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Abstract. This paper will first introduce first-order mereotopological ax-
ioms and axiomatized theories which can be found in some recent litera-
ture and it will also give a survey of decidability, undecidability as well
as other relevant notions. Then the main result to be given in this paper
will be the finite inseparability of any mereotopological theory up to atomic
general mereotopology (AGEMT) or strong atomic general mereotopology
(SAGEMT). Besides, a more comprehensive summary will also be given via
making observations about other properties stronger than undecidability.
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1. Mereotopological Axioms and Theories

The first-order language of mereotopological theories contains only two
binary predicates ‘P’ and ‘C’, which stand respectively for “being a part
of” and “contact”.1 It is known that the so-called mereological the-
ories are based on ‘P’ only (traditionally, mereology is the theory of
the parthood relation). Moreover, ‘C’ is usually viewed as a topological
predicate. Thus mereotopological theories can be viewed as extensions of

1 Note that the first-order language considered here also contains the equality
sign. The relation “contact” is called “be connected to” by [1]. Such a nomenclature
originates from [17]. However, as Pratt-Hartmann has pointed out [6, p. 22], one
might confuse such a term with the standard topological notion of “connectedness”.
To avoid the confusion, the name “contact” is adopted here.
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mereological theories by adding axioms about an additional topological
predicate ‘C’. In this light, in this paper the collection of possible mere-
ological axioms and mereological theories will be introduced first and
then the way of getting their mereotopological extensions will be shown
next.2 To make expressions more succinct, four additional predicates are
defined as follows.

(Proper Part:) PPxy
df
= Pxy ∧ ¬Pyx

(Overlap): Oxy
df
= ∃z(Pzx ∧ Pzy)

(Underlap): Uxy
df
= ∃z(Pxz ∧ Pyz)

(Internal Part): IPxy
df
= Pxy ∧ ∀z(Czx → Ozy)

In the literature [8, 1], the following mereological axioms can be
found.

(P1) Pxx (reflexivity for ‘P’)

(P2) (Pxy ∧ Pyx) → x = y (anti-symmetry for ‘P’)

(P3) (Pxy ∧ Pyz) → Pxz (transitivity for ‘P’)

(EP) ∀x∀y(∃zPPzx → (∀z(PPzx ↔ PPzy) → x = y)) (extensionality)

(WSP) ∀x∀y(PPxy → ∃z(PPzy ∧ ¬Ozx)) (weak supplementation)

(SSP) ∀x∀y(¬Pyx → ∃z(Pzy ∧ ¬Ozx)) (strong supplementation)

(FS) ∀x∀y(Uxy → ∃z∀w(Owz ↔ (Owx ∨ Owy))) (finite sum)

(FP) ∀x∀y(Oxy → ∃z∀w(Pwz ↔ (Pwx ∧ Pwy))) (finite product)

(A) ∀x∃y(Pyx ∧ ∀z ¬PPzy) (atomicity)

(A) ∀x∃y PPyx (atomlessness)

(G) ∃x∀y Pyx (the greatest member)

(C) ∀x(¬∀z Pzx → ∃z∀w(Pwz ↔ ¬Owx)) (complementation)

(UF) ∃x α(x) → ∃z∀y(Oyz ↔ ∃x(α(x) ∧ Oyx)) (unrestricted fusion

axiom schema), for any formula α in which ‘x’ is free but ‘z’ and ‘y’ do

not occur free. Note that α might have free variables other than ‘x’.

A mereological theory can be formed by using some of the axioms
listed above and the following are theories which have been named in
the literature (the nomenclature here mainly follows [1]). Note that in
the literature, the first three axioms (P1), (P2) and (P3) are the most
basic (it is said that they constitute part of the meaning of “part”; see
[8]) and hence must be included in any mereological theory, which means
that any mereological structure must be a partial ordering:

2 The way to be considered mainly follows [1].
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Ground Mereology: GM
df
= (P1) + (P2) + (P3)

Minimal Mereology: MM
df
= GM + (WSP)

Extensional Mereology: EM
df
= GM + (SSP)

Closure Mereology: CM
df
= GM + (FS) + (FP)

Minimal Extensional Mereology: MEM
df
= MM + (FP)

Minimal Closure Mereology: CMM
df
= MM + (FS) + (FP)

Extensional Closure Mereology: CEM
df
= EM + (FS) + (FP)

General Extensional Mereology: GEM
df
= EM + (UF)

It is easy to show that (EP), (WSP), (FS), (FP), (G) and (C) are theo-
rems of GEM and therefore GEM is the strongest theory on this list.3

Actually, GEM+(A) and GEM+(A) are the two strongest incompatible
mereological theories which can be formed by using the mereological
axioms listed above. Both GEM + (A) and GEM + (A) are consistent,
for it is easy to check that the former is satisfied by any atomic Boolean
algebra with the least member removed and the latter, by any atomless
Boolean algebra with the least member removed (if Pxy is interpreted
by x ≤ y in a Boolean algebra).

Before introducing mereotopological axioms, again for the sake of
convenience, let’s define the following additional function symbols.

(Addition):

x + y = z iff (Uxy ∧ ∀w(Owz ↔ (Owx ∨ Owy))) ∨ (¬Uxy ∧ x = z)

(Product):

x × y = z iff (Oxy ∧ ∀w(Pwz ↔ (Pwx ∧ Pwy))) ∨ (¬Oxy ∧ x = z)

(Complement):

∼x = z iff (¬∀z Pzx ∧ ∀w(Pwz ↔ ¬Owx)) ∨ (∀z Pzx ∧ x = z)

(Fusion): for any formula α in which ‘x’ is free but ‘z’ and ‘y’ do not
occur free

Fx(α(x)) = z iff (∃x α(x) ∧ ∀y(Oyz ↔ ∃x(α(x) ∧ Oyx)))

∨ (¬∃x α(x) ∧ ∀y Pyz)

3 GEM is also known in the literature as “classical mereology”, which is a decid-
able theory. By the way, for the results of decidability concerning those mereological
theories, please see [12, 13, 14, 15].
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(Interior):

i(x) = z iff (∃y IPyx ∧ Fy(IPyx) = z) ∨ (¬∃y IPyx ∧ ∀y Pyz)

(Exterior):
e(x)

df
= i(∼x)

(Closure):
c(x)

df
= ∼(e(x))

(Boundary):
b(x)

df
= ∼(e(x) + i(x))

Note. These definitions basically follow [1]. However, their original def-
initions define only partial functions. Here the definitions are modified
in a harmless way so as to make each function total if the theory consid-
ered is sufficiently strong (more precisely, if the theory considered is not
weaker than EM, ∀z(Oxz → Oyz) → Pxy will be a theorem; then by
(P2) and such a theorem, it is easy to see the uniqueness of the z in each
definition above). Note that the fusion function symbol ‘Fx’ is actually
a meta-function symbol which takes formulas as parameters. Therefore,
formally we shall take Fx(α(x)) = z as an abbreviation for its definition.

Now the list of possible mereotopological axioms will include the
mereological axioms mentioned earlier and the following ones.

(C1) Cxx (reflexivity for ‘C’)

(C2) Cxy → Cyx (symmetry for ‘C’)

(C3) Pxy → ∀z(Czx → Czy) (monotonicity)

(C4) ∀z(Czx → Czy) → Pxy (defining ‘P’)

(B) ∀x∃y(IPyx ∧ ¬IPxy) (boundarylessness)

(K1) Pxc(x)
(K2) c(c(x)) = c(x)
(K3) c(x + y) = c(x) + c(y)

Note that the first three axioms (C1), (C2) and (C3) are the most
basic and must be included in any mereotopological theory and that
(K1), (K2) and (K3) are actually mereotopological counterparts of Ku-
ratowski’s axioms for topological closures. The following nomenclature
of mereotopological theories is given by [1]. Suppose X is a mereo-
logical theory. X + (C1) + (C2) + (C3) will be named XT (if X is
α-mereology, XT will be read as α-mereotopology; for instance, EMT

is extensional mereotopology). Furthermore, for any XT, XT + (A) is
named AXT, XT + (B) is named BXT and XT + (A) is named AXT.
Besides, GEMT+(K1)+(K2)+(K3) is named GEMTC, GEMTC+(A) is



Finitely inseparable first-order . . . 351

named AGEMTC, GEMTC+(B) is named BGEMTC and GEMTC+(A)
is named AGEMTC.4 In this setting, there are two incompatible maxi-
mally consistent mereotopological theories AGEMTC and BGEMTC (it
is easy to see that BGEMTC implies A and that no finite model can
satisfy BGEMTC).

So far (C4) has not been included in any mereotopological theory
defined above. If (C4) is adopted, then together with (C3), we will have
a definition of ‘P’ in terms of ‘C’, that is to say, the formal language will
then in effect have only one primitive, viz. ‘C’. Now, for any mereotopo-
logical theory X which does not have (C4), X + (C4) will be named SX

(Strong X).

There is a variation due to [2], which defines fusion by “contact”
instead of “overlap”. Such a variation replaces principles (FS), (FP), (C)
and (UF) by the following versions (then all the function symbols defined
above will also have to be redefined accordingly).

(FS′) ∀x∀y(Uxy → ∃z∀w(Cwz ↔ ∃u((Pux ∨ Puy) ∧ Cwu)))
(finite sum for C)

(FP′) ∀x∀y(Oxy → ∃z∀w(Cwz ↔ ∃u(Pux ∧ Puy ∧ Cwu)))
(finite product for ‘C’)

(C′) ∀x(¬∀z Pzx → ∃z∀w(Pwz ↔ ¬Cwx)) (complementation for ‘C’)

(UF′) ∃x α(x) → ∃z∀y(Cyz ↔ ∃x(α(x) ∧ Cyx))
(unrestricted fusion axiom schema for ‘C’)

For any formula α in which ‘x’ is free but ‘z’ and ‘y’ do not occur free.

Note that α might have free variables other than ‘x’.

Then for any theory SX, if (FS), (FP), (C) and (UF) in SX are replaced
respectively by (FS′), (FP′), (C′) and (UF′), the resultant theory will be
named SX′, for example, replacing (UF) in GEMT by (UF′) will yield
GEMT′. As mentioned earlier, AGEMTC and BGEMTC are the two
maximally consistent theories if (C4) has not been adopted, so it would
be a good and actually correct guess that the two maximally consistent
theories which can be formed by adding (C4) as an axiom are SAGEMTC

and SBGEMTC (or SAGEMTC′ and SBGEMTC′ in Clarke’s variation).
Also note that no finite model can satisfy SBGEMTC or SBGEMTC′,
which is a fact not difficult to see.

4 [1] did not consider XT + (K1) + (K2) + (K3) for any X which is strictly weaker
than GEM.
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The foregoing sets up the scope of the mereotopological axioms and
theories which will be considered in this paper.

2. Decidability and Other Relevant Notions

First of all, note that here we are only concerned with consistent the-
ories. Traditionally, decidability is an important issue for metalogical
researches. A logical theory T is decidable if and only if there is an
effective procedure via which one can check whether a sentence is a
theorem of T or not. Of course, “effective procedure” itself still calls for
elucidation. It has been characterized in the literature by the following
three conditions [3, p. 61]: first, the execution of an effective procedure
can be explained by exact instructions; second, the instructions of an
effective procedure can be mechanically implemented without any ran-
dom devices; third, for any input, an effective procedure will output an
answer, no matter whether it is positive or negative, within finitely many
steps. It seems that in order to prove the decidability of a logical theory,
one has to come up with an effective procedure for checking the theorems
of that theory. However, in many cases, it is really hard to find a sub-
stantial theorem-checking procedure for the theory considered. Instead,
it is quite often that a proof will be carried out by a “reduction”, that
is, taking a theory/theories which is/are known decidable (call it/them
“basis theory/theories”) and trying to relate in some way the theory
under investigation (call it “target theory”) to the basis theory/theories.

Reduction is also an important (perhaps the most important) way
for proving the undecidability of a theory (it goes without saying that a
theory is undecidable if and only if it is not decidable). As for in what
way the target theory should be related to the basis theory/theories, it
depends on which general metalogical theorem for proving undecidability
we are applying in that case. Some useful general metalogical theorems
for proving undecidability will be introduced below.

Furthermore, the reductions involved are quite often model theoret-
ical, that is, in those cases, the way to relate the target theory to the
basis theory/theories is the way to relate the models of the former to the
models of the latter. Normally, a model theoretical reduction relies on a
general way of interpreting or defining a model of a theory into a model
of another. Some examples will be given in the next section.
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Moreover, in almost all cases, the syntactical items, such as symbols,
terms, well-formed formulas and finite sequences of well-formed formulas,
of the formal language considered can be coded into natural numbers in
an effective way. That is to say, we can define a one-to-one function from
the sequences of symbols of the formal language considered to natural
numbers such that given a sequence of symbols, we can effectively deter-
mine the natural number which such a sequence is mapped to and, given
a natural number, we can effectively determine whether it is a code of a
sequence of symbols or not and if the answer is positive, we can further
effectively determine which sequence is coded by that number. In this
light, the question whether a logical theory T is decidable or not amounts
to the question whether the set of natural numbers each of which is the
code of a theorem of T is decidable or not (henceforth, to follow a prevail-
ing logical jargon, a code of the said kind will be called a Gödel number).
However, owing to Church’s thesis, a set of natural numbers is decidable
if and only if its characteristic function is recursive. Therefore, as we
will see, some general metalogical theorems for proving undecidability
have resorted to notions and theorems of the recursion theory.5

Intuitively, decidable theories are easier for us to handle (here we
do not consider the issue of complexity) while undecidable theories are
tougher. Based on how they “misbehave”, undecidable theories can be
further classified into a few subclasses. The following are definitions of
those subclasses which can be found in the literature.

• A theory T is essentially undecidable if and only if all its consistent
extensions in the same language are undecdiable.

• A theory T is hereditarily undecidable if and only if all its subtheories
are undecidable.

• A theory T is strongly undecidable in the first sense if and only if any
theory in the same language which is compatible with T is undecidable.

Before introducing other subclasses of undecidable theories, let’s see
some notions that we need from the recursion theory.

• Two sets A and B of natural numbers are recursively inseparable if
and only if there is no recursive set C such that A ⊆ C and B ⊆ ω\C.

5 For a nice expository remark on Church’s thesis, please see [3, pp. 206–210]. A
recursive function is a total partial recursive function and the definition of “partial
recursive function” can be found in any prestigious textbook of the recursion theory.
For a quick but clear introduction, please see [9, Ch. 1].
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• Two sets A and B of natural numbers are effectively inseparable if and
only if they are disjoint and there is a binary recursive function f such
that, for any two disjoint recursively enumerable sets C and D such
that A ⊆ C, B ⊆ D, f(c, d) 6∈ C ∪ D, where c and d are indices of C

and D respectively.6

Then other subclasses of undecidable theories are as follows.

• A theory T in a language L is strongly undecidable in the second

sense if and only if {#α : α ∈ L and T ⊢ α} and {#α : α ∈
L and T ∪{¬α} has a finite model} are recursively inseparable, where
α is a formula and #α is the Gödel number of α (note that here α

does not have to be a sentence).
• A theory T in a language L is inseparable if and only if the set of

Gödel numbers of the theorems of T and the set of Gödel numbers
of the sentences whose negations are theorems of T are effectively
inseparable.

• A theory T in a language L is finitely inseparable if and only if the
set of Gödel numbers of the valid sentences in L and the set of Gödel
numbers of the sentences each of which can be refuted by some finite
model of T are effectively inseparable.7

6 A set of natural numbers is recursively enumerable (abbreviated as r.e.) if and
only if it is the domain of some partial recursive function. Intuitively, a set is r.e.
if and only if there is an effective procedure via which members of such a set can
be enumerated one by one, that is, via such a procedure, we can “count” the set in
question: the first member is [. . . ], the second member is [. . . ], and so on. In this
light, it is easy to see that if a set of natural numbers is decidable, then it must
be r.e. As for indices of an r.e. set, by Church’s thesis, partial recursive functions
are exactly Turing computable functions, where a Turing computable function is a
function which can be computed by a Turing program, and it is obvious that the same
partial recursive function can be computed by infinitely many Turing programs (just
add to a program some redundant instructions and then it will still do the same job),
but Turing programs can be mapped one-to-one and onto natural numbers, so each
partial recursive function will have infinitely many natural numbers as its indices.
Here the indices of an r.e. set are exactly the indices of the partial recursive function
whose domain is the r.e. set in question.

7 The definitions of “essentially undecidable” and “hereditarily undecidable” are
given by [10]. The definition of “strongly undecidable” given by [3] is what I mean by
the “strongly undecidable in the first sense” and the definition of “strongly undecid-
able” given by [4] is what I mean by the “strongly undecidable in the second sense”.
The definitions of “essentially undecidable” and “strongly undecidable” are formu-
lated by [7] in terms of models, but they are equivalent respectively to “essentially
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To see that a theory T of any of the foregoing three kinds is undecid-
able, observe the following three facts. First, if a theory T is decidable,
{#α : α ∈ L and T ⊢ α} will also be decidable and hence r.e. (ob-
serve that T ⊢ α if and only if the universal closure of α, which is a
sentence, is a theorem of T ), and so will be its complement (if a set of
natural numbers is decidable, it is trivial that its complement is also
decidable, for we can use the same effective procedure except that the
output will be reversed). Second, obviously, the set of Gödel numbers of
the valid sentences in L ⊆ the set of Gödel numbers of the theorems of
T ⊆ {#α : α ∈ L and T ⊢ α}. Third, {#α : α ∈ L and T ∪ {¬α} has a
finite model}, the set of Gödel numbers of the sentences whose negations
are theorems of T and the set of Gödel numbers of the sentences each
of which can be refuted by some finite model of T are subsets of the
complement of {#α : α ∈ L and T ⊢ α}. Then, since the union of any
subset of natural numbers and its complement must be the set of all nat-
ural numbers, we can see from the said facts and the relevant definitions
above that if T is decidable, T can be neither strongly undecidable in
the second sense nor inseparable nor finitely inseparable.

Any of the aforementioned subclasses of undecidable theories is de-
fined by a property stronger than undecidability. Such a property seems
naturally interesting, for instance, whether an undecidable theory has a
decidable proper extension or a decidable proper subtheory is a question
which can naturally come to our mind.8

Intuitively, when trying to prove that a theory is undecidable, we
might first want to consider those properties which make reference to
finite models. This is because finite models are in nature much easier to
envisage or construct, which could help a lot with carrying out a reduc-
tion. In particular, “finitely inseparable” is a property which might be
considered first if the target theory has finite models. Now the following

undecidable” and “strongly undecidable in the first sense” defined above. Finally, the
definitions of “inseparable” and “finitely inseparable” are given by [5].

8 Each of these properties in a sense reveals how “terribly” undecidable a theory
is. For instance, if a theory T is strongly undecidable in the second sense, the theory of
all finite models of T is also undecidable [4, p. 235]. If a theory is finitely inseparable,
the theory of all finite models of T cannot be any finitely axiomatizable extension of T

[5, p. 267]. If a theory is inseparable, it must be essentially undecidable and more-
over, there is an effective procedure P such that given any consistent axiomatizable
extension T

′ of T , we can find via P a sentence α such that α 6∈ T
′ and ¬α 6∈ T

′, that
is to say, inseparable theories are effectively incomplete [ibid.] All the said facts can
be easily seen from the definitions of the notions involved.
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lemma is a powerful general method for proving the finite inseparability
of a theory by model theoretical reduction.

Lemma 1. Let T and T ′ be two theories in languages L and L′ respec-
tively. Assume that L has only finitely many function symbols. Suppose
L can be interpreted into a finitely axiomatized L′-theory S′. Call this
interpretation I. If for each finite model A of T there is a finite model
B of T ′ ∪ S′ such that A = BI (BI is the L-structure defined in the
L′-structure B by using interpretation I) and T is finitely inseparable,
then T ′ is finitely inseparable too.9

If all the theories considered are in the same language, it is more
convenient to use the following lemma.

Lemma 2. Assume that T and T ′ are theories in the same language.
Suppose that every finite model M of T can be in some way extended
to a finite model M′ of T ′ and that there is a formula α(x) with only
one free variable ‘x’ such that the set of elements added (if any) to the
domain of M is definable by α(x) in M′. Then if T is finitely inseparable,
T ′ is finitely inseparable too.10

From Lemma 2, it can be easily seen that if T and T ′ are theories in
the same language, T is finitely inseparable and every finite model of T

is also a model of T ′, then T ′ is finitely inseparable too.

3. Finite Inseparability of AGEMT and SAGEMT

First observe that it follows immediately from the definition of finite
inseparability that a theory which has no finite model cannot be finitely
inseparable. Therefore, any mereotopological theory whose axioms con-
tain (A) or (B) is not finitely inseparable. However, as will be shown in
the following theorem, it turns out that a lot of mereotopological theories
each of which has finite models are finitely inseparable.

Theorem 1. All mereotopological theories up to AGEMT or SAGEMT

are finitely inseparable.

9 The original lemma is given by [5, p. 272], but the version presented here has
been rephrased by the present writer to make it more readable. For how to interpret
a language into a theory, please see [3, Sect. 2.7].

10 This is actually a corollary of Lemma 1. For its proof, please see [13, pp. 255–
256].
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Proof. By Lemma 2, it is trivial that if a theory is finitely separable,
all its subtheories (no matter whether they are axiomatizable or not) in
the same language will also be finitely inseparable. Hence it suffices to
show that AGEMT and SAGEMT are finitely inseparable.11 As men-
tioned earlier, it is very often that such a kind of proofs will be done by
reductions and here the idea is to make use of Lemma 1.

Furthermore, it is known that for any language L whose signature
contains only one binary predicate R, the theory of L, that is, the set
of valid sentences in L, is finitely inseparable [5, p. 279]. Consider a
language L of the said kind. The reductions to be carried out will take
the theory of L as the basis.

(T1.1) Finite Inseparability of AGEMT. Let’s first take AGEMT as the
target theory. In view of Lemma 1, we shall give an interpretation I

of L first and then show that any finite L-structure A will be BI , for
some finite model B of AGEMT. Now the interpretation I is defined as
follows.

• I(∀) = x is an atom and x contacts at least four and at most five other
atoms each of which does not contact any other atom different from
x.

• I(R) = (x = y and x is an atom and x contacts exactly five other
atoms each of which does not contact any other atom different from
x) or (x is an atom and x contacts at least four other atoms each
of which does not contact any other atom different from x, and y is
an atom and y contacts at least four other atoms each of which does
not contact any other atom different from y, and there are two atoms
which contact each other such that x contacts both of them and y

contacts at least one of them)

Let ‘At x’ be an abbreviation for ‘¬∃y PPyx’. Then formally

• I(∀) = At x ∧ ∃y1∃y2∃y3∃y4(At y1 ∧ At y2 ∧ At y3 ∧ At y4 ∧ y1 6= y2 ∧
y1 6= y3 ∧ y1 6= y4 ∧ y2 6= y3 ∧ y2 6= y4 ∧ y3 6= y4 ∧ x 6= y1 ∧ x 6= y2∧

11 Since AGEMT is a subtheory of SAGEMT, I could have only shown the finite
separablility of the latter. However, my original proof has been developed by trying
to extend a binary relational structure into a finite model of AGEMT in a graphic
way and then trying to modify the graphic interpretation so as to make (C4) satisfied.
I think a proof will be more readable if the ideas behind the proof can be seen at
least to some extent, even if not completely, from its content. So I have preserved the
original proof in which the case of AGEMT has been dealt with first.
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x 6= y3 ∧ x 6= y4 ∧ Cxy1 ∧ Cxy2 ∧ Cxy3 ∧ Cxy4 ∧ ∀u((At u∧
u 6= x) → ((u 6= y1 → ¬Cuy1) ∧ (u 6= y2 → ¬Cuy2) ∧ (u 6= y3 →
¬Cuy3) ∧ (u 6= y4 → ¬Cuy4))) ∧ ∀z1∀z2((At z1 ∧ At z2 ∧ z1 6= x ∧
z2 6= x ∧ z1 6= y1 ∧ z1 6= y2 ∧ z1 6= y3 ∧ z1 6= y4 ∧ z2 6= y1 ∧ z2 6= y2 ∧
z2 6= y3 ∧ z2 6= y4 ∧ Cxz1 ∧ Cxz2 ∧ ∀u((At u ∧ u 6= x) →
((u 6= z1 → ¬Cuz1) ∧ (u 6= z2 → ¬Cuz2)))) → z1 = z2))

Let α(x) be an abbreviation for the foregoing formula and β(x) be an
abbreviation for a formula which says that x is an atom and x contacts
exactly five other atoms each of which does not contact any other atom
different from x (from the formal version of I(∀), one should know how
to write down such a formula). Then formally

• I(R) = (x = y ∧ β(x)) ∨ (α(x) ∧ α(y) ∧ ∃u∃z(At u ∧ At z ∧ u 6= z ∧
Cuz ∧ Cxu ∧ Cxz ∧ Cyu))12

Let γ(x, y) be an abbreviation for this formula. To see that the
foregoing interpretation really works, we shall first show how to extend
each finite L-structure to a finite model of AGEMT. Now given a finite
L-structure A, we will construct in the following way a finite model B
of AGEMT step by step.

(Step 1) Take all members in Dom(A) as atoms in Dom(B) and for
each a ∈ Dom(A), add four new atoms a1, a2, a3 and a4 to Dom(B) and
let a contact a1, a2, a3 and a4, that is, let (a, a1), (a, a2), (a, a3) and
(a, a4) ∈ CB. The construction should be such that if a, b ∈ Dom(A)
and a 6= b, then the atoms newly added for them are all distinct.

(Step 2) For any a ∈ Dom(A), if (a, a) ∈ RA, that is, R(a, a) is true
in A, then add one more new atom a5 and let (a, a5) ∈ CB; otherwise,
do nothing.

(Step 3) For any distinct a, b ∈ Dom(A), if both (a, b) and (b, a) ∈
RA, then add two new atoms c and d to Dom(B) such that c contacts
d and that a as well as b contacts both c and d, that is, let (c, d), (a, c),
(a, d), (b, c) and (b, d) ∈ CB; if (a, b) ∈ RA but (b, a) 6∈ RA, then add
two new atoms c and d such that c contacts d and that a contacts both c

and d but b contacts only one of them, that is, let (c, d), (a, c), (a, d) and
(b, c) ∈ CB; otherwise, do nothing. Note that the newly added c and d

at this step won’t contact any other atom other than the ones specified

12 Here α(x) actually says more than we need, for we only need a formula which
says “x contacts at least four other atoms each of which does not contact any other
atom different from x”, but this does not matter since x must satisfy α(x) anyway.
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above (in this light, observe that each of c and d contacts at most three
other atoms).

(Step 4) Take all atoms got so far and construct a finite Boolean alge-
bra (it should be clear that there can be only finitely many atoms after
the execution of Step 3) and let Dom(B) contain exactly all members
except 0 of that finite Boolean algebra. As for the interpretations of ‘P’
and ‘C’ in B, let P B={(a, b) ∈ Dom(B) × Dom(B): a ≤ b in the said
finite Boolean algebra} and CB={(a, b) ∈ Dom(B) × Dom(B): a = b or
a contacts b from the construction at the previous steps or (b, a) ∈ CB

or for some d ∈ Dom(B), (d, a) ∈ P B and (b, d) ∈ CB}.13

We can see from the foregoing construction the following three facts.
First, if a, b ∈ Dom(A) and a 6= b, then (a, b) 6∈ CB. Second, for
any a ∈ Dom(A), each of the atoms added at Step 1 or Step 2 for a

does not contact any atom other than itself or a. Third, for any atom
a ∈ Dom(B), if a does not come from Dom(A), then a won’t contact
more than three other atoms.

Now we will check that the mereotopological structure B constructed
through the foregoing four steps is a model of AGEMT. Since B is
a finite Boolean algebra with 0 removed, B satisfies (A) and GEM.14

Furthermore, from the definition of CB, we can see that (C1) and (C2)
are obviously satisfied by B. To see that B satisfies (C3), observe that
by the definition of CB, for any a, b in B, if a is a part of b, that
is, (a, b) ∈ P B, then for any d in B such that d contacts a, that is,
(d, a) ∈ CB, (d, b) will be in CB too, that is, d will also contact b. So
B is indeed a model of AGEMT. Therefore, given any L-structure A,
we can get a model B of AGEMT from the construction above. But
BI will be exactly A. First of all, Dom(BI) = {a ∈ Dom(B) : B |=
α(x)[a], that is, α(x)is true of a in B}, but from the construction above,
we can see that B |= α(x)[a] if and only if a ∈ Dom(A) (more precisely,
from the aforementioned third fact, we can see that a is an atom and a

contacts at least four other atoms if and only if a ∈ Dom(A)) and hence
Dom(BI) = Dom(A). Moreover, the interpretation of R in BI is {(a, b) ∈
Dom(BI) × Dom(BI) : B |= γ(x, y)[a, b]}. But by Step 3, obviously
B |= γ(x, y)[a, b] if and only if (a, b) ∈ RA and hence the interpretation

13 The definition of C
B seems circular, but this won’t cause any problem, for it

is actually an abbreviation for the formal inductive definition of C
B.

14 This is a fact already mentioned by [11] a long time ago. But actually the
case of finite Boolean algebras is easy to check. Just note that every finite Boolean
algebra must be complete and hence the fusion schema will be satisfied.
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of R in BI is exactly RA. Therefore, as an L- structure, BI is exactly
A. Finally, consider the theory axiomatized by AGEMT + ∃x α(x).
It is immediate that L can be interpreted into the theory axiomatized
by ∃x α(x).15 Moreover, it is obvious that the structure B constructed
above satisfies AGEMT+∃xα(x). Then by Lemma 1, AGEMT is finitely
inseparable.

(T1.2) Finite Inseparability of SAGEMT. As for the case of SAGEMT,
observe that the structure B constructed above does not necessarily sat-
isfy (C4), for there might be two objects a and b in B such that everything
which contacts a also contacts b but a is not a part of b. More precisely,
when a finite model M of AGEMT has at least two members, M won’t
satisfy (C4) if there are two distinct atoms in M which contact each
other. To see this, suppose M is a model of AGEMT and Dom(M) has
n atoms, for some n ≥ 2. Let a ∈ Dom(M) be the object composed of
some n − 1 atoms (the existence of a is guaranteed by the fusion axiom
schema (F)), and let b ∈ Dom(M) be the only atom which does not be-
long to a. Obviously, b is not a part of a and therefore b cannot contact
any part of a if M satisfies (C4), for otherwise, every object which b

contacts must contact a (any object which has b as a proper part will
contain other atoms and hence will overlap a, but overlapping implies
contacting) and hence by (C4), b will be a part of a. The foregoing
argument applies to every atom in M, which implies that no two atoms
in M can contact each other if M satisfies (C4). In order to solve this
problem, a similar but more complicated construction will be offered. We
will interpret L in almost the same manner as in the case of AGEMT

except that instead of using atoms, this time we will use objects each
of which is composed of exactly two atoms to stand for members in the
original L-structure and we will make sure that any two atoms in the
structure to be constructed won’t contact each other.

Let δ(x) be an abbreviation for ∃y∃z(At y∧At z∧y 6= z∧Pyx∧Pzx∧
∀u(PPux → (u = y ∨ u = z))), which says that x is composed of exactly
two atoms, and for any formula ϕ, let ∃n≤xϕ, ∃n≥xϕ and ∃n=xϕ, where
n ≥ 1, be abbreviations respectively for “at least n objects such that
ϕ”, “at most n objects such that ϕ” and “exactly n objects such that
ϕ”. It is known from the first course in logic that the said three kinds of
expressions in English can be easily translated into formal formulas in
logic. Then let’s define the interpretation I as follows.

15 If readers wonder why this is immediate, please see [3, Sect. 2.7] again.
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• I(∀) = δ(x) ∧ ∃4≤y(δ(y) ∧ Cyx ∧ ¬Oyx ∧ ∀z((δ(z) ∧ z 6= x ∧ ¬Ozy) →
¬Cyz))∧∃5≥y(δ(y)∧Cyx∧¬Oyx∧∀z((δ(z)∧z 6= x∧¬Ozy) → ¬Cyz))

• I(R) = (x = y ∧∃5=z(δ(z)∧Czx∧¬Ozx∧∀u((δ(u)∧u 6= x∧¬Ouz) →
¬Cuz))) ∨ (∃4≤z(δ(z) ∧ Czx ∧ ¬Ozx ∧ ∀u((δ(u) ∧ u 6= x ∧ ¬Ouz) →
¬Cuz)) ∧ ∃4≤z(δ(z) ∧ Czy ∧ ¬Ozy ∧ ∀u((δ(u) ∧ u 6= y ∧ ¬Ouz) →
¬Cuz)) ∧ ∃u∃z(δ(u) ∧ δ(z) ∧ ¬Ouz ∧ Cuz ∧ Cxu ∧ Cxz ∧ Cyu))

Given any finite L-structure A, we will extend it to a finite model B
of SAGEMT via the following four steps.

(Step 1) For each a ∈ Dom(A), add ten new atoms e1 to e10 to
Dom(B) and let a be composed of e1 and e2, a1 be composed of e3 and
e4, a2 be composed of e5 and e6, a3 be composed of e7 and e8 and a4

be composed of e9 and e10. Let a contact a1, a2, a3 and a4, that is,
let (a, a1), (a, a2), (a, a3) and (a, a4) ∈ CB. The construction should be
such that all the atoms newly added are all distinct and do not contact
each other (this condition should also be met at Step 2 and Step 3).

(Step 2) For any a ∈ Dom(A), if (a, a) ∈ RA, that is, R(a, a) is
true in A, then add two more new atoms e11 and e12 to Dom(B), let a5

be composed of these two atoms and add (a, a5) to CB; otherwise, do
nothing.

(Step 3) For any a, b ∈ Dom(A), if both (a, b) and (b, a) ∈ RA, then
add four new atoms c1, c2, d1 and d2 to Dom(B), and let c be composed
of c1 and c2 and d be composed of d1 and d2 such that c contacts d,
and a as well as b contacts both c and d, that is, add (c, d), (a, c), (a, d),
(b, c) and (b, d) to CB; if (a, b) ∈ RA but (b, a) 6∈ RA, then add four new
atoms c1, c2, d1 and d2 to Dom(B), and let c be composed of c1 and c2

and d be composed of d1 and d2 such that c contacts d, a contacts both
c and d, and b contacts c only, that is, add (c, d), (a, c), (a, d) and (b, c)
to CB; otherwise, do nothing.

(Step 4) is exactly the same as Step 4 in the proof of the case of
AGEMT.

Now let’s check that the mereotopological structure B constructed
via the foregoing four steps is a model of SAGEMT. First of all, for the
same reason mentioned earlier, B satisfies AGEMT. Furthermore, from
the definition of CB, it can be easily seen that for any a, b in B, if a is an
atom, then (a, b) ∈ CB if and only if (a, b) ∈ P B. But since B is atomic,
for any a, b in B, a is not a part of b if and only if a has at least one atom
which is not a part of b (for a more rigorous argument, it is not difficult
to show that EM + (A) |= Pxy ↔ ∀z((At z ∧ Pzx) → Pzy), and B is
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of course a model of EM + (A)). From the said observations, it follows
that for any a, b in B, a is not a part of b if and only if a has at least
one atom which does not contact b. By this biconditional, B obviously
satisfies (C4). Hence B is a model of SAGEMT. Similar to the case
of AGEMT, we can then conclude that SAGEMT is finitely inseparable
and here let’s skip the final details of how to reach that conclusion.

4. Concluding remarks

From the main result above, it follows that any mereotopological theory
up to AGEMT or SAGEMT is hereditarily undecidable (since as men-
tioned earlier, any subtheory of a finitely inseparable theory must also be
finitely inseparable) and strongly undecidable in the second sense (it can
be seen immediately from the definitions involved that “finitely insep-
arable” implies “strongly undecidable in the second sense”). Moreover,
any theory T of such a kind must be separable since T has at least one
finite model and the theory of a finite model must be decidable, and
for the same reason, T is neither essentially undecidable nor strongly
undecidable in the first sense (this is immediate from the definitions in-
volved). How about those mereotopological theories each of which has no
finite models? In fact, combining the results which I have already shown
previously [16], we can come to the following two general conclusions.

1. All consistent mereotopological theories which can be generated
from the axioms listed in the first section have decidable consistent exten-
sions in the same language; therefore they are separable and are neither
essentially undecidable nor strongly undecidable in the first sense.

2. All consistent mereotopological theories which can be generated
from the axioms listed in the first section, except SAGEMTC or SAX′

or SBX′, for any X strictly stronger than CEMT, are hereditarily unde-
cidable.

Finally, the following questions still remain open:

whether SAGEMTC is decidable or not; whether any of SAX′ or
SBX′, for any X strictly stronger than CEMT, is decidable or not
(I guess none of them is decidable).
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