation (o ↑P↑(A)) ↑P(P↑(A)), for all Z ∈

P↑(A) the following implications hold: if o ↑P↑(A) (a1
↑, . . . , ai−1

↑, Xi,

ai+1
↑, . . . , an

↑) ⊆ Z, then Z ∈ h(ai). We have then o ↑P↑(A) (a1
↑, . . . ,

ai−1
↑, Xi, ai+1

↑, . . . , an
↑) ∈ h(ai), and hence ai ∈ o ↑P↑(A) (a1

↑, . . . ,

ai−1
↑, Xi, ai+1

↑, . . . , an
↑). By the definition of operation o ↑P↑(A), there

exist bj ∈ aj
↑ and xi ∈ Xi for j 6= i such that o(b1, . . . , bi−1, xi, bi+1, . . . ,

bn) ≤ ai. Hence xi ≤ io(b1, . . . , bi−1, ai, bi+1, . . . , bn) and io(b1, . . . , bi−1,
ai, bi+1, . . . , bn) ≤ io(a1, . . . , ai, . . . , an), so io(a1, . . . , ai, . . . , an) ∈ Xi.
Thus Xi ∈ h(io(a1, . . . , an)).

Let (A, ≤A), (B, ≤B) be posets, and let f : A → B, g : B → A be
antitone mappings such that g◦f = iA, f ◦g = iB (f and g are involutive
negations). Let o, (io)i∈[n] be a residuation family on (A, ≤). Then the
mappings:

Do(b1, . . . , bn) := f(o(g(b1), . . . , g(bn))),
D(io)(b1, . . . , bn) := f(io(g(b1), . . . , g(bn))),

form a dual residuation family on (B, ≤). It is easily seen that the
following fact holds.

Fact 1. If f and g are involutive negations, then D(io) = (Do)i.

A unary operation ∼ is called a single involutive negation if it satisfies
the following two conditions:
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∼ ∼ a = a (Double Negation)

a ≤ b ⇒ ∼ b ≤ ∼ a (Transposition)

For any operation o : An → A, we define the operation oD:

oD(a1, . . . , an) = ∼ o(∼ a1, . . . , ∼ an)

for all a1, . . . , an ∈ A.

Fact 2. If ∼ is a single involutive negation on (A, ≤) and o, (io)i∈[n] is

a residuation family on (A, ≤), then oD, ((io)D)i∈[n] is a dual residuation

family on (A, ≤); also (io)D = (oD)i.

Lemma 2. If ω, (ωi)i∈[n] is a dual residuation family on (A, ≤), then

the same mapping h, h(a) = {X ∈ P↑(A) : a ∈ X}, is an embedding of

(A, ω, (ωi)i∈[n], ≤) into the powerset residuated algebra (P(P↑(A)), Ω,

(Ωi)i∈[n], ⊆), where the operation Ω is defined as (ω ↓P↓(A)D) ↓P(P↑(A))D

and Ω, (Ωi)i∈[n] is a dual residuation family on (P(P↑(A)), ⊆).

Proof. Let ω, (ωi)i∈[n] be a residuation family on (A, ≥). By Lemma 1,
g defined by g(a) = {X ∈ P↑(Aop) : a ∈ X} is an embedding of
(A, ω, (ωi)i∈[n], ≥) into (P(P↑(Aop)), Π, (iΠ)i∈[n], ⊆), where Π =

(ω ↑P↑(A
op)) ↑P(P↑(A

op)). Clearly, P↑(Aop) = P↓(A), ω ↑P↑(A
op)=

ω ↓P↓(A).
Consequently, Π = (ω ↓P↓(A)) ↑P(P↓(A)). We have then

g(ω(a1, . . . , an)) = Π(g(a1), . . . , g(an)),

g(ωi(a1, . . . , an)) = iΠ(g(a1), . . . , g(an)).

Observe that for g defined above the following equivalence holds:

a ≤ b iff g(b) ⊆ g(a), for all a, b ∈ A.

For any set U and X ⊂ U , we denote ∼U X := U −X . For X ⊆ P(A)
we define X ∼ := {∼A X : X ∈ X }. Following [5], for X ⊆ P↑(A) we
define X ∗ := ∼P↓(A)(X

∼) = (∼P↑(A) X )∼. Clearly, X ∗ ⊆ P↓(A). For

X ⊆ P↓(A) we define ∗X := ∼P↑(A)(X
∼) = (∼P↓(A) X )∼. Similarly,

∗X ⊆ P↑(A).
For all X ∈ P↓(A) the following equivalence holds: X ∈ X ∗ iff

∼A X /∈ X , and for all X ∈ P↑(A) there holds: X ∈ ∗X iff ∼A X /∈ X .
Also ∗(X ∗) = X , (∗Y)∗ = Y, for X ⊆ P↑(A), Y ⊆ P↓(A).
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We have h(a) = ∗g(a). Let us define DΠ: P(P↑(A))n → P(P↑(A))
in the following way:

DΠ(X1, . . . , Xn) := ∗Π(X1
∗, . . . , Xn

∗).

We have h(ω(a1, . . . , an)) = DΠ(h(a1), . . . , h(an)).
The following equalities hold:

h(ω(a1, . . . , an)) = ∗g(ω(a1, . . . , an)) = ∗Π(g(a1), . . . , g(an))

= ∗Π(h(a1)∗, . . . , h(an)∗) = DΠ(h(a1), . . . , h(an)).

We show that DΠ = Ω.
For X ∈ P↑(A) and X1, . . . , Xn ⊆ P↑(A) the following formulas are

equivalent:

• X /∈ DΠ(X1, . . . , Xn),
• X /∈ ∗Π(X1

∗, . . . , Xn
∗),

• ∼A X ∈ Π(X1
∗, . . . , Xn

∗),
• (∃X1, . . . , Xn ∈ P↓(A))(X1 ∈ X1

∗ ∧ · · · ∧ Xn ∈ Xn
∗ ∧

ω ↓P↓(A) (X1, . . . , Xn) ⊂ ∼A X),
• (∃X1, . . . , Xn ∈ P↓(A))(∼A X1 /∈ X1 ∧ · · · ∧ ∼A Xn /∈ Xn ∧

X ⊂ ∼A ω ↓P↓(A) (X1, . . . , Xn)),
• (∃Y1, . . . , Yn ∈ P↑(A))(Y1 /∈ X1 ∧ · · · ∧ Yn /∈ Xn ∧

X ⊂ ∼A ω ↓P↓(A) (∼A Y1, . . . , ∼A Yn)),
• (∃Y1, . . . , Yn ∈ P↑(A))(Y1 ∈ ∼P↑(A) X1 ∧ · · · ∧ Yn ∈ ∼P↑(A) Xn ∧

X ⊂ ω ↓P↓(A)D (Y1, . . . , Yn)),

• X ∈ (ω↓P↓(A)D)↓P(P↑(A))(∼ X1, . . . , ∼ Xn),

• X /∈ ∼P(P↑(A))(ω↓P↓(A)D)↓P(P↑(A))(∼ X1, . . . , ∼ Xn),

• X /∈ (ω↓P↓(A)D)↓P(P↑(A))D(X1, . . . , Xn),
• X /∈ Ω(X1, . . . , Xn).

Since Π is completely additive, it admits residuals iΠ for i = 1, . . . , n.
The operation DΠ admits residuals D(iΠ) = (DΠ)i = Ωi for i = 1, . . . , n.
Consequently, Ω, (Ωi)i∈[n] is a dual residuation family on P(P↑(A)).

It is easy to show that h preserves residuals: h(ωi(a1, . . . , an)) =
Ωi(h(a1), . . . , h(an)). Indeed: h(ωi(a1, . . . , an)) = ∗g(ωi(a1, . . . , an)) =
∗(iΠ(g(a1), . . . , g(an))) = ∗(iΠ(h(a1)∗, . . . , h(an)∗)) = DiΠ(h(a1), . . . ,
h(an)) = Ωi(h(a1), . . . , h(an)).

The main result of the paper is the following theorem.
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Theorem 1. Every symmetric residuated algebra A = (A, o, (oi)i∈[n],

ω, (ωi)i∈[n], ≤) is embeddable into the powerset residuated algebra

(P(P↑(A)), O, (iO)i∈[n], Ω, (Ωi)i∈[n], ⊆), where O = (o↑P↑(A)) ↑P(P↑(A))

and Ω = (ω ↓P↓(A)D) ↓P(P↑(A))D.

Proof. It is an immediate consequence of Lemma 1 and Lemma 2.

5. A representation theorem for symmetric residuated groupoids

In this section we illustrate the previous considerations for the case of
one residuation triple. Direct proofs of results from this section are given
in [9] and they are based on [10].

Let us recall some basic definitions.
A structure (A, ⊗, ≤) is a partially ordered groupoid (p.o. groupoid),

if ≤ is a partial order and ⊗ is monotone on both arguments, i.e., a ≤ b
implies a ⊗ c ≤ b ⊗ c and c ⊗ a ≤ c ⊗ b, for a, b, c ∈ A.

A residuated groupoid is a structure (A, ⊗, \, /, ≤) such that (A, ≤)
is a poset, (A, ⊗) is a groupoid, and ⊗, \, / satisfy the residuation law:
a ≤ c/b iff a ⊗ b ≤ c iff b ≤ a\c, for all a, b, c ∈ A.

A dual residuated groupoid is a structure (A, ⊕, �, ⊘, ≤) such that
(A, ≤) is a poset, (A, ⊕) is a groupoid, and ⊕, �, ⊘ satisfy the dual
residuation law: c ⊘ b ≤ a iff c ≤ a ⊕ b iff a � c ≤ b, for all a, b, c ∈ A.

A structure A = (A, ⊗, \, /, ⊕, �, ⊘, ≤) is called a symmetric residu-

ated groupoid iff the (⊗, \, /, ≤)-reduct of A and the (⊕, �, ⊘, ≤)-reduct
of A are a residuated groupoid and a dual residuated groupoid, respec-
tively.

Starting from a p.o. groupoid A = (A, ⊗, ≤), one can define powerset

algebra (P(A), ⊗̂, ̂\, ̂/, ⊆). For X, Y, Z ⊆ A, we define operations:

X ⊗̂ Y := {c ∈ A : ∃a ∈ X ∃b ∈ Y a ⊗ b ≤ c},

X ̂\ Z := {b ∈ A : ∀a ∈ X ∀c ∈ M (a ⊗ b ≤ c ⇒ c ∈ Z)},

Z ̂/ Y := {a ∈ A : ∀b ∈ Y ∀c ∈ M (a ⊗ b ≤ c ⇒ c ∈ Z)}.

The algebra (P(A), ⊗̂, ̂\, ̂/, ⊆) is a residuated groupoid.

Let us denote ⊗ by o. Then ⊗̂ = o ↑P(A), ̂\ = 2o ↑P(A), ̂/ = 1o ↑P(A).
Starting from a p.o. groupoid A = (A, ⊕, ≤), we define a dual pow-

erset algebra (P(A), ⊕̄, �̄, ⊘̄, ⊆). For X, Y, Z ⊆ A, we define operations:
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X ⊕̄ Y := {c ∈ A : ∃a ∈ X ∃b ∈ Y c ≤ a ⊕ b},

X �̄ Z := {b ∈ A : ∀a ∈ X ∀c ∈ A (c ≤ a ⊕ b ⇒ c ∈ Z)},

Z ⊘̄ Y := {a ∈ A : ∀b ∈ Y ∀c ∈ A (c ≤ a ⊕ b ⇒ c ∈ Z)}.

The algebra (P(A), ⊕̄, �̄, ⊘̄, ⊆) is a residuated groupoid.
Let us denote ⊕ by ω. Then ⊕̄ = ω ↓P(A), �̄ = ω2 ↓P(A), ⊘̄ =

ω1 ↓P(A).
(P(A), ⊗̂, ̂\, ̂/, ⊆) and (P(A), ⊕̄, �̄, ⊘̄, ⊆) can be expanded by the set

complementation ∼ X = {a ∈ A : a /∈ X} and we define dual operations

on (P(A), ⊗̂, ̂\, ̂/, ⊆) as follows:

X ⊕̂ Y := ∼(∼ X ⊕̄ ∼ Y ),

X �̂ Z := ∼(∼ X �̄ ∼ Z),

Z ⊘̂ Y := ∼(∼ Z ⊘̄ ∼ Y ).

The algebra P(A), ⊕̂, �̂, ⊘̂, ⊆) is a dual residuated groupoid.
Under the notation from Section 4, operations ⊕̂, �̂, ⊘̂ are as follows:

⊕̂ = ω ↓P(A)D, �̂ = ω2 ↓P(A)D, ⊘̂ = ω1 ↓P(A)D.
The operations ⊕̂, �̂, ⊘̂ can also be defined as follows:

X ⊕̂ Y := {c ∈ A : ∀a, b ∈ A (c ≤ a ⊕ b ⇒ (a ∈ X ∨ b ∈ Y ))},

X �̂ Z := {b ∈ A : ∃a /∈ X ∃c ∈ Z c ≤ a ⊕ b},

Z ⊘̂ Y := {a ∈ A : ∃b /∈ Y ∃c ∈ Z c ≤ a ⊕ b}.

For any symmetric residuated groupoid (A, ⊗, \, /, ⊕, �, ⊘, ≤), the alge-

bra (P(A), ⊗̂, ̂\, ̂/, ⊕̂, �̂, ⊘̂, ⊆) is a symmetric residuated groupoid.

The structure (P↑(A), ⊗̂, ̂\, ̂/, ⊕̂, �̂, ⊘̂, ⊆) is the algebra on the first
level. We construct the higher-level algebra: (P(P↑(A)), O, 2O, 1O, Ω,

Ω2, Ω1, ⊆). Let us remind that O = (o ↑P↑(A)) ↑P(P↑(A)) and Ω =

(ω ↓P↓(A)D) ↓P(P↑(A))D, so

X O Y = {Z ∈ P↑(A) : ∃X ∈ X ∃Y ∈ Y X⊗̂Y ⊆ Z},

X 2O Z = {Y ∈ P↑(A) : ∀X ∈ X ∀Z ∈ P↑(A) (X⊗̂Y ⊆ Z ⇒ Z ∈ Z)},

Z 1O Y = {X ∈ P↑(A) : ∀Y ∈ Y ∀Z ∈ P↑(A) (X⊗̂Y ⊆ Z ⇒ Z ∈ Z)},

X Ω Y = {Z ∈ P↑(A) : ∀X ∈ P↑(A) ∀Y ∈ P↑(A)(Z ⊆ X⊕̂Y ⇒

X ∈ X ∨ Y ∈ Y))},
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X Ω2 Z = {Y ∈ P↑(A) : ∃X /∈ X ∃Z ∈ Z Z ⊆ X⊕̂Y },

Z Ω1 Y = {X ∈ P↑(A) : ∃Y /∈ Y ∃Z ∈ Z Z ⊆ X⊕̂Y },

for all X , Y, Z ⊆ P↑(A).
The algebra (P(P↑(A)), O, 2O, 1O, Ω, Ω2, Ω1, ⊆) is a symmetric resid-

uated groupoid.
The following lemmas are special cases of lemmas 1 and 2, respec-

tively.

Lemma 3. If ⊗, \, / is a residuation family on (A, ≤), then the mapping

h such that h(a) = {X ∈ P↑(A) : a ∈ X} is an embedding of (A, ⊗, \,
/, ≤) into the powerset algebra (P(P↑(A)), O, 1O, 2O, ⊆).

Lemma 4. If ⊕, �, ⊘ is a dual residuation family on (A, ≤), then the

same mapping h is an embedding of (A, ⊕, �, ⊘, ≤) into (P(P↑(A)), Ω,
Ω1, Ω2, ⊆).

The following result is a special case of Theorem 1.

Theorem 2. Every symmetric residuated groupoid A = (A, ⊗, \,

/, ⊕, �, ⊘, ≤) is embeddable into the symmetric residuated groupoid

(P(P↑(A)), O, 1O, 2O, Ω, Ω1, Ω2, ⊆).
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